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ABSTRACT. In the present paper, we study the long time behaviour of the
solutions of the second grade fluids equations in R3. Using scaling variables
and energy estimates in weighted Sobolev spaces, we describe the first order
asymptotic profiles of these solutions. In particular, we show that the solutions
of the second grade fluids equations converge to self-similar solutions of the
heat equation, which are explicit and depend on the initial data. Since this
phenomenon occurs also for the Navier-Stokes equations, it shows that the
fluids of second grade behave asymptotically like Newtonian fluids.
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1. Introduction

Since one can find a lot of non-Newtonian fluids in the nature or in the indus-
try, their mathematical study is a significant topic of research. In this paper, we
investigate the long time behaviour of a particular class of non-Newtonian fluids,
namely the second grade fluids. The equations which describe such fluids have been
introduced from a mathematical point of view in 1974 by Dunn and Fosdick in [10]
and have been the topic of many research works in mathematics. These fluids are a
particular case of a large class of non-Newtonian fluids, called fluids of differential
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type, or Rivlin-Ericksen fluids (see [28]). The constitutive laws of the differential
fluids are given through the Rivlin-Ericksen tensors, defined recursively by

A; = Vu+ (Vu)',
A =0iAp_ 1 +u VA, 1 + (Vu)t A1+ Ax_1Vu,

where u : R? — R? is a vector field which represents the velocity of a fluid filling
a domain of R%, d = 2,3. According to this model, the equations of the fluids of
grade n € N are obtained by considering the stress tensor
g = 7]7] + Q (Al, AQ, ,An) ,

where p is the pressure of the fluid and @ is a polynomial function of degree n.
Notice that the fluids of grade 1 correspond to the Newtonian fluids, whose velocity
fields are the solutions of the Navier-Stokes equations. According to the model of
Dunn and Fosdick (see [10]), the constitutive law of the second grade fluids is
obtained via the stress tensor

o =—pl +vA] + a1 Az + ax A2,
where v > 0 is the dynamic viscosity of the fluid, @; > 0 and as € R. In [10], ther-
modynamic considerations led the authors to assume that g = —a;. Consequently,
we replace a1 by a. Introduced in the equations of conservation of momentum and

assuming that the density of the fluid is constant and equals 1, the tensor o leads
to the system of equations

O (u — aAu) — vAu+ curl (u— alAu) Au+ Vp =0,
(1.1) divu =0,
Ujt=0 = U0,

where A denotes the classical vectorial product on R3, p is the pressure and wug is
the initial data. In the two-dimensional case, we have used the convention that
u = (uy,us,0) and curl u = (0,0, dus — Aauy).

Several existence and uniqueness results have been obtained for this system of
equations, mainly on a bounded domain Q of R? or R3 with Dirichlet or periodic
boundary conditions (see for instance [1], [2], [6], [7], [8], [9], [15], [26] or [25]).
The first existence and uniqueness result has been obtained by Cioranescu and El
Hacene in 1984 in [6]. They have shown, on a bounded set of R% d = 2,3, with
homogeneous boundary conditions, that there exists a unique weak solution to (1.1)
belonging to the space L ([O,T] 7H?’(Q)d), where T' > 0 and H*(Q2) denotes the
Sobolev space of order s. Besides, this solution is global in time when the space
dimension is 2. This result is based on a priori estimates and a Galerkin approxima-
tion with a basis of eigenfunctions corresponding to the scalar product associated
to the operator curl (v — aAw). In the same case, using the Schauder fixed point
Theorem, Galdi, Grobbelaar-Van Dalsen and Sauer established the existence and
uniqueness of classical solutions to (1.1) when the data belong to H™(Q), with
m > 5 (see [14]). They also have shown that these solutions are global in time,
provided that the initial data are small enough in H™(2). Later, Cioranescu and
Girault improved the results of [6] and [14] and showed that the local weak solutions
belonging to H3(£2) are actually global in time in dimension 3 if the data are small
enough and are strong solutions if the data belong to H™, m > 4 (see [5]). Finally,
Bresch and Lemoine have generalized the results of [14], [6] and [5] in dimension
3 in establishing the existence and uniqueness of local solutions belonging to the
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space W27 (Q) with r > 3. Furthermore, they have shown that these solutions are
global in time if the initial data are small enough in W27 (Q) (see [2]). In this work,
instead of applying a Galerkin approximation, the authors used Schauder’s fixed
point Theorem.

In the present paper, we are interested in the description of the asymptotic
profiles of the solutions of second grade fluids equations. In what follows, we con-
sider a second grade fluid which fills the whole space R?, without any forcing term
applied to it. In this case, if the initial data are small enough, the solutions of such
a system tend to 0 when the time t goes to infinity. The aim of this study is to
investigate the way that these solutions go to 0. More precisely, we will show that
the solutions of (1.1) behave asymptotically like self-similar solutions to the heat
equation, which are smooth and that we can compute explicitly from the data. In
this article, we restrict ourselves to the study of the first order asymptotic profile,
that is to say that the speed of the convergence of the solutions of (1.1) to explicit
smooth functions is limited by spectral considerations, which are explained below.
For the Navier-Stokes equations, there already exist several results that describe
the asymptotic profiles of the solutions. In dimension 2 and 3, Gallay and Wayne
have shown in [16] and [17] that the first order asymptotic profiles of the solutions
of the Navier-Stokes equations are given up to a constant by smooth Gaussian func-
tions which are self-similar solutions to the heat equation. These results hold with
restrictions on the size of the data, but, in dimension 2, the convergence has been
generalized to the case of any data in [18]. For this work, the authors applied ar-
guments that come from the study of dynamical systems. In fact, they have shown
the existence of a finite-dimensional manifold locally invariant by the semiflow asso-
ciated to the Navier-Stokes equations. Then, they proved that the solutions of the
Navier-Stokes equations are locally attracted by this manifold, and consequently
behave like the solutions on it. The study of the dynamics of the Navier-Stokes
equations onto this manifold gave them the description of the first and second or-
der asymptotic profiles. The asymptotic profiles of the solutions of the equations
of second grade fluids have been studied in R? by Jaffal-Mourtada (see [23]). She
has shown, under smallness assumptions on the data, that the first order asymp-
totic profiles of the solutions of the second grade fluids equations are the same as
the ones described by Gallay and Wayne in [16] for the Navier-Stokes equations.
However, the method that she used in [23] is slightly different from the one used in
[16]. Indeed, instead of showing the existence of an invariant manifold, the author
performed energy estimates in various functions spaces, notably weighted Sobolev
spaces. The concrete interpretation of this result is that, in dimension 2, the fluids
of second grade behave asymptotically like Newtonian fluids, at the first order. In
this article, we are interested in the generalization of this result to the dimension
3. Notice that there are significant differences in the asymptotic behaviour of the
solutions of the Navier-Stokes equations between the cases of R? and R3. Indeed,
in dimension 2, the asymptotic profiles of the Navier-Stokes equations are given up
to a constant by a Gaussian function called the Oseen vortex sheet. In dimension
3, the first order asymptotic profiles of the solutions are defined as the linear com-
bination of three distinct smooth functions (see Section 2).

Actually, the system that we study in this article is not exactly (1.1) but the one
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satisfied by the vorticity w = curl u = 01us — douy. The motivation to do this
comes from the fact that, due to spectral considerations which will be explained
more precisely later, we have to solve the second grade fluids equations in weighted
Lebesgue spaces. Unfortunately, the equations of motion (1.1) do not preserve in
general those functions spaces, on the contrary to the vorticity equations. We as-
sume, for the sake of simplicity, that ¥ = 1 and consider initial vorticity data wy.
Taking formally the curl of (1.1), we get the vorticity system of equations

O (w — aAw) — Aw + curl ((w — aAw) Au) =0,
(1.2) divu = divw =0,
w\t:O = WwWg.

This system is actually autonomous. Indeed, provided that w is sufficiently smooth,
the divergence free vector field w can be recovered from w via the Biot-Savart law,
which is a way to get a divergence free vector field from its given vorticity. It is
defined by the formula

1 (af—y)Aw(y)d.

(1.3) u(z) = I s o

In Section 2, more details are given on the Biot-Savart law and its properties (see
Lemma 2.4). In this article, we show that the solutions of the system (1.2) behave
asymptotically like vector fields whose components are self-similar solutions to the
well known heat equation, that is to say under the form

(te) = (t +1T)2F (x/tiiT> ’

where F is a vector field of R3 and T is a positive constant.

We introduce now an useful tool in the study of the asymptotics of solutions
to partial differential equations, that is scaled variables or self-similar variables. In
order to define those variables, we set a positive constant T, and we will always
assume 1" > 1. This constant is introduced in order to establish the convergence of
the solutions to their asymptotic profiles without any restriction on the size of the
constant «. As it is explained below, the constant T will be chosen large enough

to have £ small enough. For a solution w of the system (1.2), we define W and U

T
x
Vit+T

through the change of variable X = and 7 = log(t + T'). More precisely,

we set

1 T
w(t,z) = mW <1og(t—|—T), m),

xT

(1.4)
N m)

u(t,z) =

1
Ullog(t+T),
e (D
Equivalently, we have the equalities
W(r,X)=c"w (eT fT,eT/QX) ,
U(r,X)=e?u(e” —T,e/?X).

Actually, this change of variables is the one that correspond to the self-similar
solutions of the heat equation in dimension 2. However, in the present paper, we
are considering solutions which are defined on R3, but the final result that we
obtain (see Corollary 2.1 below) do not depend on the change of variables that

(1.5)
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we consider. The advantage of defining W and U by the equality (1.4) lies in the
fact that the equations that we obtain for W and U are the same as the ones
obtained by the same method in dimension 2. These variables have been initially
introduced to study the asymptotic behaviours of solutions of parabolic equations,
in particular to show the convergence to self-similar solutions (see [11], [12], [13]
or [24]). Actually, this tool is also efficient to study the long-time behaviour of
a lot of various equations, not necessarily parabolic ones. For instance, Gallay
and Raugel used them to describe the first and second order asymptotic profiles
of the solutions to damped waved equations (see [20]) and to show the stability of
hyperbolic fronts (see [21]). Self-similar variables have been also used to study the
asymptotic profiles of the Navier-Stokes equations (see [16], [17], [18] and [19]) and
the second grade fluids equations in R? (see [23]). Assuming that w is a solution
of (1.2), a short computation shows that W is a solution of the system

Or (W —ae  TAW) — LIW) + curl (W —ae TAW) AU)
+ae”TAW + ae_Tg.VAW =0,

divU =div W =0,

VV\T:log(T) = W,

(1.6)

where L is the linear differential operator defined by
LW)=AW+W + £.VW.

