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Abstract. In the present paper, we study the long time behaviour of the
solutions of the second grade fluids equations in R3. Using scaling variables
and energy estimates in weighted Sobolev spaces, we describe the first order
asymptotic profiles of these solutions. In particular, we show that the solutions
of the second grade fluids equations converge to self-similar solutions of the
heat equation, which are explicit and depend on the initial data. Since this
phenomenon occurs also for the Navier-Stokes equations, it shows that the
fluids of second grade behave asymptotically like Newtonian fluids.
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1. Introduction

Since one can find a lot of non-Newtonian fluids in the nature or in the indus-
try, their mathematical study is a significant topic of research. In this paper, we
investigate the long time behaviour of a particular class of non-Newtonian fluids,
namely the second grade fluids. The equations which describe such fluids have been
introduced from a mathematical point of view in 1974 by Dunn and Fosdick in [10]
and have been the topic of many research works in mathematics. These fluids are a
particular case of a large class of non-Newtonian fluids, called fluids of differential
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type, or Rivlin-Ericksen fluids (see [28]). The constitutive laws of the differential
fluids are given through the Rivlin-Ericksen tensors, defined recursively by

A1 = ∇u + (∇u)t
,

Ak = ∂tAk−1 + u.∇Ak−1 + (∇u)t
Ak−1 + Ak−1∇u,

where u : Rd → Rd is a vector field which represents the velocity of a fluid filling
a domain of Rd, d = 2, 3. According to this model, the equations of the fluids of
grade n ∈ N are obtained by considering the stress tensor

σ = −pI + Q (A1, A2, ..., An) ,

where p is the pressure of the fluid and Q is a polynomial function of degree n.
Notice that the fluids of grade 1 correspond to the Newtonian fluids, whose velocity
fields are the solutions of the Navier-Stokes equations. According to the model of
Dunn and Fosdick (see [10]), the constitutive law of the second grade fluids is
obtained via the stress tensor

σ = −pI + νA1 + α1A2 + α2A
2
1,

where ν > 0 is the dynamic viscosity of the fluid, α1 > 0 and α2 ∈ R. In [10], ther-
modynamic considerations led the authors to assume that α2 = −α1. Consequently,
we replace α1 by α. Introduced in the equations of conservation of momentum and
assuming that the density of the fluid is constant and equals 1, the tensor σ leads
to the system of equations

(1.1)
∂t (u− α∆u)− ν∆u + curl (u− α∆u) ∧ u +∇p = 0,
div u = 0,
u|t=0 = u0,

where ∧ denotes the classical vectorial product on R3, p is the pressure and u0 is
the initial data. In the two-dimensional case, we have used the convention that
u = (u1, u2, 0) and curl u = (0, 0, ∂1u2 − ∂2u1).

Several existence and uniqueness results have been obtained for this system of
equations, mainly on a bounded domain Ω of R2 or R3 with Dirichlet or periodic
boundary conditions (see for instance [1], [2], [6], [7], [8], [9], [15], [26] or [25]).
The first existence and uniqueness result has been obtained by Cioranescu and El
Hacène in 1984 in [6]. They have shown, on a bounded set of Rd, d = 2, 3, with
homogeneous boundary conditions, that there exists a unique weak solution to (1.1)
belonging to the space L∞

(
[0, T ] ,H3(Ω)d

)
, where T > 0 and Hs(Ω) denotes the

Sobolev space of order s. Besides, this solution is global in time when the space
dimension is 2. This result is based on a priori estimates and a Galerkin approxima-
tion with a basis of eigenfunctions corresponding to the scalar product associated
to the operator curl (u− α∆u). In the same case, using the Schauder fixed point
Theorem, Galdi, Grobbelaar-Van Dalsen and Sauer established the existence and
uniqueness of classical solutions to (1.1) when the data belong to Hm(Ω), with
m ≥ 5 (see [14]). They also have shown that these solutions are global in time,
provided that the initial data are small enough in Hm(Ω). Later, Cioranescu and
Girault improved the results of [6] and [14] and showed that the local weak solutions
belonging to H3(Ω) are actually global in time in dimension 3 if the data are small
enough and are strong solutions if the data belong to Hm, m ≥ 4 (see [5]). Finally,
Bresch and Lemoine have generalized the results of [14], [6] and [5] in dimension
3 in establishing the existence and uniqueness of local solutions belonging to the
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space W 2,r(Ω) with r > 3. Furthermore, they have shown that these solutions are
global in time if the initial data are small enough in W 2,r(Ω) (see [2]). In this work,
instead of applying a Galerkin approximation, the authors used Schauder’s fixed
point Theorem.

In the present paper, we are interested in the description of the asymptotic
profiles of the solutions of second grade fluids equations. In what follows, we con-
sider a second grade fluid which fills the whole space R3, without any forcing term
applied to it. In this case, if the initial data are small enough, the solutions of such
a system tend to 0 when the time t goes to infinity. The aim of this study is to
investigate the way that these solutions go to 0. More precisely, we will show that
the solutions of (1.1) behave asymptotically like self-similar solutions to the heat
equation, which are smooth and that we can compute explicitly from the data. In
this article, we restrict ourselves to the study of the first order asymptotic profile,
that is to say that the speed of the convergence of the solutions of (1.1) to explicit
smooth functions is limited by spectral considerations, which are explained below.
For the Navier-Stokes equations, there already exist several results that describe
the asymptotic profiles of the solutions. In dimension 2 and 3, Gallay and Wayne
have shown in [16] and [17] that the first order asymptotic profiles of the solutions
of the Navier-Stokes equations are given up to a constant by smooth Gaussian func-
tions which are self-similar solutions to the heat equation. These results hold with
restrictions on the size of the data, but, in dimension 2, the convergence has been
generalized to the case of any data in [18]. For this work, the authors applied ar-
guments that come from the study of dynamical systems. In fact, they have shown
the existence of a finite-dimensional manifold locally invariant by the semiflow asso-
ciated to the Navier-Stokes equations. Then, they proved that the solutions of the
Navier-Stokes equations are locally attracted by this manifold, and consequently
behave like the solutions on it. The study of the dynamics of the Navier-Stokes
equations onto this manifold gave them the description of the first and second or-
der asymptotic profiles. The asymptotic profiles of the solutions of the equations
of second grade fluids have been studied in R2 by Jaffal-Mourtada (see [23]). She
has shown, under smallness assumptions on the data, that the first order asymp-
totic profiles of the solutions of the second grade fluids equations are the same as
the ones described by Gallay and Wayne in [16] for the Navier-Stokes equations.
However, the method that she used in [23] is slightly different from the one used in
[16]. Indeed, instead of showing the existence of an invariant manifold, the author
performed energy estimates in various functions spaces, notably weighted Sobolev
spaces. The concrete interpretation of this result is that, in dimension 2, the fluids
of second grade behave asymptotically like Newtonian fluids, at the first order. In
this article, we are interested in the generalization of this result to the dimension
3. Notice that there are significant differences in the asymptotic behaviour of the
solutions of the Navier-Stokes equations between the cases of R2 and R3. Indeed,
in dimension 2, the asymptotic profiles of the Navier-Stokes equations are given up
to a constant by a Gaussian function called the Oseen vortex sheet. In dimension
3, the first order asymptotic profiles of the solutions are defined as the linear com-
bination of three distinct smooth functions (see Section 2).

Actually, the system that we study in this article is not exactly (1.1) but the one
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satisfied by the vorticity w = curl u = ∂1u2 − ∂2u1. The motivation to do this
comes from the fact that, due to spectral considerations which will be explained
more precisely later, we have to solve the second grade fluids equations in weighted
Lebesgue spaces. Unfortunately, the equations of motion (1.1) do not preserve in
general those functions spaces, on the contrary to the vorticity equations. We as-
sume, for the sake of simplicity, that ν = 1 and consider initial vorticity data w0.
Taking formally the curl of (1.1), we get the vorticity system of equations

(1.2)
∂t (w − α∆w)−∆w + curl ((w − α∆w) ∧ u) = 0,
div u = div w = 0,
w|t=0 = w0.

This system is actually autonomous. Indeed, provided that w is sufficiently smooth,
the divergence free vector field u can be recovered from w via the Biot-Savart law,
which is a way to get a divergence free vector field from its given vorticity. It is
defined by the formula

(1.3) u(x) = − 1
4π

∫
R3

(x− y) ∧ w(y)
|x− y|3

dy.

In Section 2, more details are given on the Biot-Savart law and its properties (see
Lemma 2.4). In this article, we show that the solutions of the system (1.2) behave
asymptotically like vector fields whose components are self-similar solutions to the
well known heat equation, that is to say under the form

(t, x) → 1
(t + T )2

F

(
x√

t + T

)
,

where F is a vector field of R3 and T is a positive constant.

We introduce now an useful tool in the study of the asymptotics of solutions
to partial differential equations, that is scaled variables or self-similar variables. In
order to define those variables, we set a positive constant T , and we will always
assume T ≥ 1. This constant is introduced in order to establish the convergence of
the solutions to their asymptotic profiles without any restriction on the size of the
constant α. As it is explained below, the constant T will be chosen large enough
to have α

T small enough. For a solution w of the system (1.2), we define W and U

through the change of variable X =
x√

t + T
and τ = log(t + T ). More precisely,

we set

(1.4)
w (t, x) =

1
t + T

W

(
log (t + T ) ,

x√
t + T

)
,

u (t, x) =
1√

t + T
U

(
log (t + T ) ,

x√
t + T

)
.

Equivalently, we have the equalities

(1.5)
W (τ,X) = eτw

(
eτ − T, eτ/2X

)
,

U (τ,X) = eτ/2u
(
eτ − T, eτ/2X

)
.

Actually, this change of variables is the one that correspond to the self-similar
solutions of the heat equation in dimension 2. However, in the present paper, we
are considering solutions which are defined on R3, but the final result that we
obtain (see Corollary 2.1 below) do not depend on the change of variables that
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we consider. The advantage of defining W and U by the equality (1.4) lies in the
fact that the equations that we obtain for W and U are the same as the ones
obtained by the same method in dimension 2. These variables have been initially
introduced to study the asymptotic behaviours of solutions of parabolic equations,
in particular to show the convergence to self-similar solutions (see [11], [12], [13]
or [24]). Actually, this tool is also efficient to study the long-time behaviour of
a lot of various equations, not necessarily parabolic ones. For instance, Gallay
and Raugel used them to describe the first and second order asymptotic profiles
of the solutions to damped waved equations (see [20]) and to show the stability of
hyperbolic fronts (see [21]). Self-similar variables have been also used to study the
asymptotic profiles of the Navier-Stokes equations (see [16], [17], [18] and [19]) and
the second grade fluids equations in R2 (see [23]). Assuming that w is a solution
of (1.2), a short computation shows that W is a solution of the system

(1.6)

∂τ (W − αe−τ∆W )− L(W ) + curl ((W − αe−τ∆W ) ∧ U)
+αe−τ∆W + αe−τ X

2 .∇∆W = 0,
div U = div W = 0,
W|τ=log(T ) = W0,

where L is the linear differential operator defined by

L(W ) = ∆W + W + X
2 .∇W .

We first emphasize that the system (1.6) is now non-autonomous and initialised at
τ = log(T ), that is the reason why we introduced the constant T . Indeed, in what
follows, we will choose T large enough so that the product αe−τ is small enough,
for all τ ≥ log(T ). By doing this, we do not have to consider restrictions on the size
of the parameter α. We also notice that, in the first equality, several terms tend
formally to 0 when τ goes to infinity. Actually, the main theorem of this article
shows that the solutions of (1.6) converge when τ goes to infinity to particular
solutions to the equality

(1.7) ∂τW∞ = L(W∞).

More precisely, the aim of this article is to decompose W on the spectrum of L on
an appropriate space of functions and to show that the asymptotic behaviour of W
is dominated by his first order asymptotic profile, that is to say the projection of
W onto the eigenspace corresponding to the first eigenvalue of L. Additionally, this
projection satisfies the equality (1.7). Now, we introduce the weighted Lebesgue
spaces, which are suitable for the study of the spectrum of L. For every m ∈ N,
one defines L2(m), given by

L2(m) =
{

u ∈ L2(R3) :
(
1 + |x|2

)m/2

u ∈ L2(R3)
}

,

where |x| =

(
3∑

i=1

x2
i

)1/2

.

By the same way, for m ∈ N and n ≥ 2, we define the weighted Sobolev spaces by

H1(m) =
{
u ∈ L2(m) : ∂iu ∈ L2(m), i ∈ {1, 2, 3}

}
,

Hn(m) =
{
u ∈ L2(m) : ∂iu ∈ Hn−1(m), i ∈ {1, 2, 3}

}
.
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The incompressibility condition on the vector fields W and U makes natural to
consider the spaces

L2(m) =
{
u ∈ L2(m)3 : div u = 0

}
,

H2(m) =
{
u ∈ H2(m)3 : div u = 0

}
,

equipped with the norms

‖u‖L2(m) =
∥∥∥∥(1 + |x|2

)m
2

u

∥∥∥∥
L2

,

and

‖u‖H2(m) =
(
‖u‖2L2(m) + ‖∇u‖2L2(m) +

∥∥∇2u
∥∥2

L2(m)

)1/2

,

where we used the notations

|∇u| =

 3∑
i,j=1

(∂jui)
2

1/2

and
∣∣∇2u

∣∣ =
 3∑

i,j,k=1

(∂j∂kui)
2

1/2

.

In [17], Gallay and Wayne show that the spectrum of L on L2(m) is the union of
the discrete spectrum

σd(L) =
{
− 1

2 (k + 1) , k ∈ N
}

,

and the continuous one

σc(L) =
{
λ ∈ C : Re(λ) ≤ 1

4 −
m
2

}
.

