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In this article, a high-order solution-based mesh adaptation method is investigated. This later, 
which is called the log-simplex method, relies on the approximation of high-order differential 
form of the solution by a dedicated metric-field. The method is a natural extension of Hessian-

based methods to the high-order case.

1. Introduction

When numerically simulating physical problem with finite elements method, having a mesh which well suits the considered 
problem is one of the most significant prerequisites. Indeed, in such computations, two kinds of errors occur, which are the implicit 
error due to the numerical scheme itself and the interpolation error due to projection of the solution onto a finite elements space. 
This later strongly depends on mesh quality with respect to the solution field, and its minimization is a very active field of research. 
In this article, we investigate one of the most common ways to obtain a suitable mesh, namely the anisotropic mesh adaptation. 
Through this approach, the problem is addressed by modifying an initial simplicial mesh into a new one, which minimizes the 
interpolation error of a given solution field. Notice that, on the contrary to the isotropic mesh adaptation which only takes into 
account the elements size (usually the edges’ lengths), the anisotropic ones also consider the orientations of the elements as part of 
the optimization process. When considering classical ℙ1 finite elements spaces, which are composed of piecewise linear functions 
over the mesh elements, the problem has been widely studied and has found a large amount of industrial applications (see for instance 
[2,4,17]). In this case, the interpolation error is actually governed by the Hessian matrix of the considered solution, which leads the 
mesh adaptation process. These methods are called Hessian-based methods, and have been tremendously fruitful for decades (see 
for instance [7,13,18,21,24]). However, when the physical problem is solved by high-order numerical schemes, which may be built 
through discontinuous Galerkin [34] or spectral differences [22] methods, Hessian-based methods are no more applicable nor easily 
extendable to these kinds of schemes. Indeed, though there exist publications addressing this purpose [14,15,19,30,38], they rarely 
give truly applicable algorithms, especially in 3 dimensional space.

The purpose of the present article lies in the extension of Hessian-based anisotropic mesh adaptation methods to the case of 
high-order finite elements spaces ℙ𝑘, where 𝑘 > 1 is arbitrary. In this case, usual ℙ1 error estimate can be replaced by its high-

order version, lead by the 𝑘 + 1 differential of the solution. The main difficulty is then to translate this high-order differential into 
meshing features. Actually, one of the key points of Hessian-based methods is the fact that a metric-field can easily be deduced 
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from the Hessian-matrix of a solution. This metric-field is then used to lead mesh adaptation, through the notion of unit mesh with 
respect to a metric-field (see Section 2.2). When high-order finite elements spaces are involved, the link between the high-order 
derivatives of the solution and a metric-field is not that straightforward to deduce. An interesting way to address this issue can 
be found in [8,31,32], where calculus of variations techniques allow to derive a metric-field from an alternative representation, 
based on aspect ratio, angle and density of the metric. Their method both applies to 2D and 3D cases, and has been mostly used 
for analytical high-order solutions. In the present article, the mesh adaptation method is tested for steady and unsteady numerical 
solutions which are computed from the Discontinuous Galerkin solver Argo. The theoretical background of it relies on Cao’s work 
[5,6] where he established a relationship between the high-order differential of a solution and a metric-field. More precisely, this 
author has exhibited what kind of metric-fields would be suitable to minimize a given high-order solution, but the way to build such 
a metric-field remained open in general. In practical, the problem reduces to find the largest ellipse in 2D or ellipsoid in 3D included 
into an area delimited by the level-set of level 1 of the homogeneous polynomial of degree 𝑘 + 1 given by the 𝑘 + 1 differential of 
the solution (see Section 4). This derived problem has been notably addressed by Mirebeau in [29] up to 𝑘 = 3 and in the general 
case by Hecht and Kuate in [19]. Their method gives a first numerical implementation of the problem, but only applies in 2D and 
is quite costly to operate. This paper is devoted to the theoretical and numerical study of the log-simplex method, which enables 
to automatically derive a metric-field from a high-order solution field, both in 2D and 3D. It has been introduced in [10] and is 
based on two main ideas. First, instead of considering the optimization problem on a metric , the framework is translated in terms 
of the log-matrix  = log(). The second idea is the simplification of the non-linear optimization problem to a sequence of linear 
ones, which can be solved by a usual simplex algorithm. Notice that this method applies to any order and any kind of polynomial 
interpolations and that it is a true extension to the Hessian-based methods. Indeed, the application of the log-simplex method with 
𝑘 = 1 reduces to the classical Hessian-based method described in [25,26].

This paper is organized as follows. The section 2 introduces the mesh optimization problem and gives some recalls about the 
metric-based adaptation framework. Then, in Section 3, a high-order continuous error estimate is exhibited, which is a natural 
extension to the ℙ1 error model leading to the Hessian-based mesh adaptation methods. The section 4 is devoted to the description 
of the log-simplex algorithm, which is a way to translate the high-order error model in terms of metric field. Finally, in Section 5, the 
method is applied to several 2D and 3D numerical cases, and the improvement of the representation of the solution by high-order 
finite elements spaces induced by the mesh adaptation procedure is precisely measured.

2. Framework and notations

In this section, the mesh optimization problem is stated rigorously. It is also shown how a mesh adaptation problem can be 
expressed as a Riemannian metric space optimization problem, following the framework of [25,26]. Even though the considered 
solutions are represented with high-order polynomial functions, the mesh itself is composed of linear ℙ1 simplex elements (straight 
triangles in 2D, straight tetrahedra in 3D).

2.1. High-order mesh adaptation problem

Throughout this paper, a fixed domain Ω ⊂ ℝ𝑑 , 𝑑 = 2, 3 is considered, as well as a linear simplicial mesh  of Ω. Let ℙ𝑘() be 
the classical finite elements space given by

ℙ𝑘() =
{
𝑣 ∶ Ω→ℝ |𝑣| is a polynomial of degree 𝑘

}
,

where  denotes a simplex element of .

The dimension of such a functions space is finite, and each function of ℙ𝑘() can be determined by its values at interpolation 
nodes inside each element  . Indeed, given a set of nodes 

{
𝑥1, 𝑥2, ..., 𝑥𝑛

}
∈  , with 𝑛 = (𝑘+1)(𝑘+2)

2 if 𝑑 = 2 and 𝑛 = (𝑘+3)(𝑘+2)(𝑘+1)
6 if 

𝑑 = 3, a function 𝑢 ∶ Ω →ℝ can be approximated by its projection Π𝑘𝑢 onto ℙ𝑘( ) as the unique polynomial of degree 𝑘 such that

Π𝑘𝑢(𝑥𝑖) = 𝑢(𝑥𝑖), for all 𝑖 ∈ {1, ..., 𝑛} .

The projection of a solution 𝑢 onto ℙ𝑘 depends on the choice of nodes locations, and is exact if 𝑢 is a polynomial whose degree is 
smaller than 𝑘. Throughout this article, the locations of nodes 𝑥𝑖, 𝑖 = 1, ..., 𝑛 are assumed to be the same for each element of the mesh, 
and are not adaptation parameters. Notice that theoretical developments described in the present article remain valid for every kind 
of nodes locations.

Let () denote the mesh complexity , that is to say the number of tetrahedra of . In this paper is addressed the following 
problem.

Problem 1. Let 𝑘 ≥ 1 be a fixed order of interpolation. Given a smooth function 𝑢 ∶ Ω → ℝ, a fixed complexity 𝑁 > 0 and 𝑝 ∈
[1, ...,+∞], find the optimal simplicial mesh  of Ω with complexity 𝑁 such that

𝑜𝑝𝑡 = argmin
∶()=𝑁

‖‖𝑢−Π𝑘𝑢
‖‖𝐿𝑝 , (2.1)
2

where ‖.‖𝐿𝑝 is the classical Lebesgue 𝐿𝑝-norm on Ω.
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Fig. 1. The 2D unit ball 2
of a 2D metric 2 . The two vectors 𝑢 and 𝑣 have the same length for the usual Euclidean norm but different orientations. Hence, their 

lengths in the metric space associated to 2 differ: |𝑢|2
= 1 whereas |𝑣|2

= 2.

2.2. Continuous mesh framework

The mesh adaptation is performed using a metric-based adaptation process. This technique enables to produce anisotropic meshes, 
and is based on the use of a particular distance function, defined through a metric tensor. In this section, the theoretical background 
related to the metric-based mesh adaptation is recalled. It includes some basic notions about Riemannian geometry, and introduces 
the notions of continuous mesh and unit mesh with respect to a metric-field. In what follows,  ∈𝑑,𝑑 (ℝ) denotes a metric, that 
is to say a symmetric positive definite matrix of ℝ𝑑 . With use of such a metric, an Euclidean metric space can be defined. It is stated 
in Definition 2.1 below.