We first emphasize that the system (1.6) is now non-autonomous and initialised at
7 = log(T), that is the reason why we introduced the constant T". Indeed, in what
follows, we will choose T large enough so that the product ce™7 is small enough,
for all 7 > log(T'). By doing this, we do not have to consider restrictions on the size
of the parameter a. We also notice that, in the first equality, several terms tend
formally to 0 when 7 goes to infinity. Actually, the main theorem of this article
shows that the solutions of (1.6) converge when 7 goes to infinity to particular
solutions to the equality

(1.7) 0, Wae = L(Wae).

More precisely, the aim of this article is to decompose W on the spectrum of £ on
an appropriate space of functions and to show that the asymptotic behaviour of W
is dominated by his first order asymptotic profile, that is to say the projection of
W onto the eigenspace corresponding to the first eigenvalue of £. Additionally, this
projection satisfies the equality (1.7). Now, we introduce the weighted Lebesgue
spaces, which are suitable for the study of the spectrum of £. For every m € N,
one defines L?(m), given by

L%(m) = {u € L2(R%) : (1 + |x|2)m/2u € LQ(R?’)} ,

5 1/2
where |z| = (Z a:f) .
i=1

By the same way, for m € N and n > 2, we define the weighted Sobolev spaces by
H'(m) = {ue L*(m): 0u € L*(m),i € {1,2,3}},
H"(m) ={ue L*m): 9ue H" '(m),i € {1,2,3}}.
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The incompressibility condition on the vector fields W and U makes natural to
consider the spaces

L?(m) = {u € L*(m)® : divu =0},

H?*(m) = {u € H*(m)? : divu =0},
equipped with the norms

2\ T
el 2oy = H(l+ 2*) " |

L2

and

2 2 2 2 1/2
||u||H2(Tn) - <||u||L2(7n) + ||VUHL2(77L) + ||V u||L2(m)) )

where we used the notations

5 1/2 5 1/2
Vul = | D (95u)” and  [V2u= | Y (8;00u)
i,j=1 i,j,k=1

In [17], Gallay and Wayne show that the spectrum of £ on L?(m) is the union of
the discrete spectrum

O’d(ﬁ>

{-1(k+1),keN},
and the continuous one
o.(L)={A€C:Re(\) < 1 -2}.

In order to describe the first order asymptotic profiles of the solutions of (1.6), we
need to have at least one isolated eigenvalue in the spectrum of £. Looking at o.(L),
we notice that one can ”push” the continuous spectrum to the left by choosing m
large enough. For this reason, we should work at least in the weighted space L%(3),
where —1 is an isolated eigenvalue of £. In order to be closer to the optimal
rate of convergence, we prefer working in IL2(4), where the discrete spectrum is
o4(L) = {—1,—32} and the continuous one is 0.(£) = {A € C: Re(\) < —I}. The
main aim of this article is to show that one can decompose a solution W of (1.6)
into the form

(1.8) W(r)=Q(1)+ R(1),

where (2 is the projection of W onto the eigenspace of £ associated to the eigenvalue
—1 and R tends to 0 faster than Q into L.?(4) when 7 goes to infinity. In Section
2, one establishes that

Q) =0 (e™7) in L2(4),
and that the exists a positive constant 0, 1 < 6 < % such that

R(r) =0 (e7?7) in L?(4).

Since the second isolated eigenvalue of £ in L?(4) is %, the optimal rate of conver-
gence that one can obtain for such a first order description of the asymptotic profiles
isf = % Actually, the result that we obtain holds under smallness assumptions on

the size of the data in H?(4), and we will see in Section 2 that one can choose the
rate of convergence as close as wanted to the optimal one, provided that the initial
data are small enough.
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2. First order asymptotics and preliminary results

Before stating the main theorem of this paper, we have describe the eigenspace
of L associated to the eigenvalue —1. In [17, appendix A], they show that the
multiplicity of the eigenvalue —1 is 3 and that a suitable basis {fi, f2, f3} of the
associated eigenspace F_; is given by

(2.1) fi =curl (Ge;), 1=1,2,3,
1 2
where G(X) = ——~=e~ S and {e1,€2,e3} is the canonical basis of R3.
(47)3/2

Through a short computation, we see that f;(X) = p;(X)G(X), i=1,2,3, where

1 0 1 X3 1 —Xo
pl(X):i _X3 7p2(X):§ 0 andpg(X):§ Xl
X2 —X1 0

In particular, the vector fields p; satisfy divp; =0 and curl p; = e;. Inte-
grating by parts, we also notice that
(2.2)

R3 R3 R3

Furthermore, defining £* = A — %.V - % the formal adjoint of £, we check easily
that

(2.3) L*p; = —p;.
With the basis {f1, fa, f3}, the decomposition (1.8) can be written
3
(2.4) W(r) =Y Bi(r)f; + R(7),
i=1

where 3;(7) € R.

As we can see in [17], L2(4) = E_; & W, where
W= {f cL?(4) :/ Xif;(X)dX =0, i,j= 1,2,3}.
R3
Consequently, one has to choose §; such that / XiR;(1,X)dX =0, for i,j €
R3
{1,2,3}. To this end, we set
Gi(T) = /]Rs pi(X).W(r, X)dX.

In fact, assuming that W € L2(4) and using the divergence free property of W, it
is easy to check that

/ p(X)W(X)dX = | XoW3(X)dX = — [ X3Wa(X)dX,

R3 R3 R3

/ Po(X)W(X)dX = [ XsWi(X)dX = — [ X, Ws(X)dX,
R3 R3 R3

/ p3(X)W(X)dX = | X\Wa(X)dX = — [ XoWi(X)dX,
R3 R3 R3

and thus, using (2.2) and the decomposition (2.4), we can conclude that
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/ X;R;(X)dX =0, for all i,j € {1,2,3}.
RS

The next lemma gives more details about (;, and shows that the projection of W
onto E_; is actually a solution of (1.7).

LEMMA 2.1. Let W € C° ([r0,T) ,H?*(4)) be a solution of (1.6) and let
Bi() = /]Rs pi(X). W (r, X)dX.
Then, for all T € [19,T],
(2.5) Bi(t) = bie™ 7,
where b; = /}R3 pi(X) Wo(X)dX.

PROOF. The proof of this lemma is made formally, assuming that every quan-
tity that we consider is well defined. Actually, in the remaining of this article, we
will work with regularized solutions for which the next computations are rigorous.
In order to get (2.5), we only have to show that 3; satisfies

(2.6) 0:Bi (1) = —Bi(7).

Performing the L?—scalar product of the first equality of (1.6) with p;, we obtain
(2.7)
O, Bi(7) = ae™" (pi, 0-AW) 12 — ae™ (pi, AW) 12 + (pi, LIW)) 2
+ (pi,curl (W —ae TAW)AU)) 2 — ae™" (pi, AW + %.VAW)LZ .

Integrating several times by parts, it is easy to check that
ae” T (pi, 0;AW) 2 = ae™ 7 (pi, AW) 2 = ae™7 (pi7 AW + %.VAVV)L2 =0,
and the equality (2.3) implies

(me(W))LZ = (‘C*pi7W)L2 = - (pi7W)L2 = _ﬂi(ﬂ'

Thus, integrating by parts and recalling that curl pi = e;, one has
(2.8) 0-Bi(1) = =5i(7) —|—/ ei. (W(X) —ae TAW (X)) AU(X)) dX.
R3

It remains to show that the last term of the right hand size of (2.8) vanishes.
Noticing that W = curl U, an easy computation shows, for i € {1,2,3},

(UX) A (W(X) —ae TAW(X))), =
(2.9) 1 ) .
50 (\U| ) _UNUi — ae™" (U&;AU — UNVAU;) .

Thus, using the divergence free property of U and integrating by parts, we get
/ ei. (UX) A (W(X) — ac"AW(X))) dX = —ae™" / U(X).0;AU(X)dX.
R3 R3
Another integration by parts yields
@

/Rg i (U(X) A (W(X) = ae"AW(X))) dX = Ze7 /R B (|VU(X)|2> dX =0,

and thus we obtain (2.6). O
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We can now state the main theorem of this paper, which shows in particular
that the first order asymptotic profile of a solution W in H?(4) of (1.6) is the same
as the first order asymptotic profile obtained for the Navier-Stokes equations.

THEOREM 2.2. Let 6 be a fived constant such that 1 <6 < 3 and Wy € H?(4).
There exist two positive constants v = Yo(a) and Ty = To(a) > 1 such that if
T > Ty and there exists a positive constant v < g such that
(2.10)

IWoll 72y + IVWoll72 + ae™™ AW |17 + a®e™>™

2 3 2
xttawe] (5 -0)

where 19 = log(T),

then there exist a unique solution W € C° ([rg,+00),H?(4)) to the system (1.6)
and a positive constant C = C(a, Ty) such that
< 071/2 (3 _ 0) 8—97'7

3
(I —ae "A) (W(T) —e 7 Z bifi> 5
=1 L2 ()

where b; :/ pi(X) Wo(X)dX.
R3

(2.11)

In the classical variables, the next corollary is deduced from Theorem 2.2.

COROLLARY 2.1. Let 0 be a constant such that 1 < 0 < %, wo € H%(4) and
1

b — —

=7

that if there exist T > Ty and v < 7 such that

(2.12)
1/2 2 —-7/2 4 2 3/2 2
Y2 o 32 + T2 |lal wo| + T2 Vo34

pi(x).wo(z)dx. There exist vo = Yo(a) > 0 and Ty = To(o,0) > 1 such
3

2 _ 4 2 2
+aT2 | Awoz + a2 T2 | 2" Ao | | < (3-0)%,

then there exists a unique solution w € C° ([0,400),H?(4)) to the system (1.2)
such that, for all 1 < p <2, the following inequality holds
3

bi X
[ ~-ad) <w(t) - ; (t+ T)in (W))

< Cnl/? (Z - 9> (t+T) 0%

(2.13) L

where C = C(a, Ty) is a positive constant. Besides, for all 1 < p < 400, one has
3

bi x
w0~ 3 o et ( ﬁT) )

Let u be the divergence free vector field obtained from w through the Biot-Savart
law. For all % < p < 400, one has
(2.15)

(2.14)

< Cy'/? (g - e) (t+T) 170

3

u- ; (t +b;)‘°’/2 B <*/’fTT> L

where v; is obtained from f; via the Biot-Savart law.