In order to describe the first order asymptotic profiles of the solutions of (1.6), we
need to have at least one isolated eigenvalue in the spectrum of L. Looking at σc(L),
we notice that one can ”push” the continuous spectrum to the left by choosing m
large enough. For this reason, we should work at least in the weighted space L2(3),
where −1 is an isolated eigenvalue of L. In order to be closer to the optimal
rate of convergence, we prefer working in L2(4), where the discrete spectrum is
σd(L) =

{
−1,− 3

2

}
and the continuous one is σc(L) =

{
λ ∈ C : Re(λ) ≤ −7

4

}
. The

main aim of this article is to show that one can decompose a solution W of (1.6)
into the form

(1.8) W (τ) = Ω(τ) + R(τ),

where Ω is the projection of W onto the eigenspace of L associated to the eigenvalue
−1 and R tends to 0 faster than Ω into L2(4) when τ goes to infinity. In Section
2, one establishes that

Ω(τ) = O (e−τ ) in L2(4),

and that the exists a positive constant θ, 1 < θ < 3
2 such that

R(τ) = O
(
e−θτ

)
in L2(4).

Since the second isolated eigenvalue of L in L2(4) is 3
2 , the optimal rate of conver-

gence that one can obtain for such a first order description of the asymptotic profiles
is θ = 3

2 . Actually, the result that we obtain holds under smallness assumptions on
the size of the data in H2(4), and we will see in Section 2 that one can choose the
rate of convergence as close as wanted to the optimal one, provided that the initial
data are small enough.
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2. First order asymptotics and preliminary results

Before stating the main theorem of this paper, we have describe the eigenspace
of L associated to the eigenvalue −1. In [17, appendix A], they show that the
multiplicity of the eigenvalue −1 is 3 and that a suitable basis {f1, f2, f3} of the
associated eigenspace E−1 is given by

(2.1) fi = curl (Gei), i = 1, 2, 3,

where G(X) =
1

(4π)3/2
e−

|X|2
4 and {e1, e2, e3} is the canonical basis of R3.

Through a short computation, we see that fi(X) = pi(X)G(X), i = 1, 2, 3, where

p1(X) =
1
2

 0
−X3

X2

, p2(X) =
1
2

 X3

0
−X1

 and p3(X) =
1
2

 −X2

X1

0

.

In particular, the vector fields pi satisfy div pi = 0 and curl pi = ei. Inte-
grating by parts, we also notice that
(2.2)∫

R3
pi(X).fj(X)dX =

∫
R3

curl (pi(X)). (G(X)ej) dX = (ei.ej)
∫

R3
G(X)dX = δij .

Furthermore, defining L∗ = ∆− X
2 .∇− 1

2 the formal adjoint of L, we check easily
that

(2.3) L∗pi = −pi.

With the basis {f1, f2, f3}, the decomposition (1.8) can be written

(2.4) W (τ) =
3∑

i=1

βi(τ)fi + R(τ),

where βi(τ) ∈ R.

As we can see in [17], L2(4) = E−1 ⊕W, where

W =
{

f ∈ L2(4) :
∫

R3
Xifj(X)dX = 0, i, j = 1, 2, 3

}
.

Consequently, one has to choose βi such that
∫

R3
XiRj(τ,X)dX = 0, for i, j ∈

{1, 2, 3}. To this end, we set

βi(τ) =
∫

R3
pi(X).W (τ,X)dX.

In fact, assuming that W ∈ L2(4) and using the divergence free property of W , it
is easy to check that∫

R3
p1(X).W (X)dX =

∫
R3

X2W3(X)dX = −
∫

R3
X3W2(X)dX,∫

R3
p2(X).W (X)dX =

∫
R3

X3W1(X)dX = −
∫

R3
X1W3(X)dX,∫

R3
p3(X).W (X)dX =

∫
R3

X1W2(X)dX = −
∫

R3
X2W1(X)dX,

and thus, using (2.2) and the decomposition (2.4), we can conclude that
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R3

XiRj(X)dX = 0, for all i, j ∈ {1, 2, 3}.

The next lemma gives more details about βi, and shows that the projection of W
onto E−1 is actually a solution of (1.7).

Lemma 2.1. Let W ∈ Co
(
[τ0, T ) , H2(4)

)
be a solution of (1.6) and let

βi(τ) =
∫

R3
pi(X).W (τ,X)dX.

Then, for all τ ∈ [τ0, T ],

(2.5) βi(τ) = bie
−τ ,

where bi =
∫

R3
pi(X).W0(X)dX.

Proof. The proof of this lemma is made formally, assuming that every quan-
tity that we consider is well defined. Actually, in the remaining of this article, we
will work with regularized solutions for which the next computations are rigorous.
In order to get (2.5), we only have to show that βi satisfies

(2.6) ∂τβi (τ) = −βi(τ).

Performing the L2−scalar product of the first equality of (1.6) with pi, we obtain
(2.7)
∂τβi(τ) = αe−τ (pi, ∂τ∆W )L2 − αe−τ (pi,∆W )L2 + (pi,L(W ))L2

+(pi, curl ((W − αe−τ∆W ) ∧ U))L2 − αe−τ
(
pi,∆W + X

2 .∇∆W
)
L2 .

Integrating several times by parts, it is easy to check that

αe−τ (pi, ∂τ∆W )L2 = αe−τ (pi,∆W )L2 = αe−τ
(
pi,∆W + X

2 .∇∆W
)
L2 = 0,

and the equality (2.3) implies

(pi,L(W ))L2 = (L∗pi,W )L2 = − (pi,W )L2 = −βi(τ).

Thus, integrating by parts and recalling that curl pi = ei, one has

(2.8) ∂τβi(τ) = −βi(τ) +
∫

R3
ei.
((

W (X)− αe−τ∆W (X)
)
∧ U(X)

)
dX.

It remains to show that the last term of the right hand size of (2.8) vanishes.
Noticing that W = curl U , an easy computation shows, for i ∈ {1, 2, 3},(

U(X) ∧
(
W (X)− αe−τ∆W (X)

))
i
=

1
2
∂i

(
|U |2

)
− U.∇Ui − αe−τ (U.∂i∆U − U.∇∆Ui) .

(2.9)

Thus, using the divergence free property of U and integrating by parts, we get∫
R3

ei.
(
U(X) ∧

(
W (X)− αe−τ∆W (X)

))
dX = −αe−τ

∫
R3

U(X).∂i∆U(X)dX.

Another integration by parts yields∫
R3

ei.
(
U(X) ∧

(
W (X)− αe−τ∆W (X)

))
dX =

α

2
e−τ

∫
R3

∂i

(
|∇U(X)|2

)
dX = 0,

and thus we obtain (2.6). �
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We can now state the main theorem of this paper, which shows in particular
that the first order asymptotic profile of a solution W in H2(4) of (1.6) is the same
as the first order asymptotic profile obtained for the Navier-Stokes equations.

Theorem 2.2. Let θ be a fixed constant such that 1 < θ < 3
2 and W0 ∈ H2(4).

There exist two positive constants γ0 = γ0(α) and T0 = T0(α) ≥ 1 such that if
T ≥ T0 and there exists a positive constant γ ≤ γ0 such that
(2.10)

‖W0‖2L2(4) + ‖∇W0‖2L2 + αe−τ0 ‖∆W0‖2L2 + α2e−2τ0

∥∥∥|X|4 ∆W0

∥∥∥2

L2
≤ γ

(
3
2
− θ

)2

,

where τ0 = log(T ),

then there exist a unique solution W ∈ C0
(
[τ0,+∞) , H2(4)

)
to the system (1.6)

and a positive constant C = C(α, T0) such that

(2.11)

∥∥∥∥∥(I − αe−τ∆
)(

W (τ)− e−τ
3∑

i=1

bifi

)∥∥∥∥∥
L2(4)

≤ Cγ1/2

(
3
2
− θ

)
e−θτ ,

where bi =
∫

R3
pi(X).W0(X)dX.

In the classical variables, the next corollary is deduced from Theorem 2.2.

Corollary 2.1. Let θ be a constant such that 1 < θ < 3
2 , w0 ∈ H2(4) and

bi =
1
T

∫
R3

pi(x).w0(x)dx. There exist γ0 = γ0(α) > 0 and T0 = T0(α, θ) ≥ 1 such

that if there exist T ≥ T0 and γ ≤ γ0 such that
(2.12)

T 1/2 ‖w0‖2L2 + T−7/2
∥∥∥|x|4 w0

∥∥∥2

L2
+ T 3/2 ‖∇w0‖2L2

+αT 3/2 ‖∆w0‖2L2 + α2T−3/2
∥∥∥|x|4 ∆w0

∥∥∥2

L2
≤ γ

(
3
2 − θ

)2
,

then there exists a unique solution w ∈ C0
(
[0,+∞) , H2(4)

)
to the system (1.2)

such that, for all 1 ≤ p ≤ 2, the following inequality holds∥∥∥∥∥(I − α∆)

(
w(t)−

3∑
i=1

bi

(t + T )2
fi

(
x√

t + T

))∥∥∥∥∥
Lp

≤ Cγ1/2

(
3
2
− θ

)
(t + T )−1−θ+ 3

2p ,

(2.13)

where C = C(α, T0) is a positive constant. Besides, for all 1 ≤ p ≤ +∞, one has

(2.14)

∥∥∥∥∥w(t)−
3∑

i=1

bi

(t + T )2
fi

(
x√

t + T

)∥∥∥∥∥
Lp

≤ Cγ1/2

(
3
2
− θ

)
(t + T )−1−θ+ 3

2p .

Let u be the divergence free vector field obtained from w through the Biot-Savart
law. For all 3

2 ≤ p ≤ +∞, one has
(2.15)∥∥∥∥∥u(t)−

3∑
i=1

bi

(t + T )3/2
vi

(
x√

t + T

)∥∥∥∥∥
Lp

≤ Cγ1/2

(
3
2
− θ

)
(t + T )−

1
2−θ+ 3

2p ,

where vi is obtained from fi via the Biot-Savart law.
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Theorem 2.2 and Corollary 2.1 describe the first order asymptotic profiles of the
solutions of the second grade fluids equations. In particular, they show that these
solutions behave asymptotically like the self-similar solutions to the heat equation
given by

(t, x) −→
3∑

i=1

bi

(t + T )2
fi

(
x√

t + T

)
.

In addition, since the same result has been shown in [17] for the Navier-Stokes
equations, it shows that, at the first order, the second grade fluids behave asymp-
totically like Newtonian fluids.

Remark 2.3. We emphasize that the convergence results of Theorem 2.2 and
Corollary 2.1 allow to choose the rate of convergence as close as wanted to the
optimal one, provided the initial data are small enough in H2(4). In dimension 2,
the rate of convergence of the results of Jaffal-Mourtada in [23] cannot be better
than e−τ/4, whereas the optimal one is e−τ/2. In Section 4, we will see that the
method used in the present paper to make estimates on the solutions of (1.6) in
Sobolev spaces of negative order differs from the one used in [23], which is the
reason why we are able to obtain a better rate of convergence.

We prove Theorem 2.2 in several steps. First, in Section 3, we introduce a new
system that is close to (1.6), but which contains the regularizing term ε∆2W , with
ε a small positive constant that is devoted to tend to 0. Due to this regularizing
term, we are able, through a semi-group method, to show the existence of local
solutions to the regularized system. In a second time, in Section 4 we perform
energy estimates on these approximate solutions, and show that these ones are
global in time and satisfy the inequality (2.11). Then, in Section 5, we pass to
the limit when ε tends to 0 and show that the approximate solutions converge to
a global weak solution of (1.6) which satisfies the inequality (2.11). Finally, in
order to show that every solution whose initial data satisfy the assumption (2.10)
converge to his first order asymptotic profile, we show the uniqueness of the weak
solutions of (1.2) belonging to C0

(
[0,+∞) , H2(4)

)
.

Biot-Savart law: We recall some properties of the Biot-Savart law. Let w be
a given divergence free vector field of R3, the Biot-Savart law gives a divergence
free vector field u such that curl u = w. It is given by

(2.16) u(x) = − 1
4π

∫
R3

(x− y) ∧ w(y)
|x− y|3

dy.

In particular, the scaled variables (1.5) preserves the Biot-Savart law. Indeed, if u is
obtained from w via the Biot-Savart law and W is w expressed into scaled variables,
then the divergence free vector field U obtained from W through the Biot-Savart
law is u expressed in scaled variables. The next lemma gives some estimates on
vector fields obtained by (2.16), in various functions spaces.

Lemma 2.4. Let w be a divergence free vector field of R3 and u be the velocity
field obtained from w via the Biot-Savart law (2.16).
(a) Assume that 1 < p < 3, 3

2 < q < ∞ and 1
q = 1

p −
1
3 . If w ∈ Lp(R3)3, then

u ∈ Lq(R3)3, and there exists C > 0 such that

(2.17) ‖u‖Lq ≤ C ‖w‖Lp .
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(b) Assume that 1 ≤ p < 3 < q ≤ ∞, and define η ∈ (0, 1) by the relation
1
3 = η

p + (1−η)
q . If w ∈ Lp(R3)3 ∩ Lq(R3)3, then u ∈ L∞(R3)3 and there exists

C > 0 such that

(2.18) ‖u‖L∞ ≤ C ‖w‖η
Lp ‖w‖1−η

Lq .

(c) Assume that 1 < p < ∞. If w ∈ Lp(R3)3, then ∇u ∈ Lp(R3)9 and there exists
C > 0 such that

(2.19) ‖∇u‖Lp ≤ C ‖w‖Lp .