Definition 2.1. Let  be a metric of ℝ𝑑 . The Euclidean metric space (ℝ𝑑 , ) is the vector space associated to the dot product given 
by

⟨𝑥, 𝑦⟩ = 𝑥𝑡𝑦, for 𝑥, 𝑦 ∈ℝ𝑑 . (2.2)

Likewise, the norm |.| results from this scalar product and is given by

|𝑥| =
√
𝑥𝑡𝑥, for all 𝑥 ∈ℝ𝑑 . (2.3)

The main principle from which anisotropic mesh adaptation is addressed comes from the use of scalar product and distance given 
by Definition 2.1, instead of usual Euclidean ones. In fact, all geometric quantities, such as length, area or volume can be computed 
through |.|. Considering a metric-space instead of the usual Euclidean space involves anisotropy in the lengths computations. 
Indeed, in this framework, the unit ball  =

{
𝑥 ∈ℝ𝑑 ∶ |𝑥| = 1

}
is no longer a circle in 2D nor a sphere in 3D but an ellipse or an 

ellipsoid, and consequently the length of a segment may depend on its orientation (see Fig. 1). Definition 2.1 extends to the notion 
of Riemmanian metric-field, where a smooth metric field 𝐌 =((𝐱)) 𝐱∈𝛀 is considered, whose values depend on 𝑥 ∈ Ω. Following 
this idea, the Riemannian length of a curve 𝛾 ∶ [𝑡0, 𝑡1] →ℝ𝑑 is given by the integral formula

𝓁𝐌(𝛾) =

𝑡1

∫
𝑡0

|𝛾 ′(𝑡)|(𝛾(𝑡)) 𝑑𝑡. (2.4)

In the particular case where 𝛾 is a straight segment linking two points 𝑎, 𝑏 ∈ ℝ𝑑 , 𝛾(𝑡) = (1 − 𝑡)𝑎 + 𝑡𝑏, 𝑡 ∈ [0, 1], the length of [𝑎, 𝑏]
writes

𝓁𝐌(𝑎𝑏) =

1

∫
0

√
𝑎𝑏𝑡(𝛾(𝑡))𝑎𝑏𝑑𝑡. (2.5)

In particular, if 𝐌 is constant over Ω, it reduces to the Euclidean distance given by Definition 2.1. The link between a discrete mesh 
and a continuous metric field on Ω is established by the notion of unit element with respect to a metric, stated by Definition 2.2

below.

Definition 2.2. Let  be a metric of ℝ𝑑 . An element is said to be unit with respect to  if its edges (𝑒𝑖)𝑖∈{1,...,𝑑+1} satisfy

||𝑒𝑖|| = 1, for all 𝑖 ∈ {1, ..., 𝑑 + 1} .

Actually, a unit element with respect to a metric  is nothing more than an equilateral element with respect to the norm |.|. 
This definition extends directly to the case of non-constant metric field 𝐌, using 𝓁𝐌 instead of |.|. A mesh  is then said to be 
unit with respect to a metric field 𝐌= ((𝐱))𝐱∈𝛀 if every element  ∈ is unit with respect to 𝐌. In practical, the notion of unit 
element is replaced by the notion of quasi-unit element, that is to say that the edges of the concerned elements are close to 1, up to 
3

a given tolerance. Hence, in this paper, an element is said to be quasi-unit if all its edges 𝑒𝑖, 𝑖 = 1, ..., 𝑑 + 1, satisfy
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Fig. 2. Left: unit balls of 2D and 3D metrics and unit elements with respect to them. The dashed line on the ellipse represents a segment of length 1 with respect to 
the metric. Right: unit balls of a 2D metric-field on a square domain and unit mesh with respect to it.

√
2
2

≤ ||𝑒𝑖|| <
√
2. (2.6)

In particular, if an edge 𝑒 is too long, that is to say |𝑒| ≥√
2, then splitting 𝑒 at its middle would not create edges with too short 

lengths, smaller than 
√
2
2 . According to these definitions, there is a strong duality between a metric-field and a mesh, as shows Fig. 2. 

Most of the classical notions usually concerning meshes have their equivalence in terms of metric-field. For instance, if  is a unit 
tetrahedron with respect to a metric , then its volume is given by

| | = √
2

12
det

(− 1
2
)
.

Likewise, the complexity of a mesh  which is unit with respect to 𝐌 = ((𝑥))𝑥∈Ω has its metric equivalent which is

(𝐌) = ∫
Ω

(det(𝑥))
1
2 𝑑𝑥.

By this way, the initial mesh adaptation Problem 1 is reduced to a metric optimization problem, stated by Problem 2 below.

Problem 2. Given a smooth function 𝑢 ∶ Ω → ℝ, a fixed complexity 𝑁 > 0 and 𝑝 ∈ [1, ...,+∞], find the optimal metric space 
𝐌 = ((𝐱))𝐱∈𝛀 such that a unit mesh  with respect to 𝐌 minimizes the 𝐿𝑝 interpolation error of 𝑢.

3. Error model

According to previous sections, for a given solution 𝑢 on Ω ∈ℝ𝑑 , 𝑑 = 2, 3, and a fixed complexity 𝑁 > 0, it remains to define what 
a suitable metric-field is, with complexity 𝑁 and such that a unit mesh with respect to it would minimize the high-order interpolation 
error of 𝑢 given by (2.1). It is well known that this ℙ𝑘 interpolation error is governed by the differential of order 𝑘 + 1 of 𝑢. Indeed, 
for a smooth function 𝑢 defined on an element  and 𝑝 ∈ [2, +∞), the following interpolation inequality holds:

‖‖𝑢−Π𝑘𝑢
‖‖𝐿𝑝( ) ≤ 𝐶 | | 𝑘+1𝑑 ‖‖‖𝑑(𝑘+1)𝑢‖‖‖𝐿𝑝( )

, (3.1)

where | | denotes the volume of  and 𝑑(𝑘+1)𝑢 the 𝑘 + 1 differential form of 𝑢. It is a homogeneous polynomial of degree 𝑘 + 1. In 
dimension 2, for 𝑋0 = (𝑥0, 𝑦0), it is given by

𝑑(𝑘+1)𝑢(𝑋0)(𝑋 −𝑋0) =
𝑘+1∑
𝑖=0

(
𝑘+ 1
𝑖

)
𝜕(𝑘+1)𝑢(𝑋0)
𝜕𝑥𝑖𝜕𝑦𝑘+1−𝑖

(𝑥− 𝑥0)𝑖(𝑦− 𝑦0)𝑘+1−𝑖, (3.2)

for all 𝑋 = (𝑥, 𝑦) ∈ℝ2. Likewise, in dimension 3, for 𝑋0 = (𝑥0, 𝑦0, 𝑧0) ∈  , 𝑑(𝑘+1)𝑢(𝑋0), we get

𝑑(𝑘+1)𝑢(𝑋0)(𝑋 −𝑋0) =
𝑘+1∑
𝑖=0

𝑘+1−𝑖∑
𝑗=0

(
𝑘+ 1
𝑖

)(
𝑘+ 1 − 𝑖

𝑗

)
𝜕(𝑘+1)𝑢(𝑋0)

𝜕𝑥𝑖𝜕𝑦𝑗𝜕𝑧𝑘+1−𝑖−𝑗
(𝑥− 𝑥0)𝑖(𝑦− 𝑦0)𝑗 (𝑧− 𝑧0)𝑘+1−𝑖−𝑗 ,

(3.3)

for all 𝑋 = (𝑥, 𝑦, 𝑧) ∈ℝ3.

The inequality (3.1) can be found in a more general case in [9, Theorem 3.1.6]. This section shows how (3.1) can be translated 
4

into a metric-field, both in the cases of ℙ1-based mesh adaptation and high-order based mesh adaptation.
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3.1. Anisotropic ℙ1 mesh adaptation

The metric-based mesh adaptation for ℙ1 finite elements spaces has been introduced in the early 2000s and used in various cases, 
combined with the numerical resolution of partial differential equations (see for instance [3,11,17] and the references therein). The 
main idea relies on the interpolation error estimate (3.1) when 𝑘 = 1. In this particular case, the interpolation error can be written

‖‖𝑢−Π1𝑢‖‖𝐿𝑝( ) ≤ 𝐶 | | 2𝑑 ‖‖𝐻𝑢
‖‖𝐿𝑝( ) , (3.4)

where 𝐻𝑢 denotes the Hessian matrix of 𝑢.
From (3.4), an optimal metric field can be derived, that is aligned with ||𝐻𝑢

||, the absolute value of 𝐻𝑢, in terms of eigenvalues. 
More precisely, since 𝐻𝑢 is a symmetric matrix of ℝ𝑑 , it writes 𝐻𝑢 = 𝑅 𝐷𝑅𝑡, where 𝐷 ∈ 𝑑,𝑑 (ℝ) is the diagonal matrix whose 
diagonal is composed of the eigenvalues {𝜆1, ..., 𝜆𝑑} and 𝑅 ∈𝑑,𝑑 (ℝ) is the rotation matrix whose columns are the corresponding 
eigenvectors of 𝐻𝑢. The absolute value of 𝐻𝑢 is then defined by |𝐻𝑢| = 𝑅|𝐷|𝑅𝑡, where |𝐷| is obtained by replacing {𝜆1, ..., 𝜆𝑑} by 
their absolute values. The key point to the Hessian-based method described in [25,26] lies in the introduction of the metric-based 
error functional

𝐸𝑝 (𝐌, 𝑢) =
⎛⎜⎜⎝∫Ω

||||trace
(− 1

2 (𝑥) ||𝐻𝑢(𝑥)||− 1
2 (𝑥)

)||||𝑝 𝑑𝑥
⎞⎟⎟⎠
1
𝑝

, (3.5)

which is equivalent to ‖𝑢 − Π1𝑢‖𝐿𝑝 when the mesh  is unit with respect to 𝐌. As shown in [24], a calculus of variations under 
the constraint (𝐌) =𝑁 then allows to compute the optimal metric-field which solves Problem 2, in the sense that it minimizes the 
right hand side of (3.5). It is given by

𝑝

𝑜𝑝𝑡
(𝑢)(𝑥) =𝑁

2
𝑑

⎛⎜⎜⎝∫Ω
(
det ||𝐻𝑢

||) 𝑝

2𝑝+𝑑
⎞⎟⎟⎠
− 2
𝑑 (

det ||𝐻𝑢(𝑥)||)− 1
2𝑝+𝑑 ||𝐻𝑢(𝑥)|| . (3.6)

For further details, we refer to [25,26].