<o (5-0) (rm) i
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Theorem 2.2 and Corollary 2.1 describe the first order asymptotic profiles of the
solutions of the second grade fluids equations. In particular, they show that these
solutions behave asymptotically like the self-similar solutions to the heat equation
given by

3

tho) = ; (t +biT)2fi (\/t:fTT>

In addition, since the same result has been shown in [17] for the Navier-Stokes
equations, it shows that, at the first order, the second grade fluids behave asymp-
totically like Newtonian fluids.

REMARK 2.3. We emphasize that the convergence results of Theorem 2.2 and
Corollary 2.1 allow to choose the rate of convergence as close as wanted to the
optimal one, provided the initial data are small enough in H?(4). In dimension 2,
the rate of convergence of the results of Jaffal-Mourtada in [23] cannot be better
than e~ /4, whereas the optimal one is e~7/2. In Section 4, we will see that the
method used in the present paper to make estimates on the solutions of (1.6) in
Sobolev spaces of negative order differs from the one used in [23], which is the
reason why we are able to obtain a better rate of convergence.

We prove Theorem 2.2 in several steps. First, in Section 3, we introduce a new
system that is close to (1.6), but which contains the regularizing term e A2W, with
€ a small positive constant that is devoted to tend to 0. Due to this regularizing
term, we are able, through a semi-group method, to show the existence of local
solutions to the regularized system. In a second time, in Section 4 we perform
energy estimates on these approximate solutions, and show that these ones are
global in time and satisfy the inequality (2.11). Then, in Section 5, we pass to
the limit when ¢ tends to 0 and show that the approximate solutions converge to
a global weak solution of (1.6) which satisfies the inequality (2.11). Finally, in
order to show that every solution whose initial data satisfy the assumption (2.10)
converge to his first order asymptotic profile, we show the uniqueness of the weak
solutions of (1.2) belonging to C° ([0, +-00) ,H?(4)).

Biot-Savart law: We recall some properties of the Biot-Savart law. Let w be
a given divergence free vector field of R?, the Biot-Savart law gives a divergence
free vector field u such that curl uw = w. It is given by

(2.16) u(z) = = /]RS wdy.

4r @ —yf?

In particular, the scaled variables (1.5) preserves the Biot-Savart law. Indeed, if u is
obtained from w via the Biot-Savart law and W is w expressed into scaled variables,
then the divergence free vector field U obtained from W through the Biot-Savart
law is u expressed in scaled variables. The next lemma gives some estimates on
vector fields obtained by (2.16), in various functions spaces.

LEMMA 2.4. Let w be a divergence free vector field of R® and u be the velocity
field obtained from w via the Biot-Savart law (2.16).

3 1 _
(a) Assume that 1 <p <3, 5 < q < oo and ; =

u € LY(R3)3, and there exists C > 0 such that
(2.17) [ull Lo < Cllwl -

% — 3. Ifw € LP(R®), then
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(b) Assume that 1 < p < 3 < ¢ < o0, and define n € (0,1) by the relation
i= T4+ (1%!"). If w e LP(R3)®> N LI(R3)3, then u € L= (R3)® and there exists
C > 0 such that

1—
(2.18) lull oo < Cllwlls lwllze”-

(¢c) Assume that 1 < p < oo. If w € LP(R?®)3, then Vu € LP(R®)? and there exists
C > 0 such that

(2.19) IVullp < Cllwllg, -

This lemma is proved in [17] and will be very useful when making estimates
on the solutions of (1.6).

3. Approximate solutions

In this section, we introduce a new system that is close to (1.2), but contains
the regularizing term A%w, where ¢ is a small positive constant. We introduce
such a system in order to get smooth solutions, for which we are able to perform
estimates in H2(4) and obtain the inequality (2.11). In Section 5, we pass to the
limit when e goes to 0 and show that the limit of the solution of the regularized
system is a weak solutions of the system (1.6), which also satisfies the inequality
(2.11). We introduce the following regularized system, given by

0 (we — aAw,.) + eA*w. — Aw, + curl (w. — aAw.) Aug) =0,
(3.1) div v, = div w, =0,

We|t=0 = Wo-

The next theorem shows that, for every wo € H?(4), there exists a unique local so-
lution to (3.1) belonging to H?(4), which is smooth enough to perform the estimates
of Section 4.

THEOREM 3.1. Let € > 0 and wy € H2(4). There exists t- > 0 and a unique
solution we to the system (3.1) defined on the time interval [0,t:) such that

w. € C1((0,t.) ,H*(4)) N C°([0,¢.) , H2(4)) N C° ((0,¢.) , H3(4)) .

ProOOF. To get this result, one defines we ,(t,z) = w. (t, %), where p > 0.
This change of variables enables us to show the existence of solutions to the system
(3.1) without restrictions on the size of the parameter a. We define u. , obtained
from w, , by the Biot-Savart law (2.16). It is easy to check that wu.,(t,z) =
pue (t, %). In order to show the existence of a unique solution to (3.1), we will
prove that there exists a unique solution to the system

Oy (wa,u - auzAwg,u) - €u4A2wE7M - MZAwE,M—F
curl ((we,, — ap?Awe ) Aue,y,) =0,
div we ,, = div u, , = 0,

we,u\t:O = U)()(%) € H2(4)

(3.2)

We define now z.(t,z) = q(x)w. ,(t, z), where g(x) = (1 + |:1:|4). In particular, if
we ,, € L?(4), then z. € H, where

H={ze L2R%?®: div (¢~'z) = 0}.

For later use, we define, for s > 0,
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’
b

HS=HNHR3)3, and H* = (H*)

where (HS), denotes the dual space of H?.

We equip H® with the classical H® Sobolev norm, which makes H*® complete. From
the system (3.2), we deduce the following one, that we solve in z,
3.3
( (%T (zg — P Az — aplqAgT 2 — 2au2qVq_1.VzE) +eptA?z. = F (2, 2.),
div (q’lzs) =0,
Zeji—o (2) = zo(z) € H?,
where

F(w,2:) = —epqA® (¢ 2) + p?qA (¢ 22)
+gcurl ((q*lzE — 2o A (qilzs)) A uau) .
The system (3.3) is actually autonomous. Indeed, one can recover u. , by the Biot-
Savart law (2.16) applied to ¢~ 'z.. To show the existence of solutions to (3.1) in

H!(4), it suffices to show the existence of solutions to (3.3) in H!, for data belonging
to H2.

We set two linear differential operators B : D(B) = H! — H~! and D : D(D) =
H — H~L, given by

B = ap*qAq~" + apA,

D = au?qVqLl.V.
Via Lax-Milgram theorem, we show now that if p is sufficiently small with respect
to «, the operator (I — B — D) is invertible. In order to do that, we define the
bilinear form on H! x H!, given by
a(u,v) = (u,v) 2 +ap? (Vu, Vo) 2 — ap? (qu’lu, v)L2 — 202 (qqul.Vu, v) 2

1 1

Since ¢Aq¢~! and ¢Vg¢ ! are bounded on R3, the bilinear form a is continuous on
H!. We now show, taking p small enough, that a is also coercive on H!. Indeed,
integrating by parts and using Holder and Young inequalities, we have

a(u,u) > (1 — au? sup, (qAq™") + ap® ienﬂg3 (div (qVq_l))) ul|% 2 + ap? | Vull3, .
z€ z

Thus, if we take p sufficiently small, we get
a(u,u) > Cla, p) [|ull 7

where C(«, 1) is a positive constant depending on « and p.

The classical Lax-Milgram theorem enables us to define (I — B — D)f1 from H~!
to H!. We define the linear differential operator A : D(A) = H? — H! given by

A=ep*(I—B—D) ' A2
We can rewrite the system (3.3) as follows:

Orze+ Aze=(I —B—D) "F(z,2),

3.4
(3.4) Relt=0 = 20-
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In order to show the existence of solutions to such a system, we use, like in [23], a
semi-group method. First, we show that —A generates an analytic semi-group on
H! which is equivalent as A is sectorial on H'. We decompose A as follows:

A=ept(Id—B—D) " A2
—ept(Id—B) ' A’ +ept(Id—B-D) ' D(Id—B) ' A?
=J+R,
where
J=1Id+ep*(Id— B) ' A?
R=—Id+ep*(Id—B—-D) ' D(Id— B) ' A%

We first show that J is sectorial. We will see later that R satisfies properties that
enable to conclude that A is sectorial if J is sectorial. Taking p sufficiently small
compared to «, it is easy, arguing like we did to invert (I — B — D), to show that
(I — B)™" is well defined from H~! to H!. Consequently, the operator J is well
defined from H?3 to H'. We define now the bilinear form j on H? x H? associated
to .J. To this end, we introduce a H'—scalar product which is adapted to J. We
define

(U, v) g1 = ((1 — a,quAq_l) u, ’U)L2 + ap® (Vu, Vo). .

If  is sufficiently small, (.,.) . is a scalar product on H'. In particular, if u € H?
and v € H!, one has

(u,0)gp = ((I = B)u,v) 2 -
Via this product, we define
G(u,v) = (u,v) 1 +ept (Au, Av).
In particular, if u € H? and v € H!, one has
J(u,v) = (Ju,v) g

The bilinear form j is obviously continuous on H? x H?2. Furthermore, if y is small
enough, it is also coercive on H?2. Indeed,

. 2 2
J(u,u) > Cla ) [lullf + ep* || Aull7
2
> Cla, pye) [[ullg -

Thus j is continuous and coercive on H? and consequently .J is sectorial on H', that
is equivalent to say that —.J generates an analytic semi-group on H'. Furthermore,
we can check that R is continuous from H? to H', and we have

[Rull g1 < Clav, s €) [Jul] o -
Using the coerciveness of j, we get, for all u € H?,

|Rul: < Clapoe)ji(u,u)
(3.5) < Cla i, 2) (Juyu)
< || Tull o lul g

Applying the Young inequality, we obtain, for all 6 > 0

| Rul% < 8| Julss + C lul% , for all u € H2.



138 OLIVIER COULAUD

From a classical result that we can find in the book of D. Henry [22], it implies
that J + R is sectorial on H?.