This lemma is proved in [17] and will be very useful when making estimates
on the solutions of (1.6).

3. Approximate solutions

In this section, we introduce a new system that is close to (1.2), but contains
the regularizing term ε∆2w, where ε is a small positive constant. We introduce
such a system in order to get smooth solutions, for which we are able to perform
estimates in H2(4) and obtain the inequality (2.11). In Section 5, we pass to the
limit when ε goes to 0 and show that the limit of the solution of the regularized
system is a weak solutions of the system (1.6), which also satisfies the inequality
(2.11). We introduce the following regularized system, given by

(3.1)
∂t (wε − α∆wε) + ε∆2wε −∆wε + curl ((wε − α∆wε) ∧ uε) = 0,
div uε = div wε = 0,
wε|t=0 = w0.

The next theorem shows that, for every w0 ∈ H2(4), there exists a unique local so-
lution to (3.1) belonging to H2(4), which is smooth enough to perform the estimates
of Section 4.

Theorem 3.1. Let ε > 0 and w0 ∈ H2(4). There exists tε > 0 and a unique
solution wε to the system (3.1) defined on the time interval [0, tε) such that

wε ∈ C1
(
(0, tε) , H1(4)

)
∩ C0

(
[0, tε) , H2(4)

)
∩ C0

(
(0, tε) , H3(4)

)
.

Proof. To get this result, one defines wε,µ(t, x) = wε

(
t, x

µ

)
, where µ > 0.

This change of variables enables us to show the existence of solutions to the system
(3.1) without restrictions on the size of the parameter α. We define uε,µ obtained
from wε,µ by the Biot-Savart law (2.16). It is easy to check that uε,µ(t, x) =
µuε(t, x

µ ). In order to show the existence of a unique solution to (3.1), we will
prove that there exists a unique solution to the system

(3.2)

∂t

(
wε,µ − αµ2∆wε,µ

)
− εµ4∆2wε,µ − µ2∆wε,µ+

curl
((

wε,µ − αµ2∆wε,µ

)
∧ uε,µ

)
= 0,

div wε,µ = div uε,µ = 0,
wε,µ|t=0 = w0( x

µ ) ∈ H2(4).

We define now zε(t, x) = q(x)wε,µ(t, x), where q(x) =
(
1 + |x|4

)
. In particular, if

wε,µ ∈ L2(4), then zε ∈ H, where

H =
{
z ∈ L2(R3)3 : div

(
q−1z

)
= 0
}

.

For later use, we define, for s ≥ 0,
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Hs = H ∩Hs(R3)3, and H−s = (Hs)
′
,

where (Hs)
′
denotes the dual space of Hs.

We equip Hs with the classical Hs Sobolev norm, which makes Hs complete. From
the system (3.2), we deduce the following one, that we solve in zε,
(3.3)

∂τ

(
zε − αµ2∆zε − αµ2q∆q−1zε − 2αµ2q∇q−1.∇zε

)
+ εµ4∆2zε = F (x, zε) ,

div
(
q−1zε

)
= 0,

zε|t=0 (x) = z0(x) ∈ H2,

where

F (x, zε) = −εµ4q∆2
(
q−1zε

)
+ µ2q∆

(
q−1zε

)
+qcurl

((
q−1zε − µ2α1∆

(
q−1zε

))
∧ uε,µ

)
.

The system (3.3) is actually autonomous. Indeed, one can recover uε,µ by the Biot-
Savart law (2.16) applied to q−1zε. To show the existence of solutions to (3.1) in
H1(4), it suffices to show the existence of solutions to (3.3) inH1, for data belonging
to H2.

We set two linear differential operators B : D(B) = H1 → H−1 and D : D(D) =
H → H−1, given by

B = αµ2q∆q−1 + αµ2∆,
D = αµ2q∇q−1.∇.

Via Lax-Milgram theorem, we show now that if µ is sufficiently small with respect
to α, the operator (I −B −D) is invertible. In order to do that, we define the
bilinear form on H1 ×H1, given by

a(u, v) = (u, v)L2 +αµ2 (∇u,∇v)L2 −αµ2
(
q∆q−1u, v

)
L2 − 2αµ2

(
q∇q−1.∇u, v

)
L2 .

Since q∆q−1 and q∇q−1 are bounded on R3, the bilinear form a is continuous on
H1. We now show, taking µ small enough, that a is also coercive on H1. Indeed,
integrating by parts and using Hölder and Young inequalities, we have

a(u, u) ≥
(

1− αµ2 sup
x∈R3

(
q∆q−1

)
+ αµ2 inf

x∈R3

(
div

(
q∇q−1

)))
‖u‖2L2 + αµ2 ‖∇u‖2L2 .

Thus, if we take µ sufficiently small, we get

a(u, u) ≥ C(α, µ) ‖u‖2H1 ,

where C(α, µ) is a positive constant depending on α and µ.

The classical Lax-Milgram theorem enables us to define (I −B −D)−1 from H−1

to H1. We define the linear differential operator A : D(A) = H3 → H1 given by

A = εµ4 (I −B −D)−1 ∆2.

We can rewrite the system (3.3) as follows:

(3.4) ∂τzε + Azε = (I −B −D)−1
F (x, zε) ,

zε|t=0 = z0.
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In order to show the existence of solutions to such a system, we use, like in [23], a
semi-group method. First, we show that −A generates an analytic semi-group on
H1 which is equivalent as A is sectorial on H1. We decompose A as follows:

A = εµ4 (Id−B −D)−1 ∆2

= εµ4 (Id−B)−1 ∆2 + εµ4 (Id−B −D)−1
D (Id−B)−1 ∆2

= J + R,

where

J = Id + εµ4 (Id−B)−1 ∆2,

R = −Id + εµ4 (Id−B −D)−1
D (Id−B)−1 ∆2.

We first show that J is sectorial. We will see later that R satisfies properties that
enable to conclude that A is sectorial if J is sectorial. Taking µ sufficiently small
compared to α, it is easy, arguing like we did to invert (I −B −D), to show that
(I −B)−1 is well defined from H−1 to H1. Consequently, the operator J is well
defined from H3 to H1. We define now the bilinear form j on H2 ×H2 associated
to J . To this end, we introduce a H1−scalar product which is adapted to J . We
define

〈u, v〉H1 =
((

1− αµ2q∆q−1
)
u, v
)
L2 + αµ2 (∇u,∇v)L2 .

If µ is sufficiently small, 〈., .〉H1 is a scalar product on H1. In particular, if u ∈ H2

and v ∈ H1, one has

〈u, v〉H1 = ((I −B) u, v)L2 .

Via this product, we define

j(u, v) = 〈u, v〉H1 + εµ4 (∆u, ∆v) .

In particular, if u ∈ H3 and v ∈ H1, one has

j(u, v) = 〈Ju, v〉H1 .

The bilinear form j is obviously continuous on H2×H2. Furthermore, if µ is small
enough, it is also coercive on H2. Indeed,

j(u, u) ≥ C(α, µ) ‖u‖2H1 + εµ4 ‖∆u‖2L2

≥ C(α, µ, ε) ‖u‖2H2 .

Thus j is continuous and coercive on H2 and consequently J is sectorial on H1, that
is equivalent to say that −J generates an analytic semi-group on H1. Furthermore,
we can check that R is continuous from H2 to H1, and we have

‖Ru‖H1 ≤ C(α, µ, ε) ‖u‖H2 .

Using the coerciveness of j, we get, for all u ∈ H3,

(3.5)
‖Ru‖2H1 ≤ C(α, µ, ε)j(u, u)

≤ C(α, µ, ε) 〈Ju, u〉H1

≤ C ‖Ju‖H1 ‖u‖H1 .

Applying the Young inequality, we obtain, for all δ > 0

‖Ru‖2H1 ≤ δ ‖Ju‖2H1 + C ‖u‖2H1 , for all u ∈ H3.
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From a classical result that we can find in the book of D. Henry [22], it implies
that J + R is sectorial on H1.

To achieve this proof, we check that A−1F (x, v) is locally Lipschitz in v ∈ H1 on
the bounded sets of H2. According to [27, section 6.3] and [22, chapter 3], we
finally get Theorem 3.1. �

4. Energy estimates

In this section, we perform several energy estimates on the solution of the
system (3.1) given by Theorem 3.1. We consider a fixed positive constant θ such
that 1 < θ < 3

2 , which is the rate of convergence of Theorem 2.2. Let T be a positive
constant which will be made more precise later and that we assume, without loss
of generality, to be such that T ≥ 1. We consider Wε the divergence free vector
field obtained from wε via the change of variables (1.5). According to Theorem
3.1, there exists a maximal time τε such that Wε belongs to C1

(
(τ0, τε) , H1(4)

)
∩

C0
(
(τ0, τε) , H3(4)

)
, where τ0 = log(T ). A short computation shows that Wε is the

solution of the system
(4.1)

∂τ (Wε − αe−τ∆Wε) + εe−τ∆2Wε − L(Wε) + curl ((Wε − αe−τ∆Wε) ∧ Uε)
+αe−τ∆Wε + αe−τ X

2 .∇∆Wε = 0,
div Uε = div Wε = 0,
Wε|τ=τ0 = W0,

where we recall that

L(Wε) = Wε + ∆Wε + X
2 .∇Wε.

In this section, we obtain several energy estimates in various functions spaces. More
precisely, assuming that T is large enough and W0 is small enough in H2(4), we
show that the solution of (4.1) stays bounded in time in those energy spaces and
is consequently global in time. In addition, we obtain the inequality (2.11) for Wε.
The method to reach this aim is based on the construction of an energy functional
E such that

E(τ) ∼

∥∥∥∥∥Wε(τ)− e−τ
3∑

i=1

bifi

∥∥∥∥∥
2

H2(4)

, for all τ ≥ log(T ),

and there exists a positive constant C such that, for all τ ≥ log(T ),

(4.2) ∂τE(τ) + 2θE(τ) ≤ Ce−3τ ,

where bi =
∫

R3
pi(X).W0(X)dX and {f1, f2, f3} is the basis of the eigenspace of L

associated to the eigenvalue −1, given by (2.1). Through the Gronwall Lemma, the
inequality (4.2) allows to get the inequality (2.11) for Wε and to conclude that Wε

is global in time.

We set Ω∞ =
3∑

i=1

bifi. The decomposition (2.4) becomes

(4.3) Wε(τ) = e−τΩ∞ + Rε(τ).
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A short computation shows that Rε satisfies the equality
(4.4)

∂τ (Rε − αe−τ∆Rε) + εe−τ∆2Rε − L(Rε) + curl ((Wε − αe−τ∆Wε)× Uε)

+αe−τ∆Rε + αe−τ X
2 .∇∆Rε + 3αe−2τ∆Ω∞ + εe−2τ∆2Ω∞ = 0.

In this section, we assume that W0 satisfies the condition (2.10) of Theorem 2.2 for
some positive constant γ. We also set M to be a positive constant such that M ≥ 2
which will be made more precise later. Let τ∗ε , τ0 < τ∗ε ≤ τε be the largest positive
time such that, for all τ ∈ [τ0, τ

∗
ε ),

(4.5)
‖Wε(τ)‖2L2(4) + ‖∇Wε(τ)‖2L2 + αe−τ ‖∆Wε(τ)‖2L2

+α2e−2τ
∥∥∥|X|4 ∆Wε(τ)

∥∥∥2

L2
≤ Mγ

(
3
2
− θ

)2

.

Since Rε belongs to C0
(
[τ0, τε) , H2(4)

)
, the time τ∗ε is well defined. The next

lemma, which is a consequence of (4.5), establishes an inequality on the H2(4)−norm
of Rε.

Lemma 4.1. Let Wε ∈ C0
(
[τ0, τ

∗
ε ) , H2(4)

)
satisfying the condition (4.5) and

Rε = Wε−e−τΩ∞. There exists a positive constant C such that, for all τ ∈ [τ0, τ
∗
ε ),

(4.6)
|b|2 + ‖Rε(τ)‖2L2(4) + ‖∇Rε(τ)‖2L2 + αe−τ ‖∆Rε(τ)‖2L2

+α2e−2τ
∥∥∥|X|4 ∆Rε(τ)

∥∥∥2

L2
≤ CMγ

(
3
2 − θ

)2
.

Proof. To prove the inequality (4.6), we notice that , for all i ∈ {1, 2, 3},

|bi| ≤
∫

R2
|X| |W0| dX

≤

∫
R2

1(
1 + |X|2

)3 dX


1/2(∫

R2

(
1 + |X|2

)3

|X|2 |W0|2 DX

)1/2

≤ C ‖W0‖L2(4) .

Thus, recalling that Rε = Wε − e−τ
3∑

i=1

bifi and taking into account (2.10), we

obtain (4.6). �

For the sake of simplicity, we assume in this section that γ ≤ 1 and αe−τ0 ≤ 1.
In what follows, C denotes a positive constant, which eventually depends on α, and
which can change from one line to another. To simplify the notations, we also note
R instead of Rε, W instead of Wε and U instead of Uε.

4.1. Estimates in H−(θ+2)(R3). In this section, we perform an estimate of
Rε in the space H−(θ+2)(R3) on the time interval [τ0, τ

∗
ε ). This is motivated by the

fact that, in the H1−estimate that we establish below, the term ‖Rε‖2L2 takes place
in the right hand side of the inequality (4.2). To absorb this term, we look for an
estimate in the homogeneous Sobolev space Ḣ−(θ+2)(R3). Combined with the other
energy estimates, it gives an estimate in the classical Sobolev space H−(θ+2)(R3).
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Notice that the constant θ + 2 is chosen in order to obtain the term 2θE in the
inequality (4.2). In [23], the choice of the Sobolev space of negative order do not
depend on θ, that is why the rate of convergence obtained in [23] cannot be taken
as close as wanted to the optimal one. In order to perform this energy estimate,
we define, for s ∈ R, the operator

(−∆)−s
u = F̄

(
1
|ξ|4s û

)
,

where û is the Fourier transform of u, given by

û(ξ) =
∫

R3
e−ix.ξu(x)dx,

and F̄ is the inverse Fourier transform.