From a practical point of view, given an initial coarse mesh 0 of the domain Ω and a fixed complexity 𝑁 > 0, the ℙ1 metric-based 
adaptation process follows Algorithm 1.

input : Initial mesh 0
Complexity 𝑁

output : Final mesh 1

repeat
Compute 𝐻𝑢(𝑥), for each vertex 𝑥 of 0

Compute (𝑥) = (
det ||𝐻𝑢(𝑥)||)− 1

2𝑝+𝑑 ||𝐻𝑢(𝑥)||, for all 𝑥 of 0
Compute 𝑝

𝑜𝑝𝑡
= 𝛼, with 𝛼 > 0 such that (𝑝

𝑜𝑝𝑡
) =𝑁

Remesh 0 and obtain 1 which is unit with respect to 𝑝

𝑜𝑝𝑡

Replace 0 by 1
until convergence;

Algorithm 1: ℙ1 adaptation process.

3.2. From ℙ1 to high-order error model

The most significant issue of the high-order problem comes from the fact that the right hand side of (3.1) cannot be expressed 
in a metric sense as easily as in the ℙ1 interpolation case. Consequently, in order to extend the ℙ1 mesh adaptation process to 
the ℙ𝑘 case, a further step in Algorithm 1 consists in approximating 𝑑(𝑘+1)𝑢(𝑥) by a metric-dependent functional, for all 𝑥 ∈ Ω. As 
explained above, this issue does not occur when dealing with ℙ1 finite elements spaces, for which the metric-dependent functional 
is the quadratic form defined from ||𝐻𝑢(𝑥)||. On the contrary, if 𝑘 ≥ 2, the situation is more intricate. Let 𝑢 ∶ Ω → ℝ be a smooth 
function and 𝑥0 be a point of Ω. For all 𝑥 ∈Ω belonging to the vicinity of 𝑥0, there exists a positive constant 𝐶 such that

||𝑢(𝑥) − Π𝑘𝑢(𝑥)|| ≤ 𝐶
|||𝑑(𝑘+1)𝑢(𝑥0)(𝑥− 𝑥0)

|||+ 𝑜

(||𝑥− 𝑥0||𝑘+12

)
, (3.7)

where |.|2 is the usual Euclidean norm.

The purpose is now to approximate the right hand side of (3.7) with a “metric approximation” of 𝑑(𝑘+1)𝑢. More precisely, for all 
𝑥0 ∈ Ω, we look for a metric (𝑥0) of ℝ𝑑 such that

𝑘+1
5

|||𝑑(𝑘+1)𝑢(𝑥0)(𝑥)||| ≤ ||𝑥𝑡(𝑥0)𝑥|| 2 , for all𝑥 ∈ℝ𝑑 . (3.8)
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Notice that the order 𝑘+12 of the right hand side of (3.8) has been chosen so that both sides of the inequality (3.8) are homogeneous 
with respect to 𝑥 with order 𝑘 + 1. Then, assuming the existence of such a metric field 𝐐 = ((𝑥))𝑥∈Ω, the inequality (3.7) becomes

||𝑢(𝑥) − Π𝑘𝑢(𝑥)|| ≤ 𝐶
|||(𝑥− 𝑥0

)𝑡(𝑥0) (𝑥− 𝑥0
)||| 𝑘+12 + 𝑜

(||𝑥− 𝑥0||𝑘+12

)
. (3.9)

From (3.9), following the same theoretical developments as the ones described in [24,25], an optimal metric field 𝐌 can be deduced, 
minimizing the 𝐿𝑝 high-order interpolation error when considering unit meshes with respect to 𝐌. It is defined by

𝑝,𝑘

𝑜𝑝𝑡
(𝑢)(𝑥) =𝑁

2
𝑑

⎛⎜⎜⎝∫Ω (det) 𝑝(𝑘+1)
2𝑝(𝑘+1)+2𝑑

⎞⎟⎟⎠
− 2
𝑑

(det(𝑥))− 1
𝑝(𝑘+1)+𝑑 (𝑥), (3.10)

which is obtained, through a computation of variations, as the metric field with complexity 𝑁 which minimizes the continuous error 
estimate

𝐸𝑘
𝑝
(𝐌, 𝑢) =

⎛⎜⎜⎝∫Ω
||||trace

(− 1
2 (𝑥)(𝑥)− 1

2 (𝑥)
)||||𝑝 𝑑𝑥

⎞⎟⎟⎠
1
𝑝

. (3.11)

Notice that this functional is equivalent to the usual interpolation error ‖‖𝑢−Π𝑘𝑢
‖‖𝐿𝑝 , if the considered mesh is unit with respect to 

𝐌. In particular, if 𝑘 = 1 and  = ||𝐻𝑢
||, the identity (3.10) reduces to the ℙ1 optimal metric field defined by (3.6). This framework 

has been notably studied from a theoretical point of view by [5,6] and from a numerical point of view by [19], but in dimension 2. 
On the contrary to these works, the method which is introduced in the present article can be numerically implemented in both 2D 
and 3D, and its cost remains affordable, especially when comparing to the cost of PDE resolutions through high-order solvers.

From an initial mesh 0 of Ω, the whole ℙ𝑘 adaptation scheme follows Algorithm 2 below.

input : Initial mesh 0
Complexity 𝑁

output : Final mesh 1

repeat

Compute 𝑑(𝑘+1)𝑢(𝑥), for every vertex 𝑥 of 0
Compute (𝑥) satisfying (3.8), for all 𝑥 ∈0

Compute (𝑥) = (det |(𝑥)|)− 1
𝑝(𝑘+1)+𝑑 (𝑥), for all 𝑥 of 0

Compute 𝑝,𝑘

𝑜𝑝𝑡
= 𝛼, with 𝛼 > 0 such that (𝑝,𝑘

𝑜𝑝𝑡
) =𝑁

Remesh 0 and obtain 1 which is unit with respect to 𝑝,𝑘

𝑜𝑝𝑡

Replace 0 by 1
until convergence;

Algorithm 2: ℙ𝑘 adaptation process.

Compared to the ℙ1 adaptation process, the main additional difficulty comes from the construction of the metric field 𝐐 which 
satisfies (3.8). Moreover, in order to be accurate, this inequality has to be satisfied as sharp as possible, which involves both theoret-

ical and numerical challenges. The next section addresses this fundamental issue, and introduces the log-simplex method, which is a 
way to get such a metric-field. It consists in replacing the non-linear optimization problem of finding the best metric satisfying (3.8)

by a sequence of linear ones.

4. Metric based high-order differential approximate

Throughout this section, let 𝑝 denote a homogeneous polynomial of order 𝑘 + 1, which basically is 𝑝 = 𝑑(𝑘+1)𝑢(𝑥0), for 𝑥0 ∈ Ω. 
The aim is the definition of a metric  which satisfies (3.8), in an optimal way. First, by dividing (3.8) by 𝑝(𝑥), we notice that, for 
all 𝑥 ∈ℝ𝑑 ,

|𝑝(𝑥)| ≤ (
𝑥𝑡𝑥

) 𝑘+1
2 ⟺ 1 ≤

⎛⎜⎜⎝
⎛⎜⎜⎝ 𝑥|𝑝(𝑥)| 1

𝑘+1

⎞⎟⎟⎠
𝑡


⎛⎜⎜⎝ 𝑥|𝑝(𝑥)| 1

𝑘+1

⎞⎟⎟⎠
⎞⎟⎟⎠
𝑘+1
2

.

Hence, since 𝑝 is homogeneous of order 𝑘 + 1, then 
|||||||𝑝
⎛⎜⎜⎝ 𝑥|𝑝(𝑥)| 1

𝑘+1

⎞⎟⎟⎠
||||||| = 1 and the inequality (3.8) can be replaced by
6

1 ≤ 𝑥𝑡𝑥, for all 𝑥 such that |𝑝(𝑥)| = 1. (4.1)
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Fig. 3. Ellipsoids (in red) embedded into polynomial level sets (in grey), which satisfy the inequality (4.1). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 4. Sequence of diverging metrics, which are embedded into a set of points belonging to the level set of a homogeneous polynomial.

From a geometrical point of view, the identity (4.1) translates the fact that the unit ball  of  has to be embedded into the level-set 
of level 1 of 𝑝, as illustrated by Fig. 3. In order to be as accurate as possible, the considered metric should have the largest possible 
unit ball. Equivalently, the determinant of  has to be minimized, leading to the following optimization problem.

Problem 3. Given a homogeneous polynomial 𝑝, find a metric  of ℝ𝑑 such that{
det is minimal,

1 ≤ 𝑥𝑡𝑥, for all 𝑥 ∶ |𝑝(𝑥)| = 1. (4.2)

Unfortunately, Problem 3 brings two challenges. Firstly, the functional to minimize is the determinant of , which is non-linear. 
Secondly, this problem has to be solved numerically. Consequently, the constraints can only be tested on a finite set of points 
{𝑥1, ..., 𝑥𝑛} such that ||𝑝(𝑥𝑖)|| = 1, and not on the entire level set of |𝑝|. In what follows a way to overcome those two issues is 
explained.

4.1. The approximated log-problem

As explained above, instead of dealing with the full level set of 𝑝, only a few points belonging to it are considered (around 30
points in the numerical simulations presented in Section 5). Consequently, given a set of points 

{
𝑥1, ..., 𝑥𝑛

}
such that 𝑝(𝑥𝑖) = 1, for 

all 𝑖 ∈ {1, ..., 𝑛}, Problem (4.2) reduces to discrete Problem 4 below.