To achieve this proof, we check that A='F(x,v) is locally Lipschitz in v € H' on
the bounded sets of H2. According to [27, section 6.3] and [22, chapter 3], we
finally get Theorem 3.1. O

4. Energy estimates

In this section, we perform several energy estimates on the solution of the
system (3.1) given by Theorem 3.1. We counsider a fixed positive constant € such
that 1 < 6 < %, which is the rate of convergence of Theorem 2.2. Let T be a positive
constant which will be made more precise later and that we assume, without loss
of generality, to be such that T" > 1. We consider W, the divergence free vector
field obtained from w, via the change of variables (1.5). According to Theorem
3.1, there exists a maximal time 7. such that W, belongs to C* ((7o,7.),H'(4)) N
C° ((r0,7) ,H3(4)), where 79 = log(T'). A short computation shows that W, is the
solution of the system
(4.1)

0y (We —ae TAW,) +ee TA2W,. — L(W.) + curl (W. — ae""AW,) AUL)
+ae TAW, + aeiTg.VAWE =0,

div U, = div W, =0,

WE\T:TO = W,

where we recall that
E(Wg) - Wg + AWE + %VWE

In this section, we obtain several energy estimates in various functions spaces. More
precisely, assuming that T is large enough and W is small enough in H?(4), we
show that the solution of (4.1) stays bounded in time in those energy spaces and
is consequently global in time. In addition, we obtain the inequality (2.11) for W..
The method to reach this aim is based on the construction of an energy functional
FE such that

2

E(r) ~ , for all 7 > log(T),

H?(4)

3
We(r)—e™" Z bifi
i=1

and there exists a positive constant C' such that, for all 7 > log(T),

(4.2) 0, E(T) +20E(1) < Ce™7,

where b; = / pi(X). Wy (X)dX and {f1, fo, f3} is the basis of the eigenspace of £
]R3

associated to the eigenvalue —1, given by (2.1). Through the Gronwall Lemma, the
inequality (4.2) allows to get the inequality (2.11) for W, and to conclude that W,
is global in time.

3
We set Qoo = Z b; fi. The decomposition (2.4) becomes
i=1

(4.3) Wo(7) = ™ Quo + Re(7).
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A short computation shows that R. satisfies the equality
(4.4)
0r (R — e TAR.) + ee "A%R. — L(R.) + curl (W — ae "TAW,) x U,)

+ae TAR,. + ae_Tg.VARE +30e T AQ + e 2TA2Q0, = 0.

In this section, we assume that W satisfies the condition (2.10) of Theorem 2.2 for
some positive constant v. We also set M to be a positive constant such that M > 2
which will be made more precise later. Let 77, 79 < 77 < 7. be the largest positive
time such that, for all 7 € |1, 7)),
(4.5)
2 2 - 2
IWe(T)l 24y + IVWe(T)IIZ> + ae™™ [AW(T) L
2 3 2

4

xitawo|), <am (3 -0)

+ale %

Since R. belongs to C° ([, 7.),H?*(4)), the time 77 is well defined. The next
lemma, which is a consequence of (4.5), establishes an inequality on the H?(4)—norm
of R..

LEMMA 4.1. Let We € C° ([0, 72) ,H%(4)) satisfying the condition (4.5) and
R. =W.—e "Qu. There exists a positive constant C' such that, for all T € [19,TY),
(4.6)
2 2 2 . 2
01" + [Re(T) 124y + IVR(T) 2 + ae™7 AR (T)||7
2

2
Laze |1 ARE(T)HL2 <COMy(2-0).

PROOF. To prove the inequality (4.6), we notice that , for all ¢ € {1,2,3},

i < [ 11wl dx
R2

1/2
1 2\% | 2 2 Yz
/ X </ (1+ X| ) X[ (Wl DX)
= (14 1xP) e
< ClWollpa(ay -
3
Thus, recalling that R, = W, — e*TZbifi and taking into account (2.10), we
i=1
obtain (4.6). O

For the sake of simplicity, we assume in this section that v < 1 and ae™™ < 1.
In what follows, C' denotes a positive constant, which eventually depends on «, and
which can change from one line to another. To simplify the notations, we also note
R instead of R., W instead of W, and U instead of U..

4.1. Estimates in H~(*2)(R3). In this section, we perform an estimate of
R. in the space H~(?+2)(R3) on the time interval [rg, 7). This is motivated by the
fact that, in the H'—estimate that we establish below, the term ||R5||2L2 takes place
in the right hand side of the inequality (4.2). To absorb this term, we look for an
estimate in the homogeneous Sobolev space H~(+2) (R3). Combined with the other
energy estimates, it gives an estimate in the classical Sobolev space H~(¢+2) (R3).
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Notice that the constant 6 + 2 is chosen in order to obtain the term 20F in the
inequality (4.2). In [23], the choice of the Sobolev space of negative order do not
depend on 6, that is why the rate of convergence obtained in [23] cannot be taken
as close as wanted to the optimal one. In order to perform this energy estimate,
we define, for s € R, the operator

— 1
A Pu=F | —pa,

where @ is the Fourier transform of u, given by
u(§) = / e~ Sy (x)de,
R3

and F is the inverse Fourier transform.
We are allowed to consider (—A)_(gH) R, by the lemma

LEMMA 4.2. Let u € L?(4) such that / u(z)dz = 0.
R3

(1) If /R3 zyu(x)dx = 0 for every i € {1,2,3}, then, for all 0 < s < %,

(—A) Fu € L*(R3) and there exists a positive constant C' such that

(4.7) H(—A)_su‘

C
S VT 1s l[ull 2 ay -

(2) For all 0 < s < I, (=A)""Vu € L*(R®)® and there ezists a positive

constant C' such that

(4.8) H(—A)_S vu(

C
2 S Ve [[ull g2 ) -

PrOOF. Using Fourier variables, we get

TS| 1o
S ey M LG
1 1 2 2
e d 2 .
< o7 /w o O de+

1 1
We note I = 3 / T [a(€)]? d€. Using the fact that @(0) = / u(z)dr =0
(2m)" Jigi<1 [€] RS
and the Cauchy-Schwartz inequality on the interval (0, 1), we have

2
dg

1
/ ENVu(og)do
0

1 1
I =
(2r)° /Iflil €|

1 Lo
< C/£<1 |€|4_2/0 IVa(o))? dode.
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Then, due to the fact that 0,u(0) = z/ zju(x)dr =0, we get
R2

2

1
/ fjaiaja(rdf)dT dO’df
0

L (s
er<1 €)% Jo

,j=1

1 1
<C / . / / V2i(ro¢)|” drdode.
g1<1 18] 0o Jo

Finally, the continuous injection of H?(R?) into L>°(R?) yields

1< ¢
— 7—4s

C
7—4s

c 2
ST T Is l[ull 24y »

Ve

V282

and thus the inequality (4.7) is shown.

To get (4.8), using Fourier variables, we have

—s 2 1 1 R
o7 vul, = G e 1O e+ sl
1 1 1 R 2

= G S T |, €70 e

2

<—— de + [lul)7e .

1 1 vt
= (277)3 /Iélél |§|4s—4 /o |Viu(sg)| ds

Using now Holder inequalities, the fact that 4s —4 < 3 and the continuous injection
of H?(R3) into L*°(R3), we have

2 1 1 —~ 2 2
<[ Vs deds + ull
L o Jig<t €]

1 .
<C (/ 45_4d§> HVUIIioo + Hu||2L2
lej<t €]

2 2
[l sy + Nz -

s+

< ¢
— 7—4s
O

In order to apply the lemma 4.2 to the non linear terms of the equation (4.4),
we state the following lemma.

LEMMA 4.3. Let w € H2(4) and u obtained from w via the Biot-Savart law
(2.16). For all C € R, we have

(4.9) /]Rs (w(z) — CAw(z)) A u(z)dz = 0.

PRrOOF. In order to show this equality, we just have to look at the equality
(2.9). An integration by parts gives directly (4.3). O
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LEMMA 4.4. Let w belongs to H*(4) and s such that 0 < s < I, then u satisfies
the equalities

(-8 w87 w),, = el o 8]

2) (-2~ (g.VAw),(_A)—Sw)L2 —(s+3 H )i w‘

This lemma is easily obtained with a few integrations by parts, when passing
into Fourier variables.

L2

Let V. be the divergence free vector field obtained from €., via the Biot-
Savart law (2.16) and K the divergence free vector field obtained from R via the
Biot-Savart law. One defines the energy functional

2
LQ) '

(H 7+l RH +ae™ "

The next lemma establishes a H~(?+2) —estimate which is necessary to obtain a
good rate of convergence in Theorem 2.2.

LEMMA 4.5. Let W € C* ((7o,7.) , H'(4)) N C° ((70, 7) ,H3(4)) be the solution
of (4.1). There exists a positive constant vy such that, if W, satisfies the condition
(4.5) for some ~ such that 0 < v < v, then there exists a positive constant C such
that, for all T € [70,77),

(—A)_(#)R‘

8, Eo + 20E, + % H(—A)’(%) R( 2L <

2
(4.10) CMr (H|X|4RHL2 +IVRIIZ: + a’e ™ ||AR||2L2<4>)
+C M2y (% — 0)2 et

PROOF. To prove this lemma, we apply the operator (—A)_(%H) to (4.4) and

6
make the L?—inner product of it with (—A)f(fﬂ)
through some easy computations, one has

R. Applying Lemma 4.4 and

50- (|- ED R e -a )
+ee T (—A)‘% R‘ ;
(4.11)
F(§+3) [t al;
(1+(z+3)ae™) ‘(*A) () RH =1 + I,
where

I, = <(,A)_(g+1) (curl ((W - OéeiTAW) A U)) ’(7A)_(%+1) R) L2’

I=e 2 ((—A)’(%H) (—aAQ, — eA20,), (—A)(E+1) R)L2 .
We start with the estimate of the easiest term, that is Io. Through the Plancherel
formula, one has
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Iy=e 2" ((—A)*(%%) (—aAQ, — eA20,) , (-A)(F) R) -

Using the Cauchy-Schwartz inequality, we get

B 641
I, <ae™? 2

(—8)7F 0|

(—a) (%) R’

L2 L2

6—1

+ee?|(-A)” T Qoo’

(-ay () g

L2 Lz’

Using the Lemma 4.2, the Young inequality and taking into account the good
regularity of ., and the inequality (4.6), one has

I, <Ce ? Q00| g2 4 H(_A)i(%) R‘

el U
+

L2 1 ; )

2 + CM’Y (5 — 9) 6—47'7

L2 1

L2
6—47'

(4.12) < ||(-2) ) R

< ||(-2)" %) R

where pq is a positive constant that will be made more precise later.