We are allowed to consider (−∆)−( θ
2 +1) Rε by the lemma

Lemma 4.2. Let u ∈ L2(4) such that
∫

R3
u(x)dx = 0.

(1) If
∫

R3
xiu(x)dx = 0 for every i ∈ {1, 2, 3}, then, for all 0 ≤ s < 7

4 ,

(−∆)−s
u ∈ L2(R3) and there exists a positive constant C such that

(4.7)
∥∥∥(−∆)−s

u
∥∥∥

L2
≤ C√

7− 4s
‖u‖L2(4) .

(2) For all 0 ≤ s < 7
4 , (−∆)−s∇u ∈ L2(R3)3 and there exists a positive

constant C such that

(4.8)
∥∥∥(−∆)−s∇u

∥∥∥
L2
≤ C√

7− 4s
‖u‖L2(3) .

Proof. Using Fourier variables, we get∥∥∥(−∆)−s
u
∥∥∥2

L2
=

1
(2π)3

∫
R2

1
|ξ|4s |û(ξ)|2 dξ

≤ 1
(2π)3

∫
|ξ|≤1

1
|ξ|4s |û(ξ)|2 dξ + ‖u‖2L2 .

We note I =
1

(2π)3

∫
|ξ|≤1

1
|ξ|4s |û(ξ)|2 dξ. Using the fact that û(0) =

∫
R3

u(x)dx = 0

and the Cauchy-Schwartz inequality on the interval (0, 1), we have

I =
1

(2π)3

∫
|ξ|≤1

1
|ξ|4s

∣∣∣∣∫ 1

0

ξ.∇û(σξ)dσ

∣∣∣∣2 dξ

≤ C

∫
|ξ|≤1

1
|ξ|4s−2

∫ 1

0

|∇û(σξ)|2 dσdξ.
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Then, due to the fact that ∂j û(0) = i

∫
R2

xju(x)dx = 0, we get

I ≤ C

∫
|ξ|≤1

1
|ξ|4s−2

∫ 1

0

 3∑
i,j=1

∣∣∣∣∫ 1

0

ξj∂i∂j û(rσξ)dr

∣∣∣∣2
 dσdξ

≤ C

∫
|ξ|≤1

1
|ξ|4s−4

∫ 1

0

∫ 1

0

∣∣∇2û(rσξ)
∣∣2 drdσdξ.

Finally, the continuous injection of H2(R3) into L∞(R3) yields

I ≤ C

7− 4s

∥∥∇2û
∥∥2

L∞

≤ C

7− 4s

∥∥∇2û
∥∥2

H2

≤ C

7− 4s
‖u‖2L2(4) ,

and thus the inequality (4.7) is shown.

To get (4.8), using Fourier variables, we have∥∥∥(−∆)−s∇u
∥∥∥2

L2
=

1
(2π)3

∫
|ξ|≤1

1
|ξ|4s−2 |û(ξ)|2 dξ + ‖u‖2L2

=
1

(2π)3

∫
|ξ|≤1

1
|ξ|4s−2

∣∣∣∣∫ 1

0

ξ.∇û(sξ)ds

∣∣∣∣2 dξ + ‖u‖2L2

≤ 1
(2π)3

∫
|ξ|≤1

1
|ξ|4s−4

∣∣∣∣∫ 1

0

|∇û(sξ)| ds

∣∣∣∣2 dξ + ‖u‖2L2 .

Using now Hölder inequalities, the fact that 4s−4 < 3 and the continuous injection
of H2(R3) into L∞(R3), we have∥∥∥(−∆)−s∇u

∥∥∥2

L2
≤ C

∫ 1

0

∫
|ξ|≤1

1
|ξ|4s−4 |∇û(sξ)|2 dξds + ‖u‖2L2

≤ C

(∫
|ξ|≤1

1
|ξ|4s−4 dξ

)
‖∇û‖2L∞ + ‖u‖2L2

≤ C

7− 4s
‖u‖2L2(3) + ‖u‖2L2 .

�

In order to apply the lemma 4.2 to the non linear terms of the equation (4.4),
we state the following lemma.

Lemma 4.3. Let w ∈ H2(4) and u obtained from w via the Biot-Savart law
(2.16). For all C ∈ R, we have

(4.9)
∫

R3
(w(x)− C∆w(x)) ∧ u(x)dx = 0.

Proof. In order to show this equality, we just have to look at the equality
(2.9). An integration by parts gives directly (4.3). �
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Lemma 4.4. Let w belongs to H2(4) and s such that 0 ≤ s < 7
4 , then u satisfies

the equalities

(1)
(
(−∆)−s L(w), (−∆)−s

w
)

L2
= −

∥∥∥(−∆)
1
2−s

w
∥∥∥2

L2
−
(
s− 1

4

) ∥∥∥(−∆)−s
w
∥∥∥2

L2
.

(2)
(
(−∆)−s (x

2 .∇∆w
)
, (−∆)−s

w
)

L2
=
(
s + 5

4

) ∥∥∥(−∆)
1
2−s

w
∥∥∥2

L2
.

This lemma is easily obtained with a few integrations by parts, when passing
into Fourier variables.

Let V∞ be the divergence free vector field obtained from Ω∞ via the Biot-
Savart law (2.16) and K the divergence free vector field obtained from R via the
Biot-Savart law. One defines the energy functional

E0(τ) =
1
2

(∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2
+ αe−τ

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2

)
.

The next lemma establishes a H−(θ+2)−estimate which is necessary to obtain a
good rate of convergence in Theorem 2.2.

Lemma 4.5. Let W ∈ C1
(
(τ0, τε) , H1(4)

)
∩C0

(
(τ0, τε) , H3(4)

)
be the solution

of (4.1). There exists a positive constant γ0 such that, if Wε satisfies the condition
(4.5) for some γ such that 0 < γ ≤ γ0, then there exists a positive constant C such
that, for all τ ∈ [τ0, τ

∗
ε ),

(4.10)

∂τE0 + 2θE0 +
1
2

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
≤

CMγ

(∥∥∥|X|4 R
∥∥∥2

L2
+ ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2(4)

)
+CM2γ

(
3
2 − θ

)2
e−4τ .

Proof. To prove this lemma, we apply the operator (−∆)−( θ
2 +1) to (4.4) and

make the L2−inner product of it with (−∆)−( θ
2 +1) R. Applying Lemma 4.4 and

through some easy computations, one has

(4.11)

1
2
∂τ

(∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2
+ αe−τ

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2

)
+εe−τ

∥∥∥(−∆)−
θ
2 R
∥∥∥2

L2

+
(

θ

2
+

3
4

)∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2
+(

1 +
(

θ
2 + 3

4

)
αe−τ

) ∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
= I1 + I2,

where

I1 =
(
(−∆)−( θ

2 +1) (curl
((

W − αe−τ∆W
)
∧ U

))
, (−∆)−( θ

2 +1) R
)

L2
,

I2 = e−2τ
(
(−∆)−( θ

2 +1) (−α∆Ω∞ − ε∆2Ω∞
)
, (−∆)−( θ

2 +1) R
)

L2
.

We start with the estimate of the easiest term, that is I2. Through the Plancherel
formula, one has
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I2 = e−2τ
(
(−∆)−( θ

2 + 3
2 ) (−α∆Ω∞ − ε∆2Ω∞

)
, (−∆)−( θ+1

2 ) R
)

L2
.

Using the Cauchy-Schwartz inequality, we get

I2 ≤ αe−2τ
∥∥∥(−∆)−

θ+1
2 Ω∞

∥∥∥
L2

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥
L2

+ εe−2τ
∥∥∥(−∆)−

θ−1
2 Ω∞

∥∥∥
L2

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥
L2

.

Using the Lemma 4.2, the Young inequality and taking into account the good
regularity of Ω∞ and the inequality (4.6), one has

(4.12)

I2 ≤ Ce−2τ ‖Ω∞‖H2(4)

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥
L2

≤ µ1

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
+

C |b|2

µ1
e−4τ

≤ µ1

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
+

CMγ
(

3
2 − θ

)2
µ1

e−4τ ,

where µ1 is a positive constant that will be made more precise later.

It remains to bound I1. Using the Cauchy-Schwartz inequality and the lemmas 4.3
and 4.2, we obtain

I1 ≤ C
∥∥∥(−∆)−( θ

2 +1)∇
((

W − αe−τ∆W
)
∧ U

)∥∥∥
L2

∥∥∥(−∆)−( θ
2 +1) R

∥∥∥
L2

≤ C(
3
2 − θ

)1/2

∥∥(W − αe−τ∆W
)
U
∥∥

L2(4)

∥∥∥(−∆)−( θ
2 +1) R

∥∥∥
L2

≤ C(
3
2 − θ

)1/2
‖U‖L∞

∥∥W − αe−τ∆W
∥∥

L2(4)

∥∥∥(−∆)−( θ
2 +1) R

∥∥∥
L2

.

The inequality (2.18) of Lemma 2.4 with p = 2, q = 6 and η = 1
2 and the continuous

injection of H1(R3) into L6(R3) yield

I1 ≤
C(

3
2 − θ

)1/2
‖W‖1/2

L2 ‖W‖1/2
L6

∥∥W − αe−τ∆W
∥∥

L2(4)

∥∥∥(−∆)−( θ
2 +1) R

∥∥∥
L2

≤ C(
3
2 − θ

)1/2
‖W‖H1

(
‖W‖L2(4) + αe−τ ‖∆W‖L2(4)

)∥∥∥(−∆)−( θ
2 +1) R

∥∥∥
L2

≤ µ2

∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2

+
C

µ2

(
3
2 − θ

) (‖W‖2L2 + ‖∇W‖2L2

)(
‖W‖2L2(4) + α2e−2τ ‖∆W‖2L2(4)

)
,
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where µ2 is a positive constant that will de made more precise later. Due to the
decomposition (4.3), one has

I1 ≤ µ2

∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2

+
C

µ2

(
3
2 − θ

) (‖R‖2L2 + ‖∇R‖2L2

)(
‖W‖2L2(4) + α2e−2τ ‖∆W‖2L2(4)

)
+

Ce−2τ

µ2

(
3
2 − θ

) (‖Ω∞‖2L2 + ‖∇Ω∞‖2L2

)(
‖R‖2L2(4) + α2e−2τ ‖∆R‖2L2(4)

)
+

Ce−4τ

µ2

(
3
2 − θ

) (‖Ω∞‖2L2 + ‖∇Ω∞‖2L2

)(
‖Ω∞‖2L2(4) + α2e−2τ ‖∆Ω∞‖2L2(4)

)
.

Finally, using the inequalities (4.5) and (4.6), we obtain
(4.13)

I1 ≤ µ2

∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2
+

CM2γ2
(

3
2 − θ

)3
e−4τ

µ2

+
CMγ

(
3
2 − θ

)
µ2

(
‖R‖2L2(4) + ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2(4)

)
.

Combining (4.11), (4.12) and (4.13), it comes
(4.14)

1
2
∂τ

(∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2
+ αe−τ

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2

)
+ εe−τ

∥∥∥(−∆)−
θ
2 R
∥∥∥2

L2

+
(

θ +
1
2

(
3
2
− θ − 2µ2

))∥∥∥(−∆)−( θ
2 +1) R

∥∥∥2

L2

+
(

1− µ1 +
(

θ

2
+

3
4

)
αe−τ

)∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2

≤
CMγ

(
3
2 − θ

)
µ2

(
‖R‖2L2(4) + ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2(4)

)
+

CMγ
(

3
2 − θ

)2
e−4τ

µ1
+

CM2γ2
(

3
2 − θ

)3
e−4τ

µ2
.

We set µ1 = 1
4 and µ2 = 1

2

(
3
2 − θ

)
. Recalling that M ≥ 2 and γ ≤ 1, we obtain

(4.15)
∂τE0 + 2θE0 +

3
4

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
≤

CMγ
(
‖R‖2L2(4) + ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2(4)

)
+CM2γ

(
3
2 − θ

)2
e−4τ .
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Furthermore, using Fourier variables and Hölder inequalities, we see that

‖R‖2L2 =
1

(2π)3

∫
R3

∣∣∣R̂(ξ)
∣∣∣2 dξ

≤ 1
(2π)3

∫
R3
|ξ|

2(1+θ)
2+θ

∣∣∣R̂(ξ)
∣∣∣ 2(1+θ)

2+θ 1

|ξ|
2(1+θ)
2+θ

∣∣∣R̂(ξ)
∣∣∣ 2
2+θ

dξ

≤

(
1

(2π)3

∫
R3

1

|ξ|2(θ+1)

∣∣∣R̂(ξ)
∣∣∣2 dξ

) 1+θ
2+θ

(
1

(2π)3

∫
R3
|ξ|2

∣∣∣R̂(ξ)
∣∣∣2 dξ

) 1
2+θ

≤
∥∥∥(−∆)−( θ+1

2 ) R
∥∥∥ 2(1+θ)

2+θ

L2
‖∇R‖

2
2+θ

L2 .

Using a convexity inequality, it is easy to get

‖R‖2L2 ≤
1

η
2+θ
1+θ

(
1 + θ

2 + θ

)∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
+

η2+θ

2 + θ
‖∇R‖2L2 ,

for all 0 < η ≤ 1.