Problem 4. Given a set of points 
{
𝑥1, ..., 𝑥𝑛

}
such that ||𝑝(𝑥𝑖)|| = 1 for all 𝑖 ∈ {1, ..., 𝑛}, find a metric  of ℝ𝑑 such that{

det is minimal,

1 ≤ 𝑥𝑡
𝑖
𝑥𝑖, for all 𝑖 ∈ {1, ..., 𝑛} . (4.3)

As it is stated, Problem 4 is always ill posed. Indeed, it is always possible to find a straight path between two points, and build a 
sequence of metrics 

(𝑖

)
𝑗≥1 satisfying the second line of (4.3) such that det𝑗 → 0 when 𝑗 goes to infinity. Equivalently the volumes 

of the unit balls of such metrics go to infinity, as shown by Fig. 4.

In order to overcome this issue, we propose another approach based on the logarithmic interpretation of Problem (4.3). Let  be 
the logarithm matrix of , which is obtained by replacing the positive eigenvalues of  by their logarithm. More precisely, since 
is symmetric and positive definite, it can be written  =𝑅 𝐷𝑅𝑡, where

𝐷 =
⎛⎜⎜⎝
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞⎟⎟⎠ and 𝑅 =
(
𝑣1|𝑣2|𝑣3) , (4.4)

with {𝑣1, 𝑣2, 𝑣3} the orthonormal eigenvectors of  associated to its positive eigenvalues {𝜆1, 𝜆2, 𝜆3}. The logarithm matrix  =
7

log() is then defined through the formula
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 =𝑅

⎛⎜⎜⎝
log(𝜆1) 0 0

0 log(𝜆2) 0
0 0 log(𝜆3)

⎞⎟⎟⎠ 𝑅𝑡. (4.5)

Likewise, since both  and  are diagonalizable matrices, it comes  = exp (), in terms of matrix exponentials. Notice that  is 
not a metric but only a symmetric matrix. The main advantage which leads to consider  instead of  comes from the fact that 
det() = exp (trace()). Hence, the cost function  → det() which is not linear in  is changed into  → trace(), which is linear in 
. The counterpart of this change of variable comes from the fact that the constraints of Problem 4 are not linear for , and become 
𝑥𝑡
𝑖
exp() 𝑥𝑖 ≥ 1, for all 𝑥𝑖. One of the main ideas of this article is stated in Proposition 4.1 below, and consists in approximating those 

non-linear constraints by linear ones, by taking advantage of usual convexity properties of the exponential function.

Proposition 4.1. Let  be a metric of ℝ𝑑 and  be the symmetric matrix  = log(). If 𝑥 ∈ℝ𝑑 ⧵ {0} satisfies

𝑥𝑡𝑥 ≥ − |𝑥|22 log(|𝑥|22) , (4.6)

then

𝑥𝑡𝑥 ≥ 1. (4.7)

Proof. Let 𝑥 ∈ ℝ𝑑 ⧵ {0} such that 𝑥𝑡 𝑥 ≥ 1. Since  is a symmetric positive definite matrix, it can be written  = 𝑅𝐷𝑅𝑡, with 𝐷
and 𝑅 defined by (4.4). Performing the change of variables �̃� = (�̃�1, ..., �̃�𝑑 ) = 𝑅𝑡𝑥 and setting 

{
𝜇1, ..., 𝜇𝑑

}
the eigenvalues of , it 

comes

𝑥𝑡𝑥 ≥ 1
⇔ 𝑥𝑡 exp ()𝑥 ≥ 1

⇔
𝑑∑
𝑗=1

exp(𝜇𝑗 )�̃�2𝑗 ≥ 1

⇔
𝑑∑
𝑗=1

exp(𝜇𝑗 )
�̃�2
𝑗|�̃�|22 ≥ 1|�̃�|22 ,

(4.8)

In particular, it is clear that 
𝑑∑
𝑗=1

�̃�2
𝑗|�̃�|22 = 1, and since 𝑅 is a rotation matrix, then |�̃�|2 = |𝑥|2. Consequently, the convexity of the 

exponential function gives

𝑑∑
𝑗=1

exp(𝜇𝑗 )
�̃�2
𝑗|�̃�|22 ≥ exp

(
𝑑∑
𝑗=1

𝜇𝑗

�̃�2
𝑗|�̃�|22
)

= exp

(
𝑥𝑡𝑥|𝑥|22

)
. (4.9)

Finally, the proof is achieved by noticing that

exp

(
𝑥𝑡𝑥|𝑥|22

)
≥ 1|𝑥|22 ⇔ 𝑥𝑡𝑥 ≥ − |𝑥|22 log(|𝑥|22) . (4.10)

Indeed, assuming (4.10) and combining (4.9) and (4.8), it comes

𝑥𝑡𝑥 ≥ − |𝑥|22 log(|𝑥|22) ⟹
𝑑∑
𝑗=1

exp(𝜇𝑗 )
�̃�2
𝑗|�̃�|22 ≥ 1|�̃�|22 ⟺ 𝑥𝑡𝑥 ≥ 1, □ (4.11)

Proposition 4.1 enables to consider the following alternative problem, instead of ill-posed optimization Problem (4.3).

Problem 5. Given a set of points 
{
𝑥1, ..., 𝑥𝑛

}
such that ||𝑝(𝑥𝑖)|| = 1 for all 𝑖 ∈ {1, ..., 𝑛}, find a symmetric matrix  of ℝ𝑑 such that{

trace() is minimal,

𝑥𝑡
𝑖
𝑥𝑖 ≥ − ||𝑥𝑖||22 log(||𝑥𝑖||22) , for all 𝑖 ∈ {1, ..., 𝑛} . (4.12)

Notice that the constraints on  in Problem 5 are an approximation of the ones on  considered in Problem 4, in the sense that 
these are less restrictive. As a counterpart to this approximation, some further work, which is described in Section 4, needs to be 
done in order to recover a metric  which accurately satisfies the constraints of Problem 4. The first advantage of formulation (4.12)

comes from the fact that the problem is linear in , both for the cost function and the constraints. Furthermore, if the set {𝑥1, ..., 𝑥𝑛}
is wisely chosen, problem is now well-posed, since the trace of  cannot go to −∞, or equivalently the determinant of  cannot go 
8

to 0 nor the volume of the unit ball  goes to infinity.
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Fig. 5. Direct resolution of Problem 5 for a homogeneous polynomial of degree 4. The optimal metric (in red) is far from the level set of 𝑝 (in grey).

Proposition 4.2. Let  be a symmetric matrix of ℝ𝑑 , with 𝑑 = 2, 3. Assume that there exist 𝑑 points 𝑥1, ..., 𝑥𝑑 ∈ℝ𝑑 such that

𝑥𝑡
𝑖
𝑥𝑖 ≥ − ||𝑥𝑖||22 log(||𝑥𝑖||22) , for all 𝑖 ∈ {1, ..., 𝑑} . (4.13)

If (𝑥1, ..., 𝑥𝑑 ) is an orthogonal basis of ℝ𝑑 , then there exists a constant 𝐶 = 𝐶(𝑥1, ..., 𝑥𝑑 ) ∈ℝ such that

trace () ≥ 𝐶. (4.14)

Proof. The proof of this proposition is done in 3D, but the extension to the 2D case is straightforward. Let  be a symmetric matrix 
of ℝ3, given by

 =
⎛⎜⎜⎝
𝑎 𝑏 𝑐

𝑏 𝑑 𝑒

𝑐 𝑒 𝑓

⎞⎟⎟⎠ , with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ℝ. (4.15)

Let (𝑥1, 𝑥2, 𝑥3) be an orthogonal basis of ℝ3 satisfying (4.13). Up to a rotation, 𝑥1, 𝑥2 and 𝑥3 are given by 𝑥1 = (𝑟1, 0, 0), 𝑥2 = (0, 𝑟2, 0)
and 𝑥3 = (0, 0, 𝑟3) with 𝑟1, 𝑟2, 𝑟3 > 0. The assumption (4.13) reads

𝑎𝑟21 ≥ −𝑟21 log(𝑟
2
1),

𝑑𝑟22 ≥ −𝑟22 log(𝑟
2
2).

𝑓𝑟23 ≥ −𝑟23 log(𝑟
2
3).

⟺
𝑎 ≥ −log(𝑟21),
𝑑 ≥ −log(𝑟22),
𝑓 ≥ −log(𝑟23).

(4.16)

Consequently,  satisfies

trace () = 𝑎+ 𝑑 + 𝑓 ≥ −
(
log(𝑟21) + log(𝑟22) + log(𝑟23)

)
. □ (4.17)

Since the log-problem (4.12) is linear and well posed, it can be solved by a classical simplex algorithm (see for instance [12]). 
Indeed, in 3D, the matrix  can be viewed as the vector 𝑤 = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ) of ℝ6, such that

 =
⎛⎜⎜⎝
𝑎 𝑏 𝑐

𝑏 𝑑 𝑒

𝑐 𝑒 𝑓

⎞⎟⎟⎠ . (4.18)

For each 𝑖 ∈ {1, ..., 𝑛}, 𝑥𝑖 denotes both a point of ℝ3 and its coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). The log-problem (4.12) reduces to find a vector 
𝑤 which minimizes 𝑤 ↦ ⟨𝑣,𝑤⟩ℝ6 and satisfies

𝑥2
𝑖
𝑎+ 2𝑥𝑖𝑦𝑖𝑏+ 2𝑥𝑖𝑦𝑖𝑐 + 𝑦2

𝑖
𝑑 + 2𝑦𝑖𝑧𝑖𝑒+ 𝑓𝑧2

𝑖
≥ 𝐶𝑖, for all 𝑖 ∈ {1, ..., 𝑛}, (4.19)

where ⟨., .⟩ℝ6 is the usual scalar product of ℝ6, 𝑣 = (1, 0, 0, 1, 0, 1) and 𝐶𝑖 = − ||𝑥𝑖||22 log(||𝑥𝑖||22).