It remains to bound I;. Using the Cauchy-Schwartz inequality and the lemmas 4.3
and 4.2, we obtain

B <oy v (W —acmaw) av)| -2 A

L2

C —T — %+1
L R B
c -7 —(4+1

The inequality (2.18) of Lemma 2.4 withp =2, ¢ =6 and n = % and the continuous
injection of H*(R3) into LS(R3) yield

C Y
(3 9)1/2 H ||1L/22 ” ||1L/62 IW —ae™"A HL2(4) H(iA) (5+) R’
- £ W

= Lw Wl g2 (HW||L2(4) +ae " ||AW||L2(4)> H(_A)f(gﬂ) R‘

)

‘(_A)*(%H) R‘

I <

L2

L2

—
[\l
\
s

2

L2

=gy (W + VW) (I 1 + 0% AW ).
2
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where p9 is a positive constant that will de made more precise later. Due to the
decomposition (4.3), one has

(5+1)

I SMQH -

2 —or 2
ey (IRl + ||VR||L2) (I 3200y + a2 [AW 724

w\w Q

727'

o (g U9l 4190 ) (181 + 06> IARI )

_or 2
(||ﬂoo\|Lz 1V uel72 ) (I900lZ2) + 0% 1A 2(a))

Finally, using the inequalities (4.5) and (4.6), we obtain
(4.13)
. C M2 (% _ 9)36—4T

2
L < s |[(-2) G R
5 LZ) 2
CM~ (5 — oy
+;E; (||RH%2(4) +[IVRI[72 + a’e ™ ||ARH2L2(4)) :

Combining (4.11), (4.12) and (4.13), it comes

(4.14)
1 0 2 041 2 0 2
L _A)(8+1) H —7 Ay () H ml(—A) %
500 H( ) RL2+ae ( ) R|| ) +ee (=) y
1/3 g 2

35 ol
+ +2<2 uz)) 2

1 9 H (251) 2
* Tt 2 L2

2 2 _or 2
IRIG 20 + IVRIG: + 027 ARy ) +
CM~ (% — 9)2 e4r N CM?~? (% — 9)3 e 4

M1 H2

< CM’y(%—G) (
H2

We set u1 = i and po = % (% — 9). Recalling that M > 2 and v < 1, we obtain

6+1 2
0. 3o A
(4.15) CM~ <\|R||2Lz(4) +IVR|Z: + ae " IIARIIiz@))
+C M2y (% — 9)2 e
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Furthermore, using Fourier variables and Holder inequalities, we see that

IR = i/ R ae

(27)3
2(1+0) R 2(;3) 1 PN
o [R(O)| d
€] =2+
%
1 1 ~ 2
< R ‘d
Lo [ e e ae)
((2@3 | 1¢¢ | 5)
2(146)
0
< oy IR T v
Using a convexity inequality, it is easy to get
2 S |ear i) 22
I < = (5 + LIV,

forall 0 <n <1.
Via a short computation, using the fact that 1 < 6 < % and 0 < 7 < 1, we obtain

5
2
(4.16) IRl <

7 2

-],

Applying (4.16) with n = 1 and taking v small enough, the inequality (4.15) be-
comes
(4.17)

0, Fo + 20Ey + % H(—A)*(e#) R‘ ’

2 3 2
CM~ <H|X|4RHL2 +IVR]Z, + a2e?" ||AR||iz(4)> + O M2y (2 - 9) =47,
O

4.2. Estimates in H'(R3). This section is devoted to the H!—estimate of the
solutions of (4.4) under the condition (4.5). In particular, we see how the previous
estimate in H~ (119 enables to absorb the terms involving the L?—norm of R. To
obtain this H!—estimate, we make the L?—scalar product of (4.4) with R. We
define the energy functional

Ei(r) = 5 (IRIZ + 0™ [VRIZ.)
The estimate of R in the Sobolev space H'(R?) is given by the next lemma.

LEMMA 4.6. Let W € C* ((7o,7) , H*(4)) N C° ((70,7) ,H3(4)) be the solution
of (4.1). There exist two positive constants o and Ty such that, if T > Ty and W
satisfies the condition (4.5) for some ~ such that 0 < vy < 7, then there exists a
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positive constant C' such that, for all T € [19,72),
(4.18)

1 7 3 2
0, E1 + 3B, + 5 IVR|?. < 1 |R|). + C M2y <2 - 9> e 4
3 2
+C My (2 - 9) (HRHQLQ +a2e %" HARH;) .

PrOOF. We perform the L?—scalar product of (4.4) with R. Through several

integrations by parts, we obtain
(4.19)

1 ., o 1

50 (IRIG: +ac™™ IVRIG: ) +e | ARITa+(1 - Te7) IVRITa = IIRIG: = b+,
where

I = (curl (W —ae "TAW)AU),R);-,

I, =e 27 (—aAQOO — A%, R)L2 .

As usual, because of the good regularity of ., the easiest term to estimate is I5.
Integrating by parts, one has

=% (aV Qoo +eVAQ, VR) - .
Using the Holder and Young inequalities and the inequality (4.6), we get
I <e (|| Vx| +€|VAQ]|12) VR 12
<O (a+e)e™ VR

CM~ (2 —0)?
<u|VR|7. + ”(:)4

(4.20)

where p is a positive constant that will be made more precise later.

The last remaining term will be estimated by the same way, using the divergence
free property of U. Integrating by parts, we obtain

I, = ((W — ae_TAW) AU, curl R)L2 .

We recall that curl K = R and curl V, = Q, and we decompose I; as the sum of
three terms

I =1} +1? + I3,
where

Il = ((W—-ae TAW) AK,curl R) , ,

112 =e 7 ((R — oze_TAR) A Vi, curl R)L2 ,

If =e 27 ((Qoo — ae_TAQOO) A Vo, curl R)L2 .
The Holder inequalities lead to

I} < C(|KW|y2 + ac ™™ |[KAW]2) [ VR
< CIEl e (W] + e [AW|2) [ VR 5.
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Applying the inequality (2.18) withp =2, ¢ =6andn = % and using the continuous
injection of H!(R?) into L°(R3), one gets

1/2 1/2 _
I < CIRIZ RIS (IWle +ae™™ AW 12) VR 12
1/2 1/2 _
< CIRIZ BRI (IW 2 + ae™™ [AW]|2) VR ;2 -

Then, we use the Young inequality and the inequality (4.5). We obtain
C
2 2 —or 2 2 2
1< wlIVRILs + - (W3 + a7 AW L) (IR + IVRIZ.)

CMy (3 —0)*
OGO (g2, + vRIZ).

< u||VR|[7. + .

The Holder inequalities yield
I} <Ce™ Vecllpoo (IRl 2 + @ T [|AR] ) VRl 2 -

Applying the inequality (2.18) of the lemma 2.4 with p =2, ¢ =6 and n = %, and
the inequality (4.6), we get
—r 1/2 1/2 —r
I} < e Qo 12" Q0076 (IRIl 2 + ae ™ AR ) [IVRI| 2
<Cle ™ (IR 2 +ae™ AR 2) [IVRI| .

CMy (2 —0)*
< ulIVRIS: + ”(ﬂ) (IRIZ: + 02> | ARIZ.)
It remains to estimate I7. By the same computations, we get
3 2 O 4 2 2 2 —2r 2
1 < VR + e Vaclfp (1050l + 0% [1A20]12)

C
2 —4r 2 —or 2
< IR + e [9ucll g2 [190ellzs (I1920e]Z2 + 0767 14072

4
Tt

2
< pl|VR||Z. +

In particular, we have shown that
2.2 (3 4
M v (5 — 9) 6747'

I < 3u||VR|G. +

(4.21) )
CM~y(2—06 o

+€j> (IRIG: + IVRIZ: + 022 | AR|Z:)

Thus, due to the inequalities (4.20) and (4.21), the inequality (4.19) becomes
(4.22)

CM?~ (3 —9)?
0. Ey + 3, + ( CM*y(5-0) 4

Tao _ . 7
1= e ) IVRI < AL +

CM~ (2 —6)°
y OGO Rz, 4 (TR + o2 |ARIL).

=
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Taking 7o and g small enough and T' = €™ large enough, we obtain the inequality
(4.23)

1 7 3 2
.51+ 35+ 3 IVRIE: < LIRS + Oty (5 -0) (IR + %™ |ar].)
3 2
+CM?y <2 — 9) e 47,
that concludes the proof of this lemma. O
In order to achieve the H'—estimate of R, we now combine the energy inequal-

ities (4.10) and (4.18). Using the interpolation inequality (4.16), we get, from the
inequality (4.18),

7(5 IEETARTEINN & 2
0.Ey +3E, + — ||VR||L2 <3 <7772 |(—2)~C RHL2 + LIV}

2
(4.24) +CM~ ( QH (5 RHL2 +|VR72 + a?e?" IIARIIiz)

where 0 < n < 1.

Taking n = \/g and ~ sufficiently small, we get

(4.25)
1 2
0-E1 +3E; + 1 ||VR||ig < ( +COM~ | = — 9) H(_A)—(%G) R‘ y
+CM~ (3 (H RHL2 +a2e 27 AR||%2> +OM2y (3 - 9>2 o—4T

Using the two energies Ey and FE;, we define
Ey=6FEy+ Ej.

Combining the inequalities (4.10) and (4.25) and setting ~y sufficiently small, it is
easy to check that

_(ﬂ) 2 1 ,
3E2(7)+29E2(7)+H(—A) > RHL2+1||VRHL2§
(4.26) k

oarn (X1 B|], + a2 1ARIE: ) + 032 (3 - 0)7

4.3. Estimates in H2(R?). We now perform a H2—estimate for the solution
R of (4.4) under the smallness assumption (4.5). To this end, we consider the
L?—scalar product of (4.4) with —AR. We define the functional

By(r) = 4 (IVERI}: +ae™ |AR|:)
The next lemma gives the estimate of R in the space H?(R?).

LEMMA 4.7. Let W € C* ((7o,7) , H*(4)) N C° ((70,7) , H3(4)) be the solution
of (4.1). There exist two positive constants v and Ty such that, if T > Ty and
W satisfies the condition (4.5) for some positive constant v such that v < v, then
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there exists C > 0 such that, for all T € |19, TY),
(4.27)

1 9 3\’
0.5+ 38+ S IARIE: < JIVRIE: + Oy (5 -0) (IRIE: + IV RIE:)

2
+C M3y <g - 9) e 7.