Via a short computation, using the fact that 1 < θ < 3
2 and 0 < η ≤ 1, we obtain

(4.16) ‖R‖2L2 ≤
5

7η2

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
+

η2

2
‖∇R‖2L2 .

Applying (4.16) with η = 1 and taking γ small enough, the inequality (4.15) be-
comes
(4.17)

∂τE0 + 2θE0 +
1
2

∥∥∥(−∆)−( θ+1
2 ) R

∥∥∥2

L2
≤

CMγ

(∥∥∥|X|4 R
∥∥∥2

L2
+ ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2(4)

)
+ CM2γ

(
3
2
− θ

)2

e−4τ .

�

4.2. Estimates in H1(R3). This section is devoted to the H1−estimate of the
solutions of (4.4) under the condition (4.5). In particular, we see how the previous
estimate in Ḣ−(1+θ) enables to absorb the terms involving the L2−norm of R. To
obtain this H1−estimate, we make the L2−scalar product of (4.4) with R. We
define the energy functional

E1(τ) =
1
2

(
‖R‖2L2 + αe−τ ‖∇R‖2L2

)
.

The estimate of R in the Sobolev space H1(R3) is given by the next lemma.

Lemma 4.6. Let W ∈ C1
(
(τ0, τε) , H1(4)

)
∩C0

(
(τ0, τε) , H3(4)

)
be the solution

of (4.1). There exist two positive constants γ0 and T0 such that, if T ≥ T0 and W
satisfies the condition (4.5) for some γ such that 0 < γ ≤ γ0, then there exists a
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positive constant C such that, for all τ ∈ [τ0, τ
∗
ε ),

(4.18)

∂τE1 + 3E1 +
1
2
‖∇R‖2L2 ≤

7
4
‖R‖2L2 + CM2γ

(
3
2
− θ

)2

e−4τ

+CMγ

(
3
2
− θ

)2 (
‖R‖2L2 + α2e−2τ ‖∆R‖2L2

)
.

Proof. We perform the L2−scalar product of (4.4) with R. Through several
integrations by parts, we obtain
(4.19)
1
2
∂τ

(
‖R‖2L2 + αe−τ ‖∇R‖2L2

)
+ε ‖∆R‖2L2+

(
1− α

4
e−τ

)
‖∇R‖2L2−

1
4
‖R‖2L2 = I1+I2,

where

I1 = (curl ((W − αe−τ∆W ) ∧ U) , R)L2 ,

I2 = e−2τ
(
−α∆Ω∞ − ε∆2Ω∞, R

)
L2 .

As usual, because of the good regularity of Ω∞, the easiest term to estimate is I2.
Integrating by parts, one has

I2 = e−2τ (α∇Ω∞ + ε∇∆Ω∞,∇R)L2 .

Using the Hölder and Young inequalities and the inequality (4.6), we get

(4.20)

I2 ≤ e−2τ (α ‖∇Ω∞‖L2 + ε ‖∇∆Ω∞‖L2) ‖∇R‖L2

≤ C |b| (α + ε) e−2τ ‖∇R‖L2

≤ µ ‖∇R‖2L2 +
CMγ

(
3
2 − θ

)2
µ

e−4τ ,

where µ is a positive constant that will be made more precise later.

The last remaining term will be estimated by the same way, using the divergence
free property of U . Integrating by parts, we obtain

I1 =
((

W − αe−τ∆W
)
∧ U, curl R

)
L2 .

We recall that curl K = R and curl V∞ = Ω∞ and we decompose I1 as the sum of
three terms

I1 = I1
1 + I2

1 + I3
1 ,

where

I1
1 =

((
W − αe−τ∆W

)
∧K, curl R

)
L2 ,

I2
1 = e−τ

((
R− αe−τ∆R

)
∧ V∞, curl R

)
L2 ,

I3
1 = e−2τ

((
Ω∞ − αe−τ∆Ω∞

)
∧ V∞, curl R

)
L2 .

The Hölder inequalities lead to

I1
1 ≤ C

(
‖KW‖L2 + αe−τ ‖K∆W‖L2

)
‖∇R‖L2

≤ C ‖K‖L∞

(
‖W‖L2 + αe−τ ‖∆W‖L2

)
‖∇R‖L2 .
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Applying the inequality (2.18) with p = 2, q = 6 and η = 1
2 and using the continuous

injection of H1(R3) into L6(R3), one gets

I1
1 ≤ C ‖R‖1/2

L2 ‖R‖1/2
L6

(
‖W‖L2 + αe−τ ‖∆W‖L2

)
‖∇R‖L2

≤ C ‖R‖1/2
L2 ‖R‖1/2

H1

(
‖W‖L2 + αe−τ ‖∆W‖L2

)
‖∇R‖L2 .

Then, we use the Young inequality and the inequality (4.5). We obtain

I1
1 ≤ µ ‖∇R‖2L2 +

C

µ

(
‖W‖2L2 + α2e−2τ ‖∆W‖2L2

)(
‖R‖2L2 + ‖∇R‖2L2

)
≤ µ ‖∇R‖2L2 +

CMγ
(

3
2 − θ

)2
µ

(
‖R‖2L2 + ‖∇R‖2L2

)
.

The Hölder inequalities yield

I2
1 ≤ Ce−τ ‖V∞‖L∞

(
‖R‖L2 + αe−τ ‖∆R‖L2

)
‖∇R‖L2 .

Applying the inequality (2.18) of the lemma 2.4 with p = 2, q = 6 and η = 1
2 , and

the inequality (4.6), we get

I2
1 ≤ Ce−τ ‖Ω∞‖1/2

L2 ‖Ω∞‖1/2
L6

(
‖R‖L2 + αe−τ ‖∆R‖L2

)
‖∇R‖L2

≤ C |b| e−τ
(
‖R‖L2 + αe−τ ‖∆R‖L2

)
‖∇R‖L2

≤ µ ‖∇R‖2L2 +
CMγ

(
3
2 − θ

)2
µ

(
‖R‖2L2 + α2e−2τ ‖∆R‖2L2

)
.

It remains to estimate I3
1 . By the same computations, we get

I3
1 ≤ µ ‖∇R‖2L2 +

C

µ
e−4τ ‖V∞‖2L∞

(
‖Ω∞‖2L2 + α2e−2τ ‖∆Ω∞‖2L2

)
≤ µ ‖∇R‖2L2 +

C

µ
e−4τ ‖Ω∞‖L2 ‖Ω∞‖L6

(
‖Ω∞‖2L2 + α2e−2τ ‖∆Ω∞‖2L2

)
≤ µ ‖∇R‖2L2 +

CM2γ2
(

3
2 − θ

)4
µ

e−4τ .

In particular, we have shown that

(4.21)
I1 ≤ 3µ ‖∇R‖2L2 +

CM2γ2
(

3
2 − θ

)4
µ

e−4τ

+
CMγ

(
3
2 − θ

)2
µ

(
‖R‖2L2 + ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2

)
.

Thus, due to the inequalities (4.20) and (4.21), the inequality (4.19) becomes
(4.22)

∂τE1 + 3E1 +
(

1− 4µ− 7α

4
e−τ

)
‖∇R‖2L2 ≤

7
4
‖R‖2L2 +

CM2γ
(

3
2 − θ

)2
µ

e−4τ

+
CMγ

(
3
2 − θ

)2
µ

(
‖R‖2L2 + ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2

)
.
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Taking γ0 and µ small enough and T = eτ0 large enough, we obtain the inequality
(4.23)

∂τE1 + 3E1 +
1
2
‖∇R‖2L2 ≤

7
4
‖R‖2L2 + CMγ

(
3
2
− θ

)2 (
‖R‖2L2 + α2e−2τ ‖∆R‖2L2

)
+CM2γ

(
3
2
− θ

)2

e−4τ ,

that concludes the proof of this lemma. �

In order to achieve the H1−estimate of R, we now combine the energy inequal-
ities (4.10) and (4.18). Using the interpolation inequality (4.16), we get, from the
inequality (4.18),

(4.24)

∂τE1 + 3E1 +
1
2
‖∇R‖2L2 ≤

7
4

(
5

7η2

∥∥∥(−∆)−( 1+θ
2 ) R

∥∥∥2

L2
+

η2

2
‖∇R‖2L2

)
+CMγ

(
3
2 − θ

)2(∥∥∥(−∆)−( 1+θ
2 ) R

∥∥∥2

L2
+ ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2

)
+CM2γ

(
3
2
− θ

)2

e−4τ ,

where 0 < η ≤ 1.

Taking η =
√

2
7 and γ sufficiently small, we get

(4.25)

∂τE1 + 3E1 +
1
4
‖∇R‖2L2 ≤

(
35
8

+ CMγ

(
3
2
− θ

)2
)∥∥∥(−∆)−( 1+θ

2 ) R
∥∥∥2

L2

+CMγ
(

3
2 − θ

)2(∥∥∥(−∆)−( 1+θ
2 ) R

∥∥∥2

L2
+ α2e−2τ ‖∆R‖2L2

)
+ CM2γ

(
3
2 − θ

)2
e−4τ .

Using the two energies E0 and E1, we define

E2 = 6E0 + E1.

Combining the inequalities (4.10) and (4.25) and setting γ sufficiently small, it is
easy to check that

(4.26)
∂E2(τ) + 2θE2(τ) +

∥∥∥(−∆)−( 1+θ
2 ) R

∥∥∥2

L2
+

1
4
‖∇R‖2L2 ≤

CMγ

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ ‖∆R‖2L2

)
+ CM2γ

(
3
2 − θ

)2
e−4τ .

4.3. Estimates in H2(R3). We now perform a H2−estimate for the solution
R of (4.4) under the smallness assumption (4.5). To this end, we consider the
L2−scalar product of (4.4) with −∆R. We define the functional

E3(τ) = 1
2

(
‖∇R‖2L2 + αe−τ ‖∆R‖2L2

)
.

The next lemma gives the estimate of R in the space H2(R3).

Lemma 4.7. Let W ∈ C1
(
(τ0, τε) , H1(4)

)
∩C0

(
(τ0, τε) , H3(4)

)
be the solution

of (4.1). There exist two positive constants γ0 and T0 such that, if T ≥ T0 and
W satisfies the condition (4.5) for some positive constant γ such that γ ≤ γ0, then
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there exists C > 0 such that, for all τ ∈ [τ0, τ
∗
ε ),

(4.27)

∂τE3 + 3E3 +
1
2
‖∆R‖2L2 ≤

9
4
‖∇R‖2L2 + CMγ

(
3
2
− θ

)2 (
‖R‖2L2 + ‖∇R‖2L2

)
+CM2γ

(
3
2
− θ

)2

e−
7τ
2 .

Proof. The proof of Lemma 4.7 is made through the L2−scalar product of
(4.4) with −∆R. First of all, we remark that

curl
((

W − αe−τ∆W
)
∧ U

)
= U.∇

(
W − αe−τ∆W

)
−
(
W − αe−τ∆W

)
.∇U.

Making some computations that we let to the reader involving integrations by parts
and the divergence free property of U , we obtain
(4.28)

∂τ

(
‖∇R‖2L2 + αe−τ ‖∆R‖2L2

)
+
(

1− 3α

4
e−τ

)
‖∆R‖2L2 =

3
4
‖∇R‖2L2 +I1 +I2 +I3,

where

I1 = (−U.∇ (W − αe−τ∆W ) ,∆R)L2 ,

I2 = ((W − αe−τ∆W ) .∇U,∆R)L2 ,

I3 = e−2τ
(
α∆Ω∞ + ε∆2Ω∞,∆R

)
L2 .

Like in the previous estimates, the easiest term is I3. Indeed, using Hölder and
Young inequalities and the inequality (4.6), one has

(4.29)
I3 ≤ e−2τ

(
α ‖∆Ω∞‖L2 + ε

∥∥∆2Ω∞
∥∥

L2

)
‖∆R‖L2

≤ µ ‖∆R‖2 +
CMγ

(
3
2 − θ

)2
µ

e−4τ ,

where µ is a positive constant which will be made more precise later.

We now look for an estimate of I1. We decompose it as follows:

I1 = I1
1 + I2

1 + I3
1 ,

where

I1
1 = −e−τ

(
K.∇

(
Ω∞ − αe−τ∆Ω∞

)
,∆R

)
L2 ,

I2
1 = −e−2τ

(
V∞.∇

(
Ω∞ − αe−τ∆Ω∞

)
,∆R

)
L2 ,

I3
1 = −

(
U.∇

(
R− αe−τ∆R

)
,∆R

)
L2 .

Due to the smoothness of Ω∞ and the inequality (2.18), we get

I1
1 ≤ e−τ ‖K‖L∞

(
‖∇Ω∞‖L2 + αe−τ ‖∇∆Ω∞‖L2

)
‖∆R‖L2

≤ C |b| e−τ ‖R‖1/2
L2 ‖R‖1/2

L6 ‖∆R‖L2 .
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The continuous injection of H1(R3) into L6(R3), Young inequality and the inequal-
ity (4.6) yield

I1
1 ≤ C |b| e−τ ‖R‖H1 ‖∆R‖L2

≤ µ ‖∆R‖2L2 +
CMγ

(
3
2 − θ

)2
µ

e−2τ
(
‖R‖2L2 + ‖∇R‖2L2

)
.

Doing the same computations, we get

I2
1 ≤ µ ‖∆R‖2L2 +

CM2γ2
(

3
2 − θ

)4
µ

e−4τ .

The divergence free property of U and an integration by parts imply

I3
1 = (U.∇R,∆R)L2 .