With this formalism, each constraint corresponds to an hyperplane of ℝ6, and the whole set of constraints forms a simplex in 
ℝ6 in which the admissible solutions are taken. In particular the direction −𝑣 prevails among the others to make the linear cost 
function 𝑤 ↦ ⟨𝑣,𝑤⟩ℝ6 decrease. In particular, if there is an optimal admissible solution, it must be a node at the intersection of 
six hyperplanes. In 2D, the problem may be stated the same way, but it is slightly simpler, since a 2D symmetric matrix is defined 
through three components only.

4.2. The log-simplex algorithm

Of course, there is a counterpart to the approximated problem (4.12). Indeed, if we solve it directly with a simplex algorithm, 
the unit ball  of  = exp() may be far from the level set of value 1 of 𝑝 (see Fig. 5). This is explained by the fact that the 
log-constraints of the problem (4.12) are often far from the original ones given by the problem (4.2), especially when the level set 
of 𝑝 is highly anisotropic. In order to recover the initial constraints of (4.2), an iterative process is performed. The idea is to build a 
sequence (𝑗 )𝑗∈ℕ of metrics satisfying the second line of (4.3), which converges to a metric  solving (4.2). To go from the step 𝑗 to 

the next step 𝑗 + 1, the change of variable 𝑦 = 1
2
𝑗
𝑥, which maps the unit ball 𝑗

to the unit sphere (or circle in 2D), is done. More 
− 1
9

precisely, at the step 𝑗, Problem 5 is solved with the polynomial 𝑝◦ 2
𝑗

. This way, a symmetric matrix 𝑗 is obtained in the mapped 
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space and the metric 𝑗+1 is computed through the inverse mapping 𝑦 ↦− 1
2

𝑗
𝑦. In terms of metrics, if (𝑥1, 𝑥2) are two points of ℝ𝑑

and (𝑦1, 𝑦2) such that 𝑦1 = 1
2
𝑗
𝑥1 and 𝑦2 = 1

2
𝑗
𝑥2, then

𝑦𝑡1 exp(𝑗 )𝑦2 = 𝑥𝑡1

(
 1

2
𝑗
exp(𝑗 )

1
2
𝑗

)
𝑥2. (4.20)

Hence, the metric in the initial 3D space is given by 𝑗+1 =  1
2
𝑗
exp(𝑗 ) 

1
2
𝑗

. Algorithm 3 summarizes this process. The choice of 

input : Homogeneous polynomial 𝑝

output : Metric  solving the Problem 3

0 = 𝐼3
repeat

Compute {𝑦1, ..., 𝑦𝑛} such that |𝑝(− 1
2

𝑗
𝑦𝑖)| = 1, for all 𝑖 ∈ {1, ..., 𝑛}

Get 𝑗 through log-Problem 5 with input {𝑦1 , ..., 𝑦𝑛}
Compute 𝑗+1 = 1

2
𝑗
exp(𝑗 ) 

1
2
𝑗

Replace 𝑗 by 𝑗+1
until convergence;

Algorithm 3: Log-simplex algorithm.

the points {𝑦1, ..., 𝑦𝑛} on the level-set of level 1 of the polynomial 𝑝 is done in order to be in the conditions of the Proposition 4.2. 
More precisely, let 

{
𝑧1, ..., 𝑧𝑛

}
be a set of points of 𝑆2, the unit circle in 2D and unit sphere in 3D, such that 𝑑 of them define an 

orthonormal basis of ℝ𝑑 . Given a metric 𝑗 , we obtain the set of points 
{
𝑦1, ..., 𝑦𝑛

}
which belong to the level set of 

|||||𝑝◦− 1
2

𝑗

||||| via the 

formula

𝑦𝑖 =
𝑧𝑖|||||𝑝(− 1
2

𝑗
𝑧𝑖)

|||||
1

𝑘+1

. (4.21)

Indeed, since 𝑝 is homogeneous of degree 𝑘 + 1, we get

|||||𝑝
(
− 1

2
𝑗

𝑦𝑖

)||||| =

||||||||||||
𝑝

⎛⎜⎜⎜⎜⎜⎝
− 1

2
𝑗

𝑧𝑖|||||𝑝(− 1
2

𝑗
𝑧𝑖)

|||||
1

𝑘+1

⎞⎟⎟⎟⎟⎟⎠

||||||||||||
=

||||||||||
1|||||𝑝(− 1
2

𝑗
𝑧𝑖)

|||||
𝑝

(
− 1

2
𝑗

𝑧𝑖

)||||||||||
= 1.

(4.22)

In the specific case where 𝑗 converges to a metric , Theorem 4.1 ensures that 𝑗 converges to 0 and that the linear constraints of 
Problems (4.3) and (4.12) become equivalent.

Theorem 4.1. Let 𝑝 be a homogeneous polynomial and 
{
𝑧1, ..., 𝑧𝑛

}
be a set of points of 𝑆2 such that 𝑑 of them define an orthonormal basis 

of ℝ𝑑 . Let (𝑗 )𝑗∈ℕ be the sequence of metrics of ℝ𝑑 defined by

• 0 = 𝐼𝑑

• 𝑗+1 = 1
2
𝑗
exp

(𝑗

) 1
2
𝑗
, where 𝑗 is an optimal solution of the log-problem (4.12) with the constraint points {𝑦𝑗1, ..., 𝑦

𝑗
𝑛} defined by

𝑦
𝑗

𝑖
=

𝑧𝑖|| − 1
2

|| 1
𝑘+1

, for all 𝑖 ∈ {1, ..., 𝑛}. (4.23)
10

|||𝑝(𝑗
𝑧𝑖)|||
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If the sequence (𝑗 )𝑗∈ℕ converges to a metric  then, for all 𝑖, the sequence (𝑦𝑗
𝑖
)𝑗∈ℕ converges to some 𝑦𝑖 ∈ℝ𝑑 , (𝑗 )𝑗∈ℕ converges to  = 0. 

Furthermore, we have:

𝑦𝑡
𝑖
𝑦𝑖 ≥ − ||𝑦𝑖||22 log(||𝑦𝑖||22) ⟺ 𝑥𝑡

𝑖
𝑥𝑖 ≥ 1, (4.24)

where 𝑥𝑖 =− 1
2 𝑦𝑖, for all 𝑖 ∈ {1, ..., 𝑛}.

Proof. The proof of this theorem is almost straightforward. Assume that there exists a metric  such that 𝑗 →  when 𝑗 goes to 
infinity. Since

𝑗 = log
(
− 1

2
𝑗

𝑗+1− 1
2

𝑗

)
, (4.25)

by passing to the limit when 𝑗 → +∞, it is deduced that 𝑗 converges to the symmetric matrix  = log(𝐼𝑑 ) = 0. It is also clear that, 
since (𝑧𝑖)𝑖=1,...𝑛 is fixed, 𝑦𝑗

𝑖
converges for every 𝑖 to 𝑦𝑖 =

𝑧𝑖

𝑝(− 1
2 𝑧𝑖)

1
𝑘+1

when 𝑗 → +∞. In order to exhibit the constraints satisfied by 

𝑧𝑖, letting 𝑗 go to infinity in the constraint inequalities of (4.12) yields

0 ≥ − ||𝑦𝑖||22 log(||𝑦𝑖||22)⟺ 0 ≥ − 1||||𝑝(− 1
2 𝑧𝑖)

||||
2

𝑘+1

log

⎛⎜⎜⎜⎜⎝
1||||𝑝(− 1
2 𝑧𝑖)

||||
2

𝑘+1

⎞⎟⎟⎟⎟⎠
(4.26)

⟺ 0 ≥ log

(||||𝑝(− 1
2 𝑧𝑖)

||||
2

𝑘+1
)

(4.27)

⟺ 1 ≥ ||||𝑝(− 1
2 𝑧𝑖)

||||
2

𝑘+1
. (4.28)

Since, ||𝑧𝑖||2 = 𝑧𝑡
𝑖
− 1

2  − 1
2 𝑧𝑖 = 1, it comes

1||||𝑝(− 1
2 𝑧𝑖)

||||
2

𝑘+1

≥ 1⟺
𝑧𝑡
𝑖
− 1

2 − 1
2 𝑧𝑖||||𝑝(− 1

2 𝑧𝑖)
||||

2
𝑘+1

≥ 1 (4.29)

⟺

⎛⎜⎜⎜⎜⎝
− 1

2 𝑧𝑖||||𝑝(− 1
2 𝑧𝑖)

||||
1

𝑘+1

⎞⎟⎟⎟⎟⎠

𝑡


⎛⎜⎜⎜⎜⎝

− 1
2 𝑧𝑖||||𝑝(− 1

2 𝑧𝑖)
||||

1
𝑘+1

⎞⎟⎟⎟⎟⎠
≥ 1 (4.30)

⟺ 𝑥𝑡
𝑖
𝑥𝑖 ≥ 1, (4.31)

which achieves the proof of Theorem 4.1. □

4.3. Infinite branches

By itself, the log-simplex algorithm is not sufficient to ensure that the sequence of metrics (𝑗)𝑗≥1 defined by Theorem 4.1

converges. Actually, in most of the cases, the level set of the polynomial 𝑝, which represents the 𝑘 + 1 differential of a solution 𝑢, 
has infinite branches, that is to say a non vanishing point 𝑥 ∈ℝ𝑑 such that 𝑝(𝑥) = 0. In those cases, the volumes of the unit balls of 
the metrics 𝑗 may grow up to infinity. There are actually two situations in which those cases may occur, which are the case of a 
degenerate polynomial whose kernel is a vector-space of dimension 𝑑 and the case of a non-degenerate polynomial which vanishes 
on a vector-space of dimension 𝑑∗ < 𝑑. Those two cases are treated separately.