PRrROOF. The proof of Lemma 4.7 is made through the L?—scalar product of
(4.4) with —AR. First of all, we remark that

curl ((W - aeiTAW) A U) =UV (W - oze*TAW) - (W — ozefTAW) VU.

Making some computations that we let to the reader involving integrations by parts
and the divergence free property of U, we obtain

(4.28)
. 3o _ . 3
. (||VR||iz + ae ||AR||§2) + (1 - e ) |AR|%, = . IVR|2, + 1)+ I+ I,

where

IL =(-UV (W —ae 7TAW),AR);.,
I, = ((W — ae*TAW) VU, AR)Lz y
Is =27 (aAQoo +eA%Q, AR) L2

Like in the previous estimates, the easiest term is I5. Indeed, using Holder and
Young inequalities and the inequality (4.6), one has

I < (@Al + |42 ) AR

4.29) oy (30 .
————€

< u|AR| +

)

where p is a positive constant which will be made more precise later.

We now look for an estimate of I;. We decompose it as follows:
I =1 +1? + I3,
where

Il = =7 (K.V (R0 — e TAQ ) ,AR) ,,

112 _ _6—27- (VOOV (Qoo — ae_TAQoo) ’AR>L2 5

I} =—(UV(R—ae "AR) ,AR),,.
Due to the smoothness of Q4 and the inequality (2.18), we get
I < e K] o (IVQs0]l 2 + 0™ [VAQu||12) AR 2
< CPple BRI IR IAR] .
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The continuous injection of H!(R?) into L°(R?), Young inequality and the inequal-
ity (4.6) yield

I} <CPple™ Rl g [AR] e
2

CMy (3 —9)

< W AR + e (IRl + IVRI: ) -

Doing the same computations, we get

4
or (-0

I} < pl| AR, +
The divergence free property of U and an integration by parts imply
I} = (UVR,AR);.

Thus, using the Holder and Young inequalities, Lemma 2.4 and the inequality (4.5),
we obtain

I < Ul VR 2 [AR] .

< CIWIE W VR 2 AR 2
< CWl IVR| 2 | AR 12

CM~ (2 -0 2
< u|AR|7: + (M) IVR]Z:
Consequently, we have shown that
(4.30)
CM~ (2 —9)° CM2y2 (3 —9)*
b <splarg + G20 (1RI: + IVRI:) + G2 o
ju ju
It remains to estimate Is. We set
L=1+12,

where
I} = - (W.VU, AR);-,
I3 = ae™ ™ (AW.VU,AR),, .

Recalling that W = e "Q, + R and using Holder and Young inequalities and the
inequality (2.19) with p = 4, one has

L < WL VUl s AR 12
2
< ClIWllLa [AR] L2

C
< u||AR|[7. + m W |74

2 C —Ar 4 4
< PIARIGs + - (77 1900l + IR
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The condition (4.6) and the continuous injection of H'(R?) into L*(R?) yield
CMQ,Y2

3 _pg)? C
I3 < || AR|72 + G20 oy m (L

4 2
M2y (3-0) 4 CMy(5-9)
iy 22
7 7
Using the inequality (2.18) with p = 2, ¢ = 6 and n =
injection of H*(R?) into L°(R3), we obtain

12 <ae™ (JAR|| 2 + ¢ | AQull2) VUl |AR]| 2
< Cae™™ (|AR|| 2 + e T [|AQu | 12) VW32 VW16 IAR]
< Cae™™ (|AR]| 2 + ¢ [ AQu |l 12) VWL W33 AR - -

C
< ullAR|7. +

(IRIZ: + IV RIE: ) -

% and the continuous

We set § = M~y (2 — 9)2. Taking into account the inequalities (4.6) and (4.5), it
cormes,

12 < 082 (||ARHL2 + 51/26*7) IAR]|,
< C8Y2e % |AR|]%. + Cde™ T |AR||,-
L L

Ir

<C (51/26—%’ + 5) IAR|?, + Coe™ %

7T

2
< CMAHY? (2 - 9) |AR|%. + C M~y (2 - 9) e T,

Finally, we have shown,
(4.31)

3 CM~ (2 -6)°
< (2 QQ ~0) o u) laris + O (i v i)
yOM G20 gy
1
Going back to (4.28), the inequalities (4.29), (4.30) and (4.31) imply
9
0-Es + 3E3 + (1 — 5 — fe_T> IAR|.
(4.32) < 9||VR|Z: + CM~AY2 (3~ 0) |AR7.
CMy (3 —0)* CM2y (3 —0)*
LOMy (52 0) ( LOM (G0
I Ju
We take vy and p small enough and T' = €™ large enough compared to « and obtain
(4.33)

1 9 3\’
0.Bu-+ 38 + 5 IARI S < DRI + My (5 - 0) (1RIE: + VA1)

_Ir
2

IRIS. + IVEIZ.)

Tr

2
+CM?y <g - 9) e 2.
O

To achieve the H2—estimate, we combine Ey and F3 to define the functional
Eys=12F5 + Ej.
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Taking into account the two inequalities (4.26) and (4.27), we see that E, satisfies

0, Ey + 20E, + 12 H(—A)‘(Q‘%) R(

2
2 2 L
+3||VR[|72 + L |AR|72 <

(4.34) )
+0ty (18I + VR + |1X1 &, + 2> IARIE:

+CM?y (3 - 9)2 e T
Using again the interpolation inequality (4.16) and taking 7o small enough, this
inequality becomes

. 2
0rBy+20B4+10(-2) "D R|| 4 LIVRIL. + L I1ARIE <
(4.35)

7T

2
C M~ H\X|4RH +OM?y (3 _ 9) e 5
L2 2

4.4. Estimates in H?(4). To finish the energy estimates, we have to work
in weighted spaces. In order to perform estimates in weighted Lebesgue norms,
and additionally absorb the term involving the weighted norm of R in the right
hand side of the inequality (4.35), we make the L?—inner product of (4.4) with
1X|® (R — ae""AR). One defines the energy functional

T N
By =5 IXI (R—acaR)| .

The next lemma summarizes the terms provided by the linear part of (4.4), when
making the L2—scalar product with |X|° (R — ae""AR).

LEMMA 4.8. Let u be a divergence free vector field of H3(4), a € R and F(u) =
z|® (u — aAu). The five next equalities hold.

(4.36) (Au, F(u)) . = 36 H"T‘S uH; — H|x\4 VUH; —a H|x|4 Au”; .

2 2

T 11 9a 2
(4.37) <§.VU,F(U)) =7 ‘|z|4u’ - ’|:c\4VuHL2+4aH\x|3 (x.Vu)’

L e’

(4.38)

T Y A (o | o e e
2

2
L2

2
+4a H|:c|3 (x.Vu)HL2 +36(1—a) H|:r|3 u‘

L2’
(4.39)
2 4 2 3 2 2 2
(A%, F(u)) :H|x| AuH —16H\x| vu) —96H\x| (x.Vu)‘
L2 ) L2 ) L2 )
—|—1512H|x|2uH —l—a‘ |:C|4VAUH —36aH|x\3AuH :
L2 L2 L2
(4.40)
1 2 11 2
(E.VAU,F(U)> :—BH\I|4VUH + =1 ’\x|4Au‘
2 2 4 L2 4 L2, )
+4H|x|‘3 (xVu)‘ —180H|x|3uH .
L2 L2
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There is no difficulty in the proof of this lemma, which is let to the reader. It
is only a consequence of many integrations by parts.

The next lemma enables us to achieve the H?(4)—estimate of R.

LEMMA 4.9. Let W € C* ((7o,7:) ,H' (4)) N C° ((70,7:) ,H3(4)) be the solution
of (4.1). There exist two positive constants vyo and Ty such that, if T > Ty and W
satisfy the condition (4.5) for some positive constant such that v < 7y, then there
exists C' > 0 such that, for all T € [19,77),

1 4 2
0, Es + 3E5 + — H\X| R‘ +
16 L2

a,—7 . o —27 4 2 2
(5e7+re ) [Ix1" aR|| | < K2R3

(4.41) ALY
2 2 2
soatt (3-0) " (IRI: + VRIS + IARY )

27 _
+CM?y (3 —0)"e"7,
where K1 is a positive constant independent of the parameters.

PROOF. To obtain the inequality (4.41) of this lemma, we perform the L?—inner
product of (4.4) with |X|* (R — ae™"AR). We deliberately omit the positive terms
obtained from €AW which do not play any role in the next estimates. Using

Lemma (4.8) and making some easy computations, one obtains

(4.42)
1 2 7 2 7 2
o, H|X|4 = ae_TAR)H 4= H|X|4RH t (14 e H|X|4 VRH
2 L2 4 L2 2 L2

2 2 2
+ (e e ) ixfar]f, - 10sac -
4 L2 L?

X[ |

2
36 H|X\?’RHL2 th+ L+ I+,

where
I = (—U.v (W — ae"TAW), |X|* (R — ae_TAR))L2 :
I = ((W —ae”TAW).VU, |X|® (R - ae*TAR))Lz ;
I3 = (—ae_QTAQQOO —ae" " AQ, \X\g (R— ae_TAR))L2 )

2 2 2
Iy = ce—™ (16H|X|3VRH +96H|X|2(X.VR)H + 3606 |X|3ARH )
L2 L2 L2

In the proof of this lemma, we use the notation

§ =My (2—-6).



154 OLIVIER COULAUD

As usual, I3 is the easiest term to estimate. Indeed, due to the smoothness of Q.
and the inequality (4.6), we get

(4.43)
I, <ce x| (aAQOQ+sAQQOO)HL2 (H|X|4RHL2 taeT \X|4ARHL2>
4 2 2 _—2T 4 2 C‘b|2 —4T

< u H|X| RH + pae? ||| x| ARH + 20,
L2 L2
2 2 CM~ (2 —6)°

<u H|X|4RH + pae?m \X|4ARH LMY GO) e
L2 L? ©

where p is a positive constant that will be made more precise later.

We now give an estimate of I, which is also quite simple to bound. We just need
Holder and Young inequalities to estimate this term in a convenient way. Indeed,
using convexity inequalities, it is simple to show that

2

H|X|3VRH2L2 +ixPxen| ), <o H|X\4VRH; +C|IVR|,

L

and

2 2
ae ||X°AR| | < Cae |IXI*AR|| |+ Cae T IARI
L2 L2

Thus, if we take ¢ < aM~y (% — 9)2, we get

2
I, <CM~y (3 - 9)2 (ae‘T 1x|* VRHL2 + a?e 2

4 2
X[* AR| )
(4.44) ) v
+HOMy (3= 0)° (e T [VRI: +ae 2 |AR]}.).