Thus, using the Hölder and Young inequalities, Lemma 2.4 and the inequality (4.5),
we obtain

I3
1 ≤ ‖U‖L∞ ‖∇R‖L2 ‖∆R‖L2

≤ C ‖W‖1/2
L2 ‖W‖1/2

L6 ‖∇R‖L2 ‖∆R‖L2

≤ C ‖W‖H1 ‖∇R‖L2 ‖∆R‖L2

≤ µ ‖∆R‖2L2 +
CMγ

(
3
2 − θ

)2
µ

‖∇R‖2L2 .

Consequently, we have shown that
(4.30)

I1 ≤ 3µ ‖∆R‖2L2 +
CMγ

(
3
2 − θ

)2
µ

(
‖R‖2L2 + ‖∇R‖2L2

)
+

CM2γ2
(

3
2 − θ

)4
µ

e−4τ .

It remains to estimate I2. We set

I2 = I1
2 + I2

2 ,

where

I1
2 = − (W.∇U,∆R)L2 ,

I2
2 = αe−τ (∆W.∇U,∆R)L2 .

Recalling that W = e−τΩ∞ + R and using Hölder and Young inequalities and the
inequality (2.19) with p = 4, one has

I1
2 ≤ ‖W‖L4 ‖∇U‖L4 ‖∆R‖L2

≤ C ‖W‖2L4 ‖∆R‖L2

≤ µ ‖∆R‖2L2 +
C

µ
‖W‖4L4

≤ µ ‖∆R‖2L2 +
C

µ

(
e−4τ ‖Ω∞‖4L4 + ‖R‖4L4

)
.
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The condition (4.6) and the continuous injection of H1(R3) into L4(R3) yield

I1
2 ≤ µ ‖∆R‖2L2 +

CM2γ2
(

3
2 − θ

)4
µ

e−4τ +
C

µ
‖R‖4H1

≤ µ ‖∆R‖2L2 +
CM2γ2

(
3
2 − θ

)4
µ

e−4τ +
CMγ

(
3
2 − θ

)2
µ

(
‖R‖2L2 + ‖∇R‖2L2

)
.

Using the inequality (2.18) with p = 2, q = 6 and η = 1
2 and the continuous

injection of H1(R3) into L6(R3), we obtain

I2
2 ≤ αe−τ

(
‖∆R‖L2 + e−τ ‖∆Ω∞‖L2

)
‖∇U‖L∞ ‖∆R‖L2

≤ Cαe−τ
(
‖∆R‖L2 + e−τ ‖∆Ω∞‖L2

)
‖∇W‖1/2

L2 ‖∇W‖1/2
L6 ‖∆R‖L2

≤ Cαe−τ
(
‖∆R‖L2 + e−τ ‖∆Ω∞‖L2

)
‖∇W‖1/2

L2 ‖W‖1/2
H2 ‖∆R‖L2 .

We set δ = Mγ
(

3
2 − θ

)2. Taking into account the inequalities (4.6) and (4.5), it
comes,

I2
2 ≤ Cδ1/2e−

3τ
4

(
‖∆R‖L2 + δ1/2e−τ

)
‖∆R‖L2

≤ Cδ1/2e−
3τ
4 ‖∆R‖2L2 + Cδe−

7τ
4 ‖∆R‖L2

≤ C
(
δ1/2e−

3τ
4 + δ

)
‖∆R‖2L2 + Cδe−

7τ
2

≤ CMγ1/2

(
3
2
− θ

)
‖∆R‖2L2 + CMγ

(
3
2
− θ

)2

e−
7τ
2 .

Finally, we have shown,
(4.31)

I2 ≤
(

CMγ1/2

(
3
2
− θ

)
+ µ

)
‖∆R‖2L2 +

CMγ
(

3
2 − θ

)2
µ

(
‖R‖2L2 + ‖∇R‖2L2

)
+

CM2γ
(

3
2 − θ

)2
µ

e−
7τ
2 .

Going back to (4.28), the inequalities (4.29), (4.30) and (4.31) imply

(4.32)

∂τE3 + 3E3 +
(

1− 5µ− 9α

4
e−τ

)
‖∆R‖2L2

≤ 9
4 ‖∇R‖2L2 + CMγ1/2

(
3
2 − θ

)
‖∆R‖2L2

+
CMγ

(
3
2 − θ

)2
µ

(
‖R‖2L2 + ‖∇R‖2L2

)
+

CM2γ
(

3
2 − θ

)2
µ

e−
7τ
2 .

We take γ0 and µ small enough and T = eτ0 large enough compared to α and obtain
(4.33)

∂τE3 + 3E3 +
1
2
‖∆R‖2L2 ≤

9
4
‖∇R‖2L2 + CMγ

(
3
2
− θ

)2 (
‖R‖2L2 + ‖∇R‖2L2

)
+CM2γ

(
3
2
− θ

)2

e−
7τ
2 .

�

To achieve the H2−estimate, we combine E2 and E3 to define the functional
E4 = 12E2 + E3.
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Taking into account the two inequalities (4.26) and (4.27), we see that E4 satisfies

(4.34)

∂τE4 + 2θE4 + 12
∥∥∥(−∆)−(θ− 1

4 ) R
∥∥∥2

L2

+ 3
4 ‖∇R‖2L2 + 1

2 ‖∆R‖2L2 ≤

+CMγ

(
‖R‖2L2 + ‖∇R‖2L2 +

∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ ‖∆R‖2L2

)
+CM2γ

(
3
2 − θ

)2
e−

7τ
2 .

Using again the interpolation inequality (4.16) and taking γ0 small enough, this
inequality becomes

(4.35)
∂τE4 + 2θE4 + 10

∥∥∥(−∆)−(θ− 1
4 ) R

∥∥∥2

L2
+ 1

2 ‖∇R‖2L2 + 1
4 ‖∆R‖2L2 ≤

CMγ
∥∥∥|X|4 R

∥∥∥2

L2
+ CM2γ

(
3
2
− θ

)2

e−
7τ
2 .

4.4. Estimates in H2(4). To finish the energy estimates, we have to work
in weighted spaces. In order to perform estimates in weighted Lebesgue norms,
and additionally absorb the term involving the weighted norm of R in the right
hand side of the inequality (4.35), we make the L2−inner product of (4.4) with
|X|8 (R− αe−τ∆R). One defines the energy functional

E5 =
1
2

∥∥∥|X|4 (R− αe−τ∆R
)∥∥∥2

L2
.

The next lemma summarizes the terms provided by the linear part of (4.4), when
making the L2−scalar product with |X|8 (R− αe−τ∆R).

Lemma 4.8. Let u be a divergence free vector field of H3(4), a ∈ R and F (u) =
|x|8 (u− a∆u). The five next equalities hold.

(4.36) (∆u, F (u))L2 = 36
∥∥∥|x|3 u

∥∥∥2

L2
−
∥∥∥|x|4∇u

∥∥∥2

L2
− a

∥∥∥|x|4 ∆u
∥∥∥2

L2
.

(4.37)
(x

2
.∇u, F (u)

)
L2

= −11
4

∥∥∥|x|4 u
∥∥∥2

L2
− 9a

4

∥∥∥|x|4∇u
∥∥∥2

L2
+4a

∥∥∥|x|3 (x.∇u)
∥∥∥2

L2
.

(4.38)

(L(u), F (u))L2 = −7
4

∥∥∥|x|4 u
∥∥∥2

L2
−
(

1 +
5a

4

)∥∥∥|x|4∇u
∥∥∥2

L2
− a

∥∥∥|x|4 ∆u
∥∥∥2

L2

+4a
∥∥∥|x|3 (x.∇u)

∥∥∥2

L2
+ 36 (1− a)

∥∥∥|x|3 u
∥∥∥2

L2
.

(4.39)(
∆2u, F (u)

)
L2 =

∥∥∥|x|4 ∆u
∥∥∥2

L2
− 16

∥∥∥|x|3∇u
∥∥∥2

L2
− 96

∥∥∥|x|2 (x.∇u)
∥∥∥2

L2

+1512
∥∥∥|x|2 u

∥∥∥2

L2
+ a

∥∥∥|x|4∇∆u
∥∥∥2

L2
− 36a

∥∥∥|x|3 ∆u
∥∥∥2

L2
.

(4.40)(x

2
.∇∆u, F (u)

)
L2

=
13
4

∥∥∥|x|4∇u
∥∥∥2

L2
+

11a

4

∥∥∥|x|4 ∆u
∥∥∥2

L2

+4
∥∥∥|x|3 (x.∇u)

∥∥∥2

L2
− 180

∥∥∥|x|3 u
∥∥∥2

L2
.
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There is no difficulty in the proof of this lemma, which is let to the reader. It
is only a consequence of many integrations by parts.

The next lemma enables us to achieve the H2(4)−estimate of R.

Lemma 4.9. Let W ∈ C1
(
(τ0, τε) , H1(4)

)
∩C0

(
(τ0, τε) , H3(4)

)
be the solution

of (4.1). There exist two positive constants γ0 and T0 such that, if T ≥ T0 and W
satisfy the condition (4.5) for some positive constant such that γ ≤ γ0, then there
exists C > 0 such that, for all τ ∈ [τ0, τ

∗
ε ),

(4.41)

∂τE5 + 3E5 +
1
16

∥∥∥|X|4 R
∥∥∥2

L2
+(

α
2 e−τ + α2

4 e−2τ
)∥∥∥|X|4 ∆R

∥∥∥2

L2
≤ K1 ‖R‖2L2

+CMγ1/4

(
3
2
− θ

)1/2 (
‖R‖2L2 + ‖∇R‖2L2 + ‖∆R‖2L2

)
+CM2γ

(
3
2 − θ

)2
e−4τ ,

where K1 is a positive constant independent of the parameters.

Proof. To obtain the inequality (4.41) of this lemma, we perform the L2−inner
product of (4.4) with |X|8 (R− αe−τ∆R). We deliberately omit the positive terms
obtained from ε∆2W which do not play any role in the next estimates. Using
Lemma (4.8) and making some easy computations, one obtains
(4.42)

1
2
∂τ

(∥∥∥|X|4 (R− αe−τ∆R
)∥∥∥2

L2

)
+

7
4

∥∥∥|X|4 R
∥∥∥2

L2
+
(

1 +
7α

2
e−τ

)∥∥∥|X|4∇R
∥∥∥2

L2

+
(

αe−τ +
7α2

4
e−2τ

)∥∥∥|X|4 ∆R
∥∥∥2

L2
− 108αe−τ

∥∥∥|X|3 R
∥∥∥2

L2
=

36
∥∥∥|X|3 R

∥∥∥2

L2
+ I1 + I2 + I3 + I4,

where

I1 =
(
−U.∇ (W − αe−τ∆W ) , |X|8 (R− αe−τ∆R)

)
L2

,

I2 =
(
(W − αe−τ∆W ) .∇U, |X|8 (R− αe−τ∆R)

)
L2

,

I3 =
(
−εe−2τ∆2Ω∞ − αe−2τ∆Ω∞, |X|8 (R− αe−τ∆R)

)
L2

,

I4 = εe−τ

(
16
∥∥∥|X|3∇R

∥∥∥2

L2
+ 96

∥∥∥|X|2 (X.∇R)
∥∥∥2

L2
+ 36αe−τ

∥∥∥|X|3 ∆R
∥∥∥2

L2

)
.

In the proof of this lemma, we use the notation

δ = Mγ
(

3
2 − θ

)2
.
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As usual, I3 is the easiest term to estimate. Indeed, due to the smoothness of Ω∞
and the inequality (4.6), we get
(4.43)

I3 ≤ Ce−2τ
∥∥∥|X|4 (α∆Ω∞ + ε∆2Ω∞

)∥∥∥
L2

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ µ

∥∥∥|X|4 R
∥∥∥2

L2
+ µα2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
+

C |b|2

µ
e−4τ

≤ µ
∥∥∥|X|4 R

∥∥∥2

L2
+ µα2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
+

CMγ
(

3
2 − θ

)2
µ

e−4τ ,

where µ is a positive constant that will be made more precise later.

We now give an estimate of I4, which is also quite simple to bound. We just need
Hölder and Young inequalities to estimate this term in a convenient way. Indeed,
using convexity inequalities, it is simple to show that∥∥∥|X|3∇R

∥∥∥2

L2
+
∥∥∥|X|2 (X.∇R)

∥∥∥2

L2
≤ C

∥∥∥|X|4∇R
∥∥∥2

L2
+ C ‖∇R‖2L2 ,

and

αe−τ
∥∥∥|X|3 ∆R

∥∥∥2

L2
≤ Cαe−τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
+ Cαe−τ ‖∆R‖2L2 .

Thus, if we take ε ≤ αMγ
(

3
2 − θ

)2, we get

(4.44)
I4 ≤ CMγ

(
3
2 − θ

)2(
αe−τ

∥∥∥|X|4∇R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
+CMγ

(
3
2 − θ

)2 (
αe−τ ‖∇R‖2L2 + α2e−2τ ‖∆R‖2L2

)
.

As for the H2−estimate, we have to study separately I1 and I2. We begin with I1,
that we rewrite

I1 = I1
1 + I2

1 + I3
1 ,

where

I1
1 =

(
U.∇

(
R− αe−τ∆R

)
, |X|8

(
R− αe−τ∆R

))
L2

,

I2
1 = e−2τ

(
V∞.∇

(
Ω∞ − αe−τ∆Ω∞

)
, |X|8

(
R− αe−τ∆R

))
L2

,

I3
1 = e−τ

(
K.∇

(
Ω∞ − αe−τ∆Ω∞

)
, |X|8

(
R− αe−τ∆R

))
L2

.