4.3.1. Degenerate polynomials

In this case, which is the easiest to address, 𝑝 is a polynomial who vanishes on a vector space of dimension 𝑑. For in-

stance, in dimension 2 with 𝑘 = 2, consider 𝑝 ∶ (𝑥, 𝑦) → 𝑦3. The area included into the level-set of level 1 of |𝑝| is the set {
(𝑥, 𝑦) ∈ℝ2 ∶ −1 ≤ 𝑦 ≤ 1

}
which is obviously 2-dimensional. One of the best “metric” satisfying Problem 3 would be(

0 0
)

11

 = 0 1 . (4.32)
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Fig. 6. A metric whose unit ball is embedded into the isoline of level 1 of the degenerate polynomial 𝑝(𝑥, 𝑦) = 𝑦3 . In blue is printed the isoline of level 1 of |𝑝|. In red 
is printed the unit ball of the metric  given by (4.33) with the vanishing eigenvalue replaced by 𝜀.

Fig. 7. A sequence of metrics whose volumes go to infinity (in red), while remaining included into the level-set of a polynomial of degree 2 (in grey).

Unfortunately, this matrix is not a metric, since it is positive but not definite, resulting in an infinite area of its unit ball . Thus, 
 as defined by (4.32) is not usable as it is, because it would break the good definition of the norm |.| given by (2.3). This issue is 
numerically solved by replacing  by 𝜀, defined by

𝜀 =
(
𝜀 0
0 1

)
, (4.33)

where 𝜀 > 0 is a small variable replacing too small eigenvalues. Fig. 6 illustrates this process.

4.3.2. Non-degenerate polynomials with infinite branches

In most of the cases, even when 𝑝 is not degenerated, the level-set has infinite branches. For instance, in dimension 2 with 𝑘 = 2, 
consider 𝑝(𝑥, 𝑦) = (𝑥 +𝑦)(𝑥2 +𝑦2). In this case, 𝑝 vanishes on the set {(𝜆, −𝜆) ∶ 𝜆 ∈ℝ} and the isoline of level 1 has a “hole” along this 
axis. When directly applying Algorithm 3 to this polynomial, the sequence of metrics 𝑖 may diverge by producing metrics whose 
unit balls remain embedded into the level-set while areas increase to infinity. Fig. 7 is a 3D illustration of this fact for a homogeneous 
polynomial of degree 2. In the ℙ1 case, this problem is solved by taking the absolute value of the hessian matrix of 𝑢 instead of 𝐻𝑢

itself. Here, the same idea is followed and 𝑑(𝑘+1)𝑢 is replaced by a function which is homogeneous of degree 𝑘 + 1, without infinite 
branches. It is done through Proposition 4.3. Notice that a similar 2D version of this proposition holds, as well.

Proposition 4.3. Let 𝑝 be a homogeneous polynomial of degree 𝑘 given by

𝑝(𝑥, 𝑦, 𝑧) =
∑

𝑖+𝑗+𝑙=𝑘
𝑎𝑖,𝑗,𝑙

(
𝑘

𝑖, 𝑗, 𝑙

)
𝑥𝑖𝑦𝑗𝑧𝑙, where 𝑎𝑖,𝑗,𝑙 ∈ℝ and

(
𝑘

𝑖, 𝑗, 𝑙

)
= 𝑘!
𝑖!𝑗!𝑙!

.

The polynomial 𝑝 can be written

𝑝(𝑥, 𝑦, 𝑧) =
∑

𝑖+𝑗+𝑙=𝑘−2
𝑥𝑖𝑦𝑗𝑧𝑙

(
𝑋𝑡𝐻𝑖𝑗𝑙 𝑋

)
, (4.34)

where 𝑋 = (𝑥, 𝑦, 𝑧) and (𝐻𝑖,𝑗,𝑙)𝑖+𝑗+𝑙=𝑘−2 are explicit symmetric matrices given by

𝐻𝑖𝑗𝑙 =
⎛⎜⎜⎝

𝑎𝑖+2,𝑗,𝑙 2𝑎𝑖+1,𝑗+1,𝑙 2𝑎𝑖+1,𝑗,𝑙+1
2𝑎𝑖+1,𝑗+1,𝑙 𝑎𝑖,𝑗+2,𝑙 2𝑎𝑖,𝑗+1,𝑙+1
2𝑎𝑖+1,𝑗,𝑙+1 2𝑎𝑖,𝑗+1,𝑙+1 𝑎𝑖,𝑗,𝑙+2

⎞⎟⎟⎠ (4.35)
12

Proof. The proof of this proposition is straightforward. □
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This proposition leads to replace the homogeneous polynomial 𝑝 by the function

𝑞(𝑥, 𝑦, 𝑧) =
∑

𝑖+𝑗+𝑙=𝑘−1

|||𝑥𝑖𝑦𝑗𝑧𝑙||| (𝑋𝑡 |||𝐻𝑖𝑗𝑙
||| 𝑋)

, (4.36)

where 𝑘 is the interpolation order and (𝐻𝑖,𝑗,𝑙)𝑖+𝑗+𝑙=𝑘−1 is given by Proposition 4.3. Through this method, we are able to avoid infinite 
branches in the iterative resolution of the log-problem (4.12).

Given a mesh  of Ω and 𝑑(𝑘+1)𝑢(𝑥) for all 𝑥 ∈ , we are now able to compute the metric field  at each point 𝑥 of . It 
is done via Algorithm 4 below. Finally, Algorithm 2 is complete, and can be applied to compute the optimal metric field 𝐌𝐩,𝐤

𝐨𝐩𝐭 =

input : A mesh  of Ω
𝑑(𝑘+1)𝑢(𝑥), for all 𝑥 ∈

output : 𝐐 = ((𝑥))𝑥∈

foreach 𝑥 ∈ do

Replace 𝑑(𝑘+1)𝑢(𝑥) by its reduced form 𝑞, as given by Proposition 4.3

Perform Algorithm 3 with input 𝑞.

end

Algorithm 4: Approximate the 𝑘+ 1 differential.

(𝑝,𝑘

𝑜𝑝𝑡
(𝑥)

)
𝑥∈ . Notice also that, in order to obtain a relevant metric space for mesh adaptation, some gradation techniques may be 

applied to correct too strong singularities in the metric field. In the present article, we use the metric smoothing as described in [1]. 
The next section is devoted to numerical applications of this method.

5. Results

In this section, several academic test cases are presented and analyzed. While the first case considers an analytical function, other 
test cases result from the coupling of the adaptation library MAdLib1 in which the method was implemented with the Discontinuous 
Galerkin (DG) solver Argo (see refs [20,35]). The adaptation library MAdLib can be coupled to any solver, the purpose of this 
coupling is to illustrate the adaptation method and how it can be beneficial for typical flow applications. The coupling is verified 
in the second test case proposed. Argo is a multiphysics software which includes several conservation laws to target incompressible 
or compressible flow applications, acoustic propagation or thermo-mechanical problems. The main advantages of DG solvers such 
as Argo is their high-order accuracy on unstructured meshes. Argo handles a wide variety of element types and is well suited for 
mesh adaptation because of the data structure used [20]. The compactness of the scheme makes it very efficient for large parallel 
application. Several Riemann solvers are implemented within Argo to treat convective fluxes in between elements. To discretize the 
diffusive part, two methods are implemented within Argo, interior penalty method and Bassi-Rebay 2 schemes. The interface with 
MAdLib allows to control 4 parameters of the adaptation procedure (i) the maximum anisotropy of the elements, (ii) the maximum 
gradient of element size, (iii) the minimum length of a cell and (iv) the complexity factor which roughly indicates the ratio in between 
final and initial number of elements. Some of those will be discussed in the different test cases presented. The solver encompasses 
several time integration schemes both implicit and explicit. Within the Argo solver, the adaptation can be used in steady or unsteady 
cases. For steady computation, the mesh is adapted when the residuals have been decreased by a prescribed factor or after a given 
number of iterations. Several adaptation steps can be performed. For unsteady computation, the adaptation is performed on local 
solution at a given frequency. Therefore, when using unsteady adaptation procedure, the maximum gradient and anisotropy should 
be controlled to ensure that refined regions are still of interest for latter time. The high-order results presented in this section are 
visualized using Vizir [27]. The third case shows that the conclusion on analytical scalar test case holds for more complex runs 
for which analytical solutions are not available. Finally, the robustness of the method for unsteady simulation and the influence of 
adaptation parameters are investigated in the last test case.