As for the H?—estimate, we have to study separately I; and I,. We begin with I,
that we rewrite

L =1} + 1} + 13,
where

I = (U.V (R—ae"AR),|X|* (R - ae*TAR)) ;

L2

1 = e (VoW (R = e "AQ) | X (R = ae TAR))

—T —T 8 —T
B=e (K.V (Do — e TAQ) | X]” (R — e AR)>L2 .
Using an integration by parts, the fact that div U = 0 and the Holder inequalities,
one has

_ 1

=3 /R IX|PU(X).V <|R(X) - ae’TAR(X)|2> dX

- _4/ 1X[* (X.U(X))|R(X) — ae TAR(X)|” dX
R3

2 2
S e e



ASYMPTOTIC PROFILES FOR THE SECOND GRADE FLUIDS EQUATIONS IN R® 155

The inequalities (2.18) with p = 2, ¢ = 6 and n = 3 and (4.5) and the continuous
injection of H!(R?) into L°(R?) imply

1/2 1/2 2 45|12 _or 2
1< WIS W (||R||L2+H|X| R||  +a%e " |AR|

+ a2€_2T

|X|4ARH2L2)

2
<CWllyp <||R||iz + H|X|4RHL2 +a2e”? AR, + a2e™?"

|X|4ARH;>

3 2
1/2.1/2 (2 2 4
< M2y <2 9) (IRIG: +||ix1*R|

2
+ a2 2 |AR|Z, + % ||| X|* AR .
L 1

Because of the smoothness of Q, I? is a little easier to estimate. Indeed using
once more the inequalities (2.18) and (4.6) and the Holder and Young inequalities,
we get

—27 4 —T
2 < Ce Vil o (H|X| VQOOHL2+ae

x[* VAQOOHH)

(Jper s, +ee

1" an,)

_or 1/2 1/2
< Cble Q2 121114 (|

x| RHL2 +oe

X" an],)

<Cpffe™ (H|X|4RHL2 +ae” 7

1" an,)

2 CM22 (2 —0)!
|X|4ARHL i v (2 ) 4T
2 %

2
S

Likewise, we get

—r 4 _r
< Cple Kl (|IXI'R|| , +ac

P an],,)

)

3
< a2 (3= 0) (IR + IVRIE + | 1x1 &
2
L2)'

<1, we have

-7 4 -7
<Clple Rl g ([|IX1"R] , + e

|X|4AR‘

2
L2

+ a26—2'r

|X|4AR’

Finally, taking T so that ae™™ =

Nie

6747

2 CM?*~? (2 -6 *
I S;LH|X|4RH + poe™ 7T g (2 )
L2 1
3
419)  soara 2 (5 0) (IRIE: + IVRIE + ARIE:

2
|X|4ARH +
L2

4 12 _ 4 2
+H|X| RH +ae ||1x) ARH )
L2 L2
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It remains to bound Iy, which is the hardest term to estimate. Like for Iy, we
rewrite it

L=+ 12+1I3+13,
where

Ig:e‘T«R—wnfTARyVVgJXf(R—wnfTAR»Ly

13 = ((R— e~ AR) VK. |X" (R - ac"AR)) .

B=e? ((Qoo —ae TAQL) YV, | X[F (R — ae‘TAR)> L

]é:e*T«Q“f—aefAwaVKﬂXf(R—ae”ARDLf

Using the inequality (2.18) and the smoothness of .., we get

2
I} < Ce ™ || VVas 1 (H|X4RH +a2e "
L2

2
|X|4ARH )
L2

2
_r 1/2 1/2 4 AT
< O V| Y2 |V || Y (H|X RHL2+a2e 2

2
L2

2
S CMl/Q,_Yl/? <:23 o 0) <H|X|4 RHL2 + 0426727—

2
|X|4ARH )
Lz

2
2 )’

We now estimate I2. We recall the notation § = M-~y (% — 9)2. Using again the
inequality (2.18), the inequality (4.6) and the continuous injection of H!(R?) into
LS(R3), one has

2
<l <HX|4RHL2 Fale?

|X\4AR‘

\X|4AR‘

2 2
2 < ||VK]| (H|X4RH +a2e ||| X[* AR )
L2 L2

2 2
<C|VRIM2 VRV (IXI1*R||” +a2e 2 |||X|* AR
Lo Le L2 L2
2 2
<osV4 VRV (||X1*R|” +ae 2 |||X|* AR
H L2 L2

2
< C6\/? <H|X|4RHL2 tale?

\X|4AR‘

2
L2

2
v am (i, s ate
L2

2
X[ ARH )
L2

2
L2

x|

2 2
<0 ([t Rl e it an ) + oot

2
OS2 AT \X|4ARHL2.
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To finish the estimate of 12, we use the convexity inequality ab < %a% + %b‘l and

the condition (4.6). We obtain

2 1/2 45|12 2 _or 4 2
12<06 H|X| RHL2+a 2 || x| ARHLQ

8/3
)

2
|X|4ARH
L2

4 o5l <||AR||2LQ + H|X\4Rj

+ CY2Q e~ T

2
< C§L/2 (H|X|4R L rate™

2
|X|4ARH >
L2

2
+ CSYAAR|2, + €57/ H X[ R‘ §

+ CsY2Q e~ T

2
|X|4ARH .
2

Consequently, if we assume v < 1 and (% — 9) < 1, one has

2 7/12_1/4 3 Yz 4 2 2 2 2
12 < OMT/12y <2 —9> <H|X| RHL2 FIAR|, + a2

s )

It it easier bound I3. Indeed, the inequality (2.19) and the inequality (4.6) imply

)

1B < Cem™ || Qu — ae TAQ| o IV Vo 12 (H|X|4RHL2 Fae T

\X|4AR‘

< Ol [Qaollza ([|lX 1 R]| , + e

X" an,)

<Cpffe™ (H|X|4RHL2 +aeT

X" an,)

2 oM (3 -1)*
|X|4ARHL2+ v /Ez ) 4T

2
<o,

Likewise, we obtain

1 < O || — 0" A | 19K o (||IX1*R|| |, + e [1x1* 27| )
<ol IRl ([IX1R| +ac |11t aR] )
< CM2 (g - 1) (|R||i2 + it R, + a2er ix! ARH;) '

Thus, taking Tp large enough so that ae™™ = % < 1, the following inequality holds:
(4.46)
+ CM272 (% — 1)46747
I
3 1/2 5
+CMAA <2 - 1> (R||2LQ +IARIG + | IXI*R|| , +ac

2
to (el e

|X|4ARH;)

X|4ARH;) .
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Combining the equality (4.42) together with the inequalities (4.43), (4.44), (4.45)
and (4.46) and taking Ty big enough compared to «, we have
(4.47)

1 2 7 2 7 2
o, H|X|4(R—ae_TAR)H +7H|X|4RH (14 Lo H|X|4VRH
2 L2 4 L2 2 L2

7o 2 2
+(aem + L e2r H|X|4ARH — 108ae”" |X|3R‘ <
4 L2 L2
1/2
oyt (2 g /
S +u
4 5|12 _ 4 2 _ 4 2
H\X| RH +ae ||1x] VRH +ae |||1X] ARH
L2 L2 L2

) 3 1/2
v36 ||x 1|, + oaay (2 - 9) (IR + IVRIZ + |ARIE.)

2. (3 2
+CM v (5 — 0) 6_47—.
]

Integrating several times by parts, it is easy to check that
(4.48)

1 2 2 2 2 2
Jo H|X|4R‘ T e | x)t ARH tae T |X|4VRH _36ae" |X\3R’ .

2 Lz 2 L2 L2 L2

Consequently, the inequality (4.47) becomes

1 4 2 a 4 2
0, Es + 3E5 + - ‘|X| RH +(1+5e )H|X\ VRH
4 L2 2 L2
(12 4
+ (ae_T + 46_27) H|X| AR‘

(4.49) ¢ (MVM (2 - 9) N i M)

2 2
(I, e s, o

2
<
L2

|X|4AR‘

2
L2

5 3 1/2
+36 | |X° R| |+ Caayt/t (2 - 9) (IR + IVRIZ. + AR
OMy (3 - 6)°
1

Thus, taking vy and p small enough, we obtain
(4.50)
@ a?

1 4 2 . —or 4 2 3 2
0, Es + 3B + - H\X| RH I H|X| ARH < 36 H\X| RH
8 L2 L2 L2

+ e .

2 4

3 1/2 3 2
+CMAMA <2 — e) (IRIZ: + IVRIZ: + 1ARIT: ) + M2 <2 - 9) e 4T
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Using Holder and the convexity inequality ab < %a“ + %b%, a simple computation
leads to

2 34/3
[ e R
L2 4

2 1 )
o 1h IRI72
for all p > 0.
Using this inequality with p small enough, we finally obtain
(4.51)
0. F5 + 355 + — H|X|4RH2 B H|X\4ARH2 < K. ||R|2
TEeTRE T G e \2° Taf = I

1/2 2 _4r
" (IR + VR + 1ARIG: ) + M2y (3 0)" e,

1/4 (3
+CM~Y4 (3 —0)
where K is a positive constant. ([l

This lemma, combined with the inequality (4.35) enables to finish the H?(4)
estimate of R. We define the functional

(4.52) E¢ = KEy + Es,

with K some large positive constant that will be made more precise later.

Inequalities (4.35) and (4.41) show that one has

ey 2 K K
8, Eg + 20Es + 10K H(—A) (0-3) RHLZ + 5 IVRIZ: + 7 AR

]. 4 2 oz2_ 4 2
~ hx H P XAH <
+16H‘ PR| e X AR, <

2 2.1/4 2 2 2 4 5|2
Ky |[R|Le + CM7y /2 {[|BllL2 + [VRI[z2 + 1AR| L + |[[X] ||,
+OM2y (3 —0)e 7
2
Interpolating again \|R||2Lz between H(—A)_(‘g—i> RHL2 and ||VR||2LQ and taking K

and 7y respectively sufficiently large and small, we get

7T

2
(4.53) 0, E¢ + 20E¢ < CM?y <2 — (9> e 2.