Using an integration by parts, the fact that div U = 0 and the Hölder inequalities,
one has

I1
1 =

1
2

∫
R3
|X|8 U(X).∇

(∣∣R(X)− αe−τ∆R(X)
∣∣2) dX

= −4
∫

R3
|X|6 (X.U(X))

∣∣R(X)− αe−τ∆R(X)
∣∣2 dX

≤ C ‖U‖L∞

(∥∥∥|X|7/2
R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|7/2 ∆R
∥∥∥2

L2

)
.
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The inequalities (2.18) with p = 2, q = 6 and η = 1
2 and (4.5) and the continuous

injection of H1(R3) into L6(R3) imply

I1
1 ≤ C ‖W‖1/2

L2 ‖W‖1/2
L6

(
‖R‖2L2 +

∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ ‖∆R‖2L2

+ α2e−2τ
∥∥∥|X|4 ∆R

∥∥∥2

L2

)
≤ C ‖W‖H1

(
‖R‖2L2 +

∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ ‖∆R‖2L2 + α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ CM1/2γ1/2

(
3
2
− θ

)(
‖R‖2L2 +

∥∥∥|X|4 R
∥∥∥2

L2

+ α2e−2τ ‖∆R‖2L2 + α2e−2τ
∥∥∥|X|4 ∆R

∥∥∥2

L2

)
.

Because of the smoothness of Ω∞, I2
1 is a little easier to estimate. Indeed using

once more the inequalities (2.18) and (4.6) and the Hölder and Young inequalities,
we get

I2
1 ≤ Ce−2τ ‖V∞‖L∞

(∥∥∥|X|4∇Ω∞
∥∥∥

L2
+ αe−τ

∥∥∥|X|4∇∆Ω∞
∥∥∥

L2

)
(∥∥∥|X|4 R

∥∥∥
L2

+ αe−τ
∥∥∥|X|4 ∆R

∥∥∥
L2

)
≤ C |b| e−2τ ‖Ω∞‖1/2

L2 ‖Ω∞‖1/2
L6

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ C |b|2 e−2τ

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ µ

∥∥∥|X|4 R
∥∥∥2

L2
+ µα2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
+

CM2γ2
(

3
2 − θ

)4
µ

e−4τ .

Likewise, we get

I3
1 ≤ C |b| e−τ ‖K‖L∞

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ C |b| e−τ ‖R‖H1

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ CM1/2γ1/2

(
3
2
− θ

)(
‖R‖2L2 + ‖∇R‖2L2 +

∥∥∥|X|4 R
∥∥∥2

L2

+ α2e−2τ
∥∥∥|X|4 ∆R

∥∥∥2

L2

)
.

Finally, taking T so that αe−τ0 =
α

T
≤ 1, we have

(4.45)

I1 ≤ µ
∥∥∥|X|4 R

∥∥∥2

L2
+ µαe−τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
+

CM2γ2
(

3
2 − θ

)4
µ

e−4τ

+CM1/2γ1/2

(
3
2
− θ

)(
‖R‖2L2 + ‖∇R‖2L2 + ‖∆R‖2L2

+
∥∥∥|X|4 R

∥∥∥2

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
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It remains to bound I2, which is the hardest term to estimate. Like for I1, we
rewrite it

I2 = I1
2 + I2

2 + I3
2 + I4

2 ,

where

I1
2 = e−τ

(
(R− αe−τ∆R) .∇V∞, |X|8 (R− αe−τ∆R)

)
L2

,

I2
2 =

(
(R− αe−τ∆R) .∇K, |X|8 (R− αe−τ∆R)

)
L2

,

I3
2 = e−2τ

(
(Ω∞ − αe−τ∆Ω∞) .∇V∞, |X|8 (R− αe−τ∆R)

)
L2

,

I4
2 = e−τ

(
(Ω∞ − αe−τ∆Ω∞) .∇K, |X|8 (R− αe−τ∆R)

)
L2

.

Using the inequality (2.18) and the smoothness of Ω∞, we get

I1
2 ≤ Ce−τ ‖∇V∞‖L∞

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ Ce−τ ‖∇Ω∞‖1/2

L2 ‖∇Ω∞‖1/2
L6

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ C |b|

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ CM1/2γ1/2

(
3
2
− θ

)(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
.

We now estimate I2
2 . We recall the notation δ = Mγ

(
3
2 − θ

)2. Using again the
inequality (2.18), the inequality (4.6) and the continuous injection of H1(R3) into
L6(R3), one has

I2
2 ≤ ‖∇K‖L∞

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ C ‖∇R‖1/2

L2
‖∇R‖1/2

L6

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ Cδ1/4 ‖∇R‖1/2

H1

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ Cδ1/2

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
+ Cδ1/4 ‖∆R‖1/2

L2

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
≤ Cδ1/2

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
+ Cδ1/4 ‖∆R‖1/2

L2

∥∥∥|X|4 R
∥∥∥2

L2

+ Cδ1/2α7/4e−
7τ
4

∥∥∥|X|4 ∆R
∥∥∥2

L2
.
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To finish the estimate of I2
2 , we use the convexity inequality ab ≤ 3

4a
4
3 + 1

4b4 and
the condition (4.6). We obtain

I2
2 ≤ Cδ1/2

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
+ Cδ1/4

(
‖∆R‖2L2 +

∥∥∥|X|4 R
∥∥∥8/3

L2

)
+ Cδ1/2α7/4e−

7τ
4

∥∥∥|X|4 ∆R
∥∥∥2

L2

≤ Cδ1/2

(∥∥∥|X|4 R
∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
+ Cδ1/4 ‖∆R‖2L2 + Cδ7/12

∥∥∥|X|4 R
∥∥∥2

L2

+ Cδ1/2α7/4e−
7τ
4

∥∥∥|X|4 ∆R
∥∥∥2

L2
.

Consequently, if we assume γ ≤ 1 and
(

3
2 − θ

)
≤ 1, one has

I2
2 ≤ CM7/12γ1/4

(
3
2
− θ

)1/2(∥∥∥|X|4 R
∥∥∥2

L2
+ ‖∆R‖2L2 + α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)

It it easier bound I3
2 . Indeed, the inequality (2.19) and the inequality (4.6) imply

I3
2 ≤ Ce−2τ

∥∥Ω∞ − αe−τ∆Ω∞
∥∥

L∞
‖∇V∞‖L2

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ C |b| e−2τ ‖Ω∞‖L2

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ C |b|2 e−2τ

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ µ

∥∥∥|X|4 R
∥∥∥2

L2
+ µα2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
+

CM2γ2
(

3
2 − 1

)4
µ

e−4τ .

Likewise, we obtain

I4
2 ≤ Ce−τ

∥∥Ω∞ − αe−τ∆Ω∞
∥∥

L∞
‖∇K‖L2

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ C |b| e−τ ‖R‖L2

(∥∥∥|X|4 R
∥∥∥

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥

L2

)
≤ CM1/2γ1/2

(
3
2
− 1
)(

‖R‖2L2 +
∥∥∥|X|4 R

∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
.

Thus, taking T0 large enough so that αe−τ0 = α
T ≤ 1, the following inequality holds:

(4.46)

I2 ≤ µ

(∥∥∥|X|4 R
∥∥∥2

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
+

CM2γ2
(

3
2 − 1

)4
µ

e−4τ

+CMγ1/4

(
3
2
− 1
)1/2(

‖R‖2L2 + ‖∆R‖2L2 +
∥∥∥|X|4 R

∥∥∥2

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)
.
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Combining the equality (4.42) together with the inequalities (4.43), (4.44), (4.45)
and (4.46) and taking T0 big enough compared to α, we have
(4.47)

1
2
∂τ

(∥∥∥|X|4 (R− αe−τ∆R
)∥∥∥2

L2

)
+

7
4

∥∥∥|X|4 R
∥∥∥2

L2
+
(

1 +
7α

2
e−τ

)∥∥∥|X|4∇R
∥∥∥2

L2

+
(

αe−τ +
7α2

4
e−2τ

)∥∥∥|X|4 ∆R
∥∥∥2

L2
− 108αe−τ

∥∥∥|X|3 R
∥∥∥2

L2
≤

C

(
Mγ1/4

(
3
2
− θ

)1/2

+ µ

)
(∥∥∥|X|4 R

∥∥∥2

L2
+ αe−τ

∥∥∥|X|4∇R
∥∥∥2

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)

+36
∥∥∥|X|3 R

∥∥∥2

L2
+ CMγ1/4

(
3
2
− θ

)1/2 (
‖R‖2L2 + ‖∇R‖2L2 + ‖∆R‖2L2

)
+

CM2γ
(

3
2 − θ

)2
µ

e−4τ .

Integrating several times by parts, it is easy to check that
(4.48)

E4 =
1
2

∥∥∥|X|4 R
∥∥∥2

L2
+

α2

2
e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
+αe−τ

∥∥∥|X|4∇R
∥∥∥2

L2
−36αe−τ

∥∥∥|X|3 R
∥∥∥2

L2
.

Consequently, the inequality (4.47) becomes

(4.49)

∂τE5 + 3E5 +
1
4

∥∥∥|X|4 R
∥∥∥2

L2
+
(
1 +

α

2
e−τ

)∥∥∥|X|4∇R
∥∥∥2

L2

+
(

αe−τ +
α2

4
e−2τ

)∥∥∥|X|4 ∆R
∥∥∥2

L2
≤

C

(
Mγ1/4

(
3
2
− θ

)1/2

+ µ

)
(∥∥∥|X|4 R

∥∥∥2

L2
+ αe−τ

∥∥∥|X|4∇R
∥∥∥2

L2
+ αe−τ

∥∥∥|X|4 ∆R
∥∥∥2

L2

)

+36
∥∥∥|X|3 R

∥∥∥2

L2
+ CMγ1/4

(
3
2
− θ

)1/2 (
‖R‖2L2 + ‖∇R‖2L2 + ‖∆R‖2L2

)
+

CM2γ
(

3
2 − θ

)2
µ

e−4τ .

Thus, taking γ0 and µ small enough, we obtain
(4.50)

∂τE5 + 3E5 +
1
8

∥∥∥|X|4 R
∥∥∥2

L2
+
(

α

2
e−τ +

α2

4
e−2τ

)∥∥∥|X|4 ∆R
∥∥∥2

L2
≤ 36

∥∥∥|X|3 R
∥∥∥2

L2

+CMγ1/4

(
3
2
− θ

)1/2 (
‖R‖2L2 + ‖∇R‖2L2 + ‖∆R‖2L2

)
+ CM2γ

(
3
2
− θ

)2

e−4τ .
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Using Hölder and the convexity inequality ab ≤ 1
4a4 + 3

4b
4
3 , a simple computation

leads to ∥∥∥|X|3 R
∥∥∥2

L2
≤ 3µ4/3

4

∥∥∥|X|4 R
∥∥∥2

L2
+

1
4µ4

‖R‖2L2 ,

for all µ > 0.

Using this inequality with µ small enough, we finally obtain
(4.51)

∂τE5 + 3E5 +
1
16

∥∥∥|X|4 R
∥∥∥2

L2
+
(

α

2
e−τ +

α2

4
e−2τ

)∥∥∥|X|4 ∆R
∥∥∥2

L2
≤ K1 ‖R‖2L2

+CMγ1/4
(

3
2 − θ

)1/2
(
‖R‖2L2 + ‖∇R‖2L2 + ‖∆R‖2L2

)
+ CM2γ

(
3
2 − θ

)2
e−4τ ,

where K1 is a positive constant. �

This lemma, combined with the inequality (4.35) enables to finish the H2(4)
estimate of R. We define the functional

(4.52) E6 = KE4 + E5,

with K some large positive constant that will be made more precise later.

Inequalities (4.35) and (4.41) show that one has

∂τE6 + 2θE6 + 10K
∥∥∥(−∆)−(θ− 1

4 ) R
∥∥∥2

L2
+

K

2
‖∇R‖2L2 +

K

4
‖∆R‖2L2

+
1
16

∥∥∥|X|4 R
∥∥∥2

L2
+

α2

4
e−2τ

∥∥∥|X|4 ∆R
∥∥∥2

L2
≤

K1 ‖R‖2L2 + CM2γ1/4

(
‖R‖2L2 + ‖∇R‖2L2 + ‖∆R‖2L2 +

∥∥∥|X|4 R
∥∥∥2

L2

)
+CM2γ

(
3
2 − θ

)2
e−

7τ
2 .

Interpolating again ‖R‖2L2 between
∥∥∥(−∆)−(θ− 1

4 ) R
∥∥∥2

L2
and ‖∇R‖2L2 and taking K

and γ0 respectively sufficiently large and small, we get

(4.53) ∂τE6 + 2θE6 ≤ CM2γ

(
3
2
− θ

)2

e−
7τ
2 .

5. Proof of Theorem 2.2

Theorem 2.2 for approximate solutions. In this section, under the condi-
tion (2.10), we show that the solutions of the approximate system (4.1) are actually
global in time and that the inequality (2.11) of Theorem 2.2 holds for these solu-
tions. To get this result, we make use of the energy estimates that we have obtained
in Section 4. The following theorem is a copy of Theorem 2.2 for the solutions of
the regularized system (4.1).