5.1. Analytical smooth shock function

On the unit cube Ω =
[
−1

2 ,
1
2

]3
, the function 𝑢(𝑥, 𝑦, 𝑧) = 10 atan (100𝑥) + cos(𝑦𝑧) is considered. This later represents a smooth 

“shock” when 𝑥 is close to 0, combined with small variations in the 𝑦𝑧-axis, as shows Fig. 8. The log-simplex adaptation strategy is 
performed, for interpolation orders from 1 to 5. The process is started with an initial coarse mesh, on which a 𝑘-order representation 
of 𝑢 is considered. Then, this mesh is adapted according to the log-simplex method described above. The resulting adapted mesh 
then becomes the initial mesh of the next iteration, for which we update the values of 𝑢. During this iterative process, the complexity 
is doubled from one step to the next one. Notice that only the point-wise values of the discrete ℙ𝑘 solution are used to recover 
the differential form of order 𝑘 + 1., i.e., the exact derivatives of the function are never used. To do so, we have extended the 
13

1 https://sites .uclouvain .be /madlib/.

https://sites.uclouvain.be/madlib/
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Fig. 8. Graph of the function 𝑢(𝑥, 𝑦, 𝑧) = 10 atan (100𝑥) + cos(𝑦𝑧) on Ω =
[
− 1

2
,
1
2

]3
. Left: 3D mapping. Middle: 1D extraction along x-axis. Right: values of 𝑢 in 𝑦𝑧-axes 

on the cut-plane 𝑥 = 0.25.

Fig. 9. ℙ1 , ℙ3 and ℙ3 adapted meshes for the function 𝑢(𝑥, 𝑦, 𝑧) = 10atan (100𝑥) + cos(𝑦𝑧) on the unit cube Ω=
[
− 1

2
,
1
2

]3
with the same level of DoFs.

𝐿2 projection to the case of high-order differential forms (see [36]). More precisely, for each element  of the mesh, the 𝑘-order 
derivatives are computed from the exact polynomial representation provided by the solution values at the interpolation nodes. 
Then, this element-based derivatives are projected to the mesh vertices. Finally, a numerical gradient with respect to these 𝑘-order 
derivatives is performed, allowing to build the (𝑘 +1) differential form of the solution at each vertex of the mesh. Once the numerical 
(𝑘 + 1) differential form is recovered, we apply the log-simplex algorithm and derive the optimal 𝐿𝑝 metric 𝑝,𝑘

𝑜𝑝𝑡
(𝑢) for a given 

complexity 𝑁 . Fig. 9 shows the obtained adapted meshes. One interesting feature is the fact that adaptation differs from one order to 
the other. Indeed, as can be observed in Fig. 9, the ℙ1 procedure aligns the elements with respect to the small variations in 𝑦 and 𝑧, 
whereas the higher order adaptations do not take care of those variations, since they are already well represented by the high-order 
finite elements, even on large tetrahedra. The interpolation error ‖𝑢 − Π𝑘𝑢‖𝐋2(Ω) is computed using a 10𝑡ℎ order Gauss quadrature 
integration. In order to compare simultaneously different interpolation orders, the degrees of freedom (DoF) are used instead of the 
number of nodes. The error is then used to compare the convergence rate to the optimal one. According to the equalities (3.11) and 
(3.10), the interpolation error induced by a unit mesh with respect to the optimal metric field 𝑝,𝑘

𝑜𝑝𝑡
(𝑢) satisfies

‖‖𝑢−Π𝑘𝑢
‖‖𝐿𝑝(Ω) ≤ 𝐶

𝑁
𝑘+1
3

, with 𝐶 > 0. (5.1)

We also compare the interpolation error with respect to sequences of uniform meshes. In this case, the asymptotic rate of convergence 
is reached for larger DoF for 𝑘 = 3, 4, 5 due to the Gibbs phenomena that occur on small complexity (coarse) meshes. The most 
interesting feature is to see that the asymptotic rate of convergence is not reached for practical sizes in the case of uniform meshes, 
see Fig. 10 whereas this order is captured far earlier with adaptivity. For ℙ5, we have roughly 10 orders of magnitude gain for 
the adapted mesh with respect to the uniform one. For the first 3 meshes for 𝑘 = 3, 4, 5, the meshes are extremely coarse, less than 
3 000 nodes. As a consequence, the computed interpolation error is massive, especially when making the comparison with meshes 
adapted to lower order solutions. Indeed, for high-order interpolation, the sharp variation around 𝑥 = 0 and the coarseness of the 
mesh cause a Runge’s phenomenon, that is to say artificial oscillations in the high-order polynomial representation of the solution. 
This notably emphasizes the sensitivity of high-order methods to the mesh quality. Table 1 gives the CPU costs related to 𝑢, where 
the adapted mesh with respect to the ℙ1 finite elements is the finest obtained for this case, and the other ones have comparable 
numbers of degrees of freedom. For comparable numbers of DoFs, the full adaptation process, which includes metric computation 
and mesh adaptation, becomes cheaper as the order of interpolation increases. In details, the derivatives and metrics computation 
14

times increase together with the order of interpolation, but there are fewer elements do deal with. Consequently, the significant 
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Fig. 10. Rate of convergence for the optimal meshes for order 1,2,3,4 and 5 and comparison with uniform meshes. Adapted meshes correspond to plain lines while 
uniform meshes to dashed lines. The same color corresponds to the same interpolation order. The doted lines represent the expected theoretical order of convergence.

Table 1

Comparison of computational cost adapting the mesh with different interpolation polynomial 
order.

P1 P2 P3 P4 P5

degrees of freedom 2 463 091 2 299 983 1 926 453 2 299 810 2 219 674

interpolation error 6.8 × 10−6 3.7 × 10−7 2.3 × 10−8 8.5 × 10−11 1.2 × 10−11
total CPU time (s) 547 517 382 138 144

derivatives (s) 3 96 99 61 70

metric field (s) 19 327 228 61 66

remeshing (s) 501 62 31 11 7

Fig. 11. Comparison of the convergence of the adaptation process with two different initial meshes. Left: uniform initial mesh 1 composed of 6387 tetrahedra. Middle: 
non-uniform initial mesh 2, composed of 3290 tetrahedra. Right: Interpolation error with respect to the number of degrees of freedom, starting from those two initial 
meshes.

gain in the remeshing part of the process makes the whole adaptation step faster when the interpolation order is higher. We also 
emphasize that, with the same number of DoFs, the interpolation error drastically decreases as the order of interpolation increases.

In order to emphasize the consistency of the method, another experience has been done for this test case, in which the same mesh 
adaptation process is performed with two different initial meshes. Fig. 11 shows the results for interpolation orders from 1 to 5. The 
first initial mesh is composed of isotropic tetrahedra with the same size on the whole domain. The second one is globally coarser 
than the first one, and is more refined at the center of the cube than in the remaining of the domain. As shows Fig. 11, for a given 
interpolation order 𝑘 ≥ 1, once the asymptotic convergence is reached, the two interpolation errors curves coincide. We can also see 
that the asymptotic convergence is reached faster when the coarser initial mesh is used, which is actually expected, and due to a 
15

further adaptation step in the early stages of the refining process.
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Fig. 12. (a) Scalar boundary layer solution interpolated with a fourth order polynomial on the respective adapted mesh with 33427 triangles. Subfigures (b) and (c) 
show the mesh adaptation on a second order polynomial solution for maximum anisotropy limited to 1 and 10 respectively with the same complexity.

5.2. Scalar boundary layer

The purpose of this test case is to verify the coupling of the adaptation library and the Argo solver. This test is proposed in 
Rangarajan et al. [33] and more information can be found therein. The steady computation of a convection-diffusion-reaction problem 
in 2D with stiff gradients close to the wall is investigated. The scalar equation solved is

𝛽 ⋅∇𝑢− 𝜖∇2𝑢 = 𝑠, (5.2)

where the reaction term “𝑠” is computed using the manufactured solution

𝑢(𝑥, 𝑦) =

(
𝑥+ 𝑒

𝑥

𝜖 − 1

1 − 𝑒
1
𝜖

)(
𝑦+ 𝑒

𝑦

𝜖 − 1

1 − 𝑒
1
𝜖

)
. (5.3)

The velocity 𝛽 is taken as (1, 1) on the domain Ω = (0, 1)2, the solution is zero on the boundaries, and the diffusion coefficient is 
taken as 𝜖 = 0.005. The solution is shown in Fig. 12 together with two examples of adapted meshes. The anisotropic adaptation in 
the thin boundary layer can be observed in the meshes.

First, the problem is solved for cartesian isotropic meshes using different resolutions and polynomial orders (𝑘 = 1, 2, 3, 4). Then, 
for each initial isotropic mesh and each polynomial order, the adaptation is performed keeping the same complexity. The number 
of elements in the isotropic mesh and adapted mesh are roughly the same, in order to easily compare the results. The 𝐿2 errors 
comparing the numerical and analytical solutions are plotted with respect to the number of DoFs in Fig. 13. The convergence order 
is retrieved for the solver when the mesh size becomes sufficiently small. Again, less degrees of freedom are required to reach the 
correct rate of convergence (see Equation (5.1)) when anisotropic adaptation is used.

Secondly, the effect of the maximum anisotropy authorized during the adaptation is studied and results can be observed in Fig. 13. 
Comparing the error convergence for cartesian mesh and isotropic adaptation shows already the advantages of adaptation procedure. 
Increasing the maximum anisotropy, not only the error decreases but the rate of convergence increases.