5. Proof of Theorem 2.2

Theorem 2.2 for approximate solutions. In this section, under the condi-
tion (2.10), we show that the solutions of the approximate system (4.1) are actually
global in time and that the inequality (2.11) of Theorem 2.2 holds for these solu-
tions. To get this result, we make use of the energy estimates that we have obtained
in Section 4. The following theorem is a copy of Theorem 2.2 for the solutions of
the regularized system (4.1).

THEOREM 5.1. Let 0 be a fized positive constant such that 1 < 6 < %, € be a

positive constant and Wy € H2(4). There exist three positive constants vo = yo(a),
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e = ¢eo(a) and T = To(«) such that if T > Ty, € < g and there exists a positive
constant v < o such that Wy € H?(4) satisfies the condition
(5.1)

IWoll 72y + IVWol 72 + ae™™ AW |[72 + ae™>™

2 3 2
xttaw] (5 -0)

where 19 = log(T),

then there exist a unique solution W, € C ((1o, +00) ,H' (4))NC° (70, +00) ,H*(4))
to the system (4.1) and a positive constant C = C(a,19) such that, for all T > 19,

3
3
_ —T T r 1/2 (2 —0r
(Id e A) (WE(T) e 1221 blfz> <Cy (2 0)6 ,

L2(4)

(5.2)

where b; :/ pi(X). Wh(X)dX.
R3

In order to prove this theorem, we use the energy estimates that we established
in Section 4. To obtain the inequality (5.2), we need the energy functional Eg to be
equivalent to the H?(4)—norm of R.. If we take K large enough in the definition
(4.52) of Eg, then the next lemma holds.

LEMMA 5.2. Let R. € C* ((1o,+00) ,H'(4)) N C° (70, +00) ,H?*(4)) and Es be
the energy functional defined by (4.52). There exists K such that, if K > Ky, then
there exists a positive constant C' such that
(5.3)

2
Bg(r) < C (||RE||‘;(4) +[|VR|7 + ae™" |AR:|[7. + o7 ||| X|* AR, L2(4)> ’
(5.4)
2
€ (IRl + IVRS: + ac AR + e |IxP' AR, ) < B

PrROOF. The inequalities (5.3) and (5.4) come directly from the definition of
Eg and the interpolation inequality (4.16). O

Proof of Theorem 5.1. Let 6 be a fixed constant such that 1 < 0 < %,
Wy € H%(4) and W, € C* ((79, +00) ,H'(4)) NC° ((79, +00) ,H?(4)) be the solution
of the system (4.1) given by Theorem 3.1, with initial data Wy. Let T and K be
sufficiently large so that they satisfy the conditions of the lemmas 4.5, 4.6, 4.7 and
4.9 and assume that the initial data Wy satisfy the condition (2.10) for some v > 0
which will be made more precise later. We decompose W, such that

W. =e Q. + R.,

3
where Qo = Zbifi, b; = / pi(X) Wo(X)dX and {f1, fo, f3} is the basis of the
i=1 R3

eigenspace of L associated to the eigenvalue —1, given by (2.1).

Let M be a positive constant such that M > 2 that will be made more precise later
and 77 € [19, 7] be the biggest positive time such that the inequality (4.5) holds.
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We take v and ¢ sufficiently small so that the lemmas 4.5, 4.6, 4.7 and 4.9 hold.
According to the inequality (4.53), one has, for all 7 € [rg, 7%),

(5.5) 0- (Eﬁ(’T)GQOT) < CM?y (2 _ 9)2 o (F—20)r

Integrating in time the previous inequality between 79 and 7 € [79, 7)), we get
(5.6)

2
Es(1) < Eg(10)e™ 2770 4 O M?y (; - 9) e (6720(7770) - e*%(T*TO)) ]

Arguing like in the proof of Lemma 4.1 and using the inequality (5.3), we can show
that

3 2
Eg(T()) S C’}/ (2 — 9) s
which implies
3\’ 3\ _m
(5.7) E¢(1) < Cv (2 - 9) + CM?*y <2 - 9) e 2.

According to the inequalities (5.4) and (4.6), one has, for all 7 € [y, 7)),
2

b + | Rell724) + IV Rell72 + ae™™ [ARL|7: + o™ [||X]" AR.|| <
3 2 3 2
3
Recalling that W, = Z b;fi + Re, we get
i=1
2
IWellZe gy + VWl 72 + ae ™ [AWL|72 + o> ||| X [P AW | <

3 ? 3 ? i
Ci1vy (2—0> + CyM?y (2—0> e 2,

where C and Cy are two positive constants.

We take M sufficiently large so that C; < & and 75 = In(7) sufficiently large so
7 M
that C’gMze*7TU < -4 ve obtain, for all 7 € [rg, 7)),
(5.8)
3 2

IWell 7o) + IVWell72 + ae™™ [AWL][7. + o7 ||| X[* AW,

In particular, the inequality (5.8) shows that 7 = 7.. Furthermore, letting 7 tend
to 7., we see that if 7. is finite, then the H'(4) norm of W, stay bounded on [, 7).
According to the proof of Theorem 3.1, it implies in particular that one can extend
the interval of definition of W, over 7.. Consequently, we have necessarily 7. = +oo.
In addition, going back to the inequality (5.6) and applying the inequality (5.4) of
Lemma 5.2, we see that the inequality (5.2) holds.

O
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Existence of weak solutions in H?(4). In this section, we show that there
exists a weak solution to the system (1.6) belonging to the space C? ([7o, +00) , H?(4)).
To this end, we show that, when ¢ tends to 0, W¢ tends to a divergence free vector
W which satsifies (1.6) in a weak sense. Let (¢,),,c be a sequence of positive terms
which tends to 0. Let W, € C* ((7o, +00) ,H!(4)) N C° ((70, +00) ,H?(4)) be the
global solution of (4.1) given by Theorem 5.1, with initial data Wy. Let O be a
bounded open set of R3. For s € R*, H*(0O) denotes the restriction of the Sobolev
space H*(R3) on O. For s > 1, we define also the space

HS(O) = {u S HS(O) : U|BO:0} .

Let 7 be a fixed positive time such that 7y > 79. Due to the boundedness
property of W, in L™ ([7’0,71] ,H2(4)) uniformly with respect to n, there exist
W € L= ([r9,71],H*(4)) and a subsequence of ¢, (that we still note €,,) such that

(5.9) W., =W weak*in L* ([ro, 1], H*(0)?).

Since W, is bounded in L> ([ro, 1], H?(4)), applying the operator (I — ae TA) !
to the first equality of (4.1), it is quite easy to see that 9,W.  is bounded in
L ([TO,T] 7LQ((’))?’) uniformly with respect to n. Consequently, W, is equicon-
tinuous in time on L2(0)3. Indeed, given o and oy belonging to [r, 1], one has

[We, (01) = We, (02)]l 120y =

/ 0 We, (s)ds

L2(0)

<

[ 10We 920 ds

2
<oy — o2 X 10:We, ()l 120 -

05

Besides, for all 7 € [rg,71], the set |J We,(7) is bounded in H?(0)3 and thus
neN
compact in L?(0)3. Applying the classical Arzela-Ascoli theorem, we conclude

that
We., — W strongly in ~ C° ([ro, 1], L*(0)?).

A classical interpolation inequality between L? and H? yields, for all s < 2,
(5.10) W., — W strongly in C° ([70,71] ,HS(O)?’) .

The two identities (5.9) and (5.10) are sufficient to pass to the limit in the weak
formulation of the system (4.1) and to show that W is a weak solution of the system
(1.6). More precisely, for every ¢ € C* ([rg, 7], Hj(0)?) such that div ¢ = 0, one
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has, for all T € [rg, 7],

(5.11)
/ (W(r) = ae”TAW(7)) .o(1)dX + / / (0)dX do
/ / ) — ae" 7AW (0)) AU(0).curl p(0)dX do

= / (Wo — ae" ™ AWy) .o(70)dX + /T/ (W(o) — ae " AW (o)) .0-p(c)dX do
o 70 JO

+/TO O%“(UAW( 7). (a)dXdaJr/T:/O;‘eUAW(a) (X.Ve(0)) dXdo.

We only show that the non-linear term converges, using (5.9) and (5.10). The other
ones are nearly obvious. We have

/ / —ae AW, (0)) AU, (0).curl p(o)dXdo =
(5.12)
W(o) — ae AW (0)) AU(0).curl p(0)dXdo + Ry, + Sy,
To (9
where
= / /o (We, (0) —ae” "AW,, (0)) A (U(o) — Us, (0)) .curl p(0)dX do,
Sy = / / We, (0) — ae™7 (AW (o) — AW, (0)))

).curl (o )dX do.

Due to the Holder inequalities, the boundedness property of W, in H?(0)? and
the inequality (2.18), we have

R,<C / 1U(0) = Uer (0] () 960(0)] 20y do
To

<C /THW(G) We, ()|t W (@) = We, () ity V()| 120y do

<O(T —m) max_ [W(0) = We, (o)l o) max. [V0(0)] 20

Thus, the identity (5.10) implies that R, — 0 when n — +o0.

Because of the identity (5.9), it is clear that we have also S,, — 0 when n — +o0.
Thus, we have shown that, for all T € [rp, 1],

lim / / —ae AW, (0)) AU, (0).curl p(o)dXdo =

n—-+4oo

(5.13)
/ /O (W(o) —ae AW (c)) AU(0).curl (c)dXdo.
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Furthermore, since W, (1) converge weakly to W (7) in H?(4), from the inequality
(5.2), we get

3
3
. — -7 —e 7T . < 1/2 —0r
(5.14) (I—ae TA) [ W(r)—e glbm Cr <2 9>€ )

L2(a)

for all 7 € [r9, +00).

Uniqueness. It remains to show that the solutions of (1.2) are unique in the
space CY ([O, +00) ,H2(4)). To show this fact, it suffices to show that the divergence
free vector field u obtained from a solution w of (1.2) through the Biot-Savart law
is unique. Since w belongs to C° ([0, +00) ,H?(4)), the inequality (2.17) with ¢ = 2
and p = g and the inequality (2.19) with p = 2 of the lemma 2.4 imply directly
that u € CY ([0, +00) , H*(R*)?). Furthermore, u satisfies the equations of motion
of second grade fluids (1.1). The uniqueness of the H?3—solutions of (1.1) has been
shown in [5] for the case of a bounded open set of R? with Dirichlet boundary
conditions. In our case, we can apply the computations of the proof of [6, Theorem
2], which imply the uniqueness of the solutions of (1.1) with initial data in H3(R3)3.
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