Theorem 5.1. Let θ be a fixed positive constant such that 1 < θ < 3
2 , ε be a

positive constant and W0 ∈ H2(4). There exist three positive constants γ0 = γ0(α),
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ε = ε0(α) and T = T0(α) such that if T ≥ T0, ε ≤ ε0 and there exists a positive
constant γ ≤ γ0 such that W0 ∈ H2(4) satisfies the condition
(5.1)

‖W0‖2L2(4) + ‖∇W0‖2L2 + αe−τ0 ‖∆W0‖2L2 + α2e−2τ0

∥∥∥|X|4 ∆W0

∥∥∥2

L2
≤ γ

(
3
2
− θ

)2

,

where τ0 = log(T ),

then there exist a unique solution Wε ∈ C1
(
(τ0,+∞) , H1(4)

)
∩C0

(
(τ0,+∞) , H3(4)

)
to the system (4.1) and a positive constant C = C(α, τ0) such that, for all τ ≥ τ0,

(5.2)

∥∥∥∥∥(Id− αe−τ∆
)(

Wε(τ)− e−τ
3∑

i=1

bifi

)∥∥∥∥∥
L2(4)

≤ Cγ1/2

(
3
2
− θ

)
e−θτ ,

where bi =
∫

R3
pi(X).W0(X)dX.

In order to prove this theorem, we use the energy estimates that we established
in Section 4. To obtain the inequality (5.2), we need the energy functional E6 to be
equivalent to the H2(4)−norm of Rε. If we take K large enough in the definition
(4.52) of E6, then the next lemma holds.

Lemma 5.2. Let Rε ∈ C1
(
(τ0,+∞) , H1(4)

)
∩C0

(
(τ0,+∞) , H3(4)

)
and E6 be

the energy functional defined by (4.52). There exists K0 such that, if K ≥ K0, then
there exists a positive constant C such that
(5.3)

E6(τ) ≤ C

(
‖Rε‖2L2(4) + ‖∇Rε‖2L2 + αe−τ ‖∆Rε‖2L2 + α2e−2τ

∥∥∥|X|4 ∆Rε

∥∥∥2

L2(4)

)
,

(5.4)

C

(
‖Rε‖2L2(4) + ‖∇Rε‖2L2 + αe−τ ‖∆Rε‖2L2 + α2e−2τ

∥∥∥|X|4 ∆Rε

∥∥∥2

L2(4)

)
≤ E6(τ).

Proof. The inequalities (5.3) and (5.4) come directly from the definition of
E6 and the interpolation inequality (4.16). �

Proof of Theorem 5.1. Let θ be a fixed constant such that 1 < θ < 3
2 ,

W0 ∈ H2(4) and Wε ∈ C1
(
(τ0,+∞) , H1(4)

)
∩C0

(
(τ0,+∞) , H3(4)

)
be the solution

of the system (4.1) given by Theorem 3.1, with initial data W0. Let T and K be
sufficiently large so that they satisfy the conditions of the lemmas 4.5, 4.6, 4.7 and
4.9 and assume that the initial data W0 satisfy the condition (2.10) for some γ > 0
which will be made more precise later. We decompose Wε such that

Wε = e−τΩ∞ + Rε,

where Ω∞ =
3∑

i=1

bifi, bi =
∫

R3
pi(X).W0(X)dX and {f1, f2, f3} is the basis of the

eigenspace of L associated to the eigenvalue −1, given by (2.1).

Let M be a positive constant such that M > 2 that will be made more precise later
and τ∗ε ∈ [τ0, τε] be the biggest positive time such that the inequality (4.5) holds.
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We take γ and ε sufficiently small so that the lemmas 4.5, 4.6, 4.7 and 4.9 hold.
According to the inequality (4.53), one has, for all τ ∈ [τ0, τ

∗
ε ),

(5.5) ∂τ

(
E6(τ)e2θτ

)
≤ CM2γ

(
3
2
− θ

)2

e−( 7
2−2θ)τ

Integrating in time the previous inequality between τ0 and τ ∈ [τ0, τ
∗
ε ), we get

(5.6)

E6(τ) ≤ E6(τ0)e−2θ(τ−τ0) + CM2γ

(
3
2
− θ

)2

e−
7τ0
2

(
e−2θ(τ−τ0) − e−

7
2 (τ−τ0)

)
.

Arguing like in the proof of Lemma 4.1 and using the inequality (5.3), we can show
that

E6(τ0) ≤ Cγ

(
3
2
− θ

)2

,

which implies

(5.7) E6(τ) ≤ Cγ

(
3
2
− θ

)2

+ CM2γ

(
3
2
− θ

)2

e−
7τ0
2 .

According to the inequalities (5.4) and (4.6), one has, for all τ ∈ [τ0, τ
∗
ε ),

|b|2 + ‖Rε‖2L2(4) + ‖∇Rε‖2L2 + αe−τ ‖∆Rε‖2L2 + α2e−2τ
∥∥∥|X|4 ∆Rε

∥∥∥2

≤

Cγ

(
3
2
− θ

)2

+ CM2γ

(
3
2
− θ

)2

e−
7τ0
2 .

Recalling that Wε =
3∑

i=1

bifi + Rε, we get

‖Wε‖2L2(4) + ‖∇Wε‖2L2 + αe−τ ‖∆Wε‖2L2 + α2e−2τ
∥∥∥|X|4 ∆Wε

∥∥∥2

≤

C1γ

(
3
2
− θ

)2

+ C2M
2γ

(
3
2
− θ

)2

e−
7τ0
2 ,

where C1 and C2 are two positive constants.

We take M sufficiently large so that C1 ≤ M
4 and τ0 = ln(T ) sufficiently large so

that C2M
2e−

7τ0
2 ≤ M

4
, we obtain, for all τ ∈ [τ0, τ

∗
ε ),

(5.8)

‖Wε‖2L2(4) + ‖∇Wε‖2L2 + αe−τ ‖∆Wε‖2L2 + α2e−2τ
∥∥∥|X|4 ∆Wε

∥∥∥2

≤
Mγ

(
3
2 − θ

)2
2

.

In particular, the inequality (5.8) shows that τ∗ε = τε. Furthermore, letting τ tend
to τε, we see that if τε is finite, then the H1(4) norm of Wε stay bounded on [τ, τε).
According to the proof of Theorem 3.1, it implies in particular that one can extend
the interval of definition of Wε over τε. Consequently, we have necessarily τε = +∞.
In addition, going back to the inequality (5.6) and applying the inequality (5.4) of
Lemma 5.2, we see that the inequality (5.2) holds.

�
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Existence of weak solutions in H2(4). In this section, we show that there
exists a weak solution to the system (1.6) belonging to the space C0

(
[τ0,+∞) , H2(4)

)
.

To this end, we show that, when ε tends to 0, Wε tends to a divergence free vector
W which satsifies (1.6) in a weak sense. Let (εn)n∈N be a sequence of positive terms
which tends to 0. Let Wεn ∈ C1

(
(τ0,+∞) , H1(4)

)
∩ C0

(
(τ0,+∞) , H3(4)

)
be the

global solution of (4.1) given by Theorem 5.1, with initial data W0. Let O be a
bounded open set of R3. For s ∈ R+, Hs(O) denotes the restriction of the Sobolev
space Hs(R3) on O. For s ≥ 1, we define also the space

Hs
0(O) =

{
u ∈ Hs(O) : u|∂O=0

}
.

Let τ1 be a fixed positive time such that τ1 > τ0. Due to the boundedness
property of Wεn in L∞

(
[τ0, τ1] , H2(4)

)
uniformly with respect to n, there exist

W ∈ L∞
(
[τ0, τ1] , H2(4)

)
and a subsequence of εn (that we still note εn) such that

(5.9) Wεn
⇀ W weak* in L∞

(
[τ0, τ1] ,H2(O)3

)
.

Since Wεn is bounded in L∞
(
[τ0, τ1] , H2(4)

)
, applying the operator (I − αe−τ∆)−1

to the first equality of (4.1), it is quite easy to see that ∂τWεn is bounded in
L∞

(
[τ0, T ] , L2(O)3

)
uniformly with respect to n. Consequently, Wεn is equicon-

tinuous in time on L2(O)3. Indeed, given σ1 and σ2 belonging to [τ0, τ1], one has

‖Wεn(σ1)−Wεn(σ2)‖L2(O) =
∥∥∥∥∫ σ1

σ2

∂τWεn(s)ds

∥∥∥∥
L2(O)

≤
∣∣∣∣∫ σ1

σ2

‖∂τWεn
(s)‖L2(O) ds

∣∣∣∣
≤ |σ1 − σ2| max

s∈[τ0,T ]
‖∂τWεn(s)‖L2(O) .

Besides, for all τ ∈ [τ0, τ1], the set
⋃

n∈N
Wεn(τ) is bounded in H2(O)3 and thus

compact in L2(O)3. Applying the classical Arzela-Ascoli theorem, we conclude
that

Wεn
−→ W strongly in C0

(
[τ0, τ1] , L2(O)3

)
.

A classical interpolation inequality between L2 and H2 yields, for all s < 2,

(5.10) Wεn
−→ W strongly in C0

(
[τ0, τ1] ,Hs(O)3

)
.

The two identities (5.9) and (5.10) are sufficient to pass to the limit in the weak
formulation of the system (4.1) and to show that W is a weak solution of the system
(1.6). More precisely, for every ϕ ∈ C1

(
[τ0, τ1] ,H1

0 (O)3
)

such that div ϕ = 0, one
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has, for all τ ∈ [τ0, τ1],
(5.11)∫
O

(
W (τ)− αe−τ∆W (τ)

)
.ϕ(τ)dX +

∫ τ

τ0

∫
O
L
(
W (σ)

)
.ϕ(σ)dXdσ

+
∫ τ

τ0

∫
O

(
W (σ)− αe−σ∆W (σ)

)
∧ U(σ).curl ϕ(σ)dXdσ

=
∫
O

(
W0 − αe−τ0∆W0

)
.ϕ(τ0)dX +

∫ τ

τ0

∫
O

(
W (σ)− αe−σ∆W (σ)

)
.∂τϕ(σ)dXdσ

+
∫ τ

τ0

∫
O

3α

2
e−σ∆W (σ).ϕ(σ)dXdσ +

∫ τ

τ0

∫
O

α

2
e−σ∆W (σ) (X.∇ϕ(σ)) dXdσ.

We only show that the non-linear term converges, using (5.9) and (5.10). The other
ones are nearly obvious. We have

(5.12)

∫ τ

τ0

∫
O

(
Wεn(σ)− αe−σ∆Wεn(σ)

)
∧ Uεn(σ).curl ϕ(σ)dXdσ =∫ τ

τ0

∫
O

(
W (σ)− αe−σ∆W (σ)

)
∧ U(σ).curl ϕ(σ)dXdσ + Rn + Sn,

where

Rn =
∫ τ

τ0

∫
O

(
Wεn(σ)− αe−σ∆Wεn(σ)

)
∧ (U(σ)− Uεn(σ)) .curl ϕ(σ)dXdσ,

Sn =
∫ τ

τ0

∫
O

(
W (σ)−Wεn

(σ)− αe−σ (∆W (σ)−∆Wεn(σ))
)

∧U(σ).curl ϕ(σ)dXdσ.

Due to the Hölder inequalities, the boundedness property of Wεn
in H2(O)3 and

the inequality (2.18), we have

Rn ≤ C

∫ τ

τ0

‖U(σ)− Uεn(σ)‖L∞(O) ‖∇ϕ(σ)‖L2(O) dσ

≤ C

∫ τ

τ0

‖W (σ)−Wεn(σ)‖1/2
L2(O) ‖W (σ)−Wεn(σ)‖1/2

L6(O) ‖∇ϕ(σ)‖L2(O) dσ

≤ C (T − τ0) max
σ∈[τ0,T ]

‖W (σ)−Wεn(σ)‖H1(O) max
σ∈[τ0,T ]

‖∇ϕ(σ)‖L2(O) .

Thus, the identity (5.10) implies that Rn → 0 when n → +∞.

Because of the identity (5.9), it is clear that we have also Sn → 0 when n → +∞.
Thus, we have shown that, for all τ ∈ [τ0, τ1],

(5.13)

lim
n→+∞

∫ τ

τ0

∫
O

(
Wεn(σ)− αe−σ∆Wεn(σ)

)
∧ Uεn(σ).curl ϕ(σ)dXdσ =

∫ τ

τ0

∫
O

(
W (σ)− αe−σ∆W (σ)

)
∧ U(σ).curl ϕ(σ)dXdσ.
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Furthermore, since Wεn(τ) converge weakly to W (τ) in H2(4), from the inequality
(5.2), we get

(5.14)

∥∥∥∥∥(I − αe−τ∆
)(

W (τ)− e−τ
3∑

i=1

bifi

)∥∥∥∥∥
L2(4)

≤ Cγ1/2

(
3
2
− θ

)
e−θτ ,

for all τ ∈ [τ0,+∞).

Uniqueness. It remains to show that the solutions of (1.2) are unique in the
space C0

(
[0,+∞) , H2(4)

)
. To show this fact, it suffices to show that the divergence

free vector field u obtained from a solution w of (1.2) through the Biot-Savart law
is unique. Since w belongs to C0

(
[0,+∞) , H2(4)

)
, the inequality (2.17) with q = 2

and p = 6
5 and the inequality (2.19) with p = 2 of the lemma 2.4 imply directly

that u ∈ C0
(
[0,+∞) ,H3(R3)3

)
. Furthermore, u satisfies the equations of motion

of second grade fluids (1.1). The uniqueness of the H3−solutions of (1.1) has been
shown in [5] for the case of a bounded open set of R3 with Dirichlet boundary
conditions. In our case, we can apply the computations of the proof of [6, Theorem
2], which imply the uniqueness of the solutions of (1.1) with initial data in H3(R3)3.
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H. Poincaré Anal. Non Linéaire, vol. 4, 1987, p. 423-452.

[25] C. Le Roux : Existence and uniqueness of the flow of second-grade fluids with slip boundary
conditions, Arch. Ration. Mech. Anal., vol. 148, 1999, no. 4, p. 309-356.
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