Finally, as shown in Section 5.1 and Fig. 9, adapted meshes will be different, depending on the polynomial interpolation order of 
the field used to compute the metric. To illustrate this feature, the interpolation error can be computed on meshes which have been 
adapted using a lower interpolation order than the solution. Fig. 14 compares the 𝐿2 error convergence for (i) a 1st order polynomial 
interpolation on adapted mesh for which metrics are computed using ℙ1 fields, (ii) a 4th order polynomial interpolation using same 
adapted meshes as (i), and finally (iii) a 4th order polynomial interpolation on a mesh adapted using a metric based on a ℙ4 solution. 
For (ii), the optimal convergence rate is barely achieved, and the comparison with the interpolation error on the ℙ4 adapted mesh 
(iii) emphasizes the importance of performing order dependent mesh adaptations.

Note that when high value of the maximum anisotropy parameter is used together with high polynomial interpolation this 
can impact accuracy of the discretization scheme. According to Hillewaert [20], for DG solvers using a symmetric interior penalty 
method, the choice of the penalty coefficient for the diffusive part is crucial especially when elements become largely anisotropic. 
An elementwise penalty coefficient should be selected comparing to a facewise method to treat strong anisotropic elements and keep 
the convergence order of the scheme [20]. In this case, the solver was not able to achieve nominal convergence rate for a 𝑝 = 4
interpolation order on 𝑃1 mesh when a maximum anisotropy is fixed to 100. Fig. 14 presents results limiting the anisotropy to 10 
16

and using the elementwise penalty.
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Fig. 13. Scalar boundary layer mesh convergence analysis for different polynomial orders (a) and influence of the anisotropy on the accuracy and convergence analysis 
(b).

Fig. 14. Scalar boundary layer mesh convergence analysis using mesh adapted on 𝑝 = 1 or 𝑝 = 4 solution.

5.3. NACA0012

Anisotropic meshing has been proved to be beneficial to simulate compressible or incompressible flows (see for instance [28,37,

17,23]). The log-simplex adaptation method is tested on the solution of the flow past a NACA0012 airfoil. The steady incompressible 
flow pasts a NACA0012 profile at 𝑅𝑒 = 5000 and 𝑀 = 0.1 oriented with an inclination of 2◦ is computed with the Argo solver. The 
mesh adaptation is led by the total pressure field and one of the adapted meshes is shown in Fig. 15.

First, to evaluate the gain of mesh adaptation, the errors are computed on the lift and drag coefficients 𝐶𝐿 and 𝐶𝐷 for adapted 
and non-adapted grids for different polynomial interpolation orders. Reference coefficients 𝐶𝐿,𝑟𝑒𝑓 and 𝐶𝐷,𝑟𝑒𝑓 are computed using a 
fine grid and an interpolation order 𝑘 = 4. The errors are computed as

𝑒𝑟𝑟𝑜𝑟𝐶𝐿 = 100 ⋅
𝐶𝐿 −𝐶𝐿,𝑟𝑒𝑓

𝐶𝐿,𝑟𝑒𝑓
, (5.4)

𝑒𝑟𝑟𝑜𝑟𝐶𝐷 = 100 ⋅
𝐶𝐷 −𝐶𝐷,𝑟𝑒𝑓

𝐶𝐷,𝑟𝑒𝑓
. (5.5)

The lift and drag coefficients computed with the fine mesh are 𝐶𝐿,𝑟𝑒𝑓 = 0.0661 and 𝐶𝐷,𝑟𝑒𝑓 = 0.0509. Table 2 shows the error evolution 
with the polynomial interpolation. The accuracy gained by adaptation is clearly visible in the table for both lift and drag coefficients. 
Secondly, as observed on analytical test cases, the difference in anisotropy between the adaptation on ℙ1 solution and ℙ4 is clearly 
17

observed in Fig. 16. For the high order solution, the adapted mesh is less anisotropic thanks to the accuracy achieved by the high-
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Fig. 15. Total pressure past a NACA012 airfoil at 𝑅𝑒 = 5000, 𝑀 = 0.1 and with an angle of attack of 2◦ . Solution computed using the Argo solver at 𝑘 = 4.

Table 2

Convergence of lift and drag coefficient for NACA0012.

error𝐶𝐷 error𝐶𝐷 (adapted) error𝐶𝐿 error𝐶𝐿 (adapted)

𝑘 = 1 3.27 2.88 110.34 72.16

𝑘 = 2 4.02 2.21 29.85 2.33

𝑘 = 3 4.18 1.11 9.33 2.18

𝑘 = 4 1.62 0.005 8.77 0.094

order polynomial. In this case, the authors have decided to keep the complexity constant hence both meshes contain roughly the 
same number of elements (≈ 2400 triangles).

Finally, the solver convergence to compute the steady solution is studied. For steady computation, Argo enables to perform 
several adaptation loops. For each adaptation iteration, the solver can either restart its convergence using the initial solution or 
use the solution obtained after convergence at previous iteration. In the latter, the solution is mapped from the old mesh to the 
new adapted mesh. To do so, the interpolation nodes of the new mesh are localized in the previous one, and the solution is then 
interpolated accordingly. For this test case, 4 iterations are performed, successively computing the solution and adapting the mesh 
with respect to it. Starting from the initial solution, the decrease of the residuals obtained with both restart methods can be compared 
in Fig. 17. Notice that the residual is non-dimensionalized with respect to the initial residual.

At the initial step, since both methods start from the same initial solution, the two residual curves exactly coincide, which is 
obviously expected. Surprisingly, at the second iteration, the computation for which the initial solution for the restart is taken 
from the previous computation converges almost twice slower than taking the arbitrary initial solution. This is due to the fact that, 
at the first iteration, the mesh is uniform and not sufficiently refined in some critical areas, such as the wake behind the airfoil. 
Consequently, the computed solution is quite far from the “true” one, and neither the mesh nor the solution are actually converged. 
However, from the third iteration, there is a massive gain in starting from the solution of the previous iteration, the solver converging 
more than three times faster than when keeping the initial solution for the restart. This highlights the impact of adapting the mesh, 
not only on the accuracy of the converged solution but also on the convergence of the solver itself.

5.4. Flow past a cylinder at Reynolds 185

In this 2D test case, the unsteady adaptation is tested on the compressible flow past a cylinder at Reynolds 185. At that Reynolds, 
a Von Karman vortex street can be observed. The domain of computation is [−15𝐷, 45𝐷] × [−15𝐷, 15𝐷], with 𝐷 = 1 the diameter 
of the cylinder. The adaptation is performed every 5 time steps using the vorticity. An anisotropic mesh refinement following the 
vortex shedding can be observed in several snapshots shown in Fig. 18. A strong refinement in the boundary layer can be observed to 
capture the vorticity sheet in that region (see Fig. 19). As described before, the unsteady adaptation procedure adapts the mesh based 
on local solution at time 𝑡 and this mesh is kept until 𝑡 + 5𝑑𝑡. This can explain some shift comparing the vortices and the underlying 
18

mesh. Maximum gradient, anisotropy and remeshing frequency should be properly chosen to capture the wake with accuracy. Note 
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Fig. 16. Mesh adaptation in the wake of a NACA012 airfoil for ℙ1 and ℙ4 solutions. Left: adapted mesh with respect to ℙ1 finite elements. Right: adapted mesh with 
respect to ℙ4 finite elements. Both meshes have roughly the same number of triangles.

that increasing frequency could lead to higher mesh to mesh interpolation error. An interpolation of 𝑘 = 3 is used for the conservative 
variables. The log-simplex method is using the vorticity to generate the metric hence adaptation is performed on a 𝑘 = 2 field.

6. Conclusion

An adaptation procedure to generate anisotropic meshes with ℙ𝑘 interpolation has been introduced. It is based on an iterative 
algorithm to derive a local optimal metric which approximates a given (𝑘 + 1) differential form. At each step, a simple linear log-

simplex problem is solved in the logarithm space of metric fields. This optimal local metric is then globally optimized via a calculus 
of variations to obtain the optimal distribution of the DoFs in 𝐿𝑝 norm. This strategy has been tested on various 2D and 3D examples 
where the optimal rate of convergence expected from (5.1) was exhibited, for both analytical and numerical solutions. For all the 
adaptive cases, the adapted meshes have a lower level error and reach faster the asymptotic rate of convergence. In addition, for a 
comparable number of DoFs, the total CPU time of the high order adaptation is generally much smaller than its equivalent for the 
ℙ1 adaptation, due to the fewer number of elements which are dealt by the remesher in the high order case.

One limitation of the current work relies on the fact that it is efficient when the solution 𝑢 is smooth. The most obvious perspective, 
which is currently investigated is to extend this strategy to ℎ − 𝑝 adaptation and then coupling it with automatic shock detection 
for solutions involving both smooth and sharp features. This extension is currently investigated within the solver Argo and may be 
the topic of a further article. Notice also that the log-simplex algorithm can be used to produce curved meshes, adapted to a given 
parameterized geometrical model. Indeed, when having a parameterized surface, the gap between the mesh and the surface can be 
19

measured on the parameters space or on the tangent plane. Thus, a surface based mesh adaptation reduces to a 2D solution based 
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Fig. 17. Residual convergence for viscous flow past a NACA0012 at 𝑘 = 2. Several adaptation steps are performed using the converged solution of the previous mesh 
(blue curve) or the initial solution (red curve). At the first iteration, the two curves coincide because both approaches start from the same initial solution.

Fig. 18. Vortex shedding past a cylinder at Re=185. Adaptation is performed on a 𝑘 = 2 vorticity of the flow. Vorticity on the adapted mesh is shown at different 
20

time.
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Fig. 19. Adapted mesh close to the cylinder during vortex shedding at 𝑡 = 1.6 s.

adaptation, and the order of the generated curved elements is linked to the order of the considered solution. This topic has been 
dealt in [16] and is still under investigation.
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