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1. Introduction

The study of the behaviour of the non-Newtonian fluids is a
significant topic of research not only in mathematics, but also in
physics or biology. Indeed, these fluids, the behaviour of which
cannot be described with the classical Navier-Stokes equations,
are found everywhere in the nature. For example, blood, wet sand
or certain kind of oils used in industry are non-Newtonian fluids.
In this paper, we investigate the behaviour of a particular class of
non-Newtonian fluids that is the third grade fluids, which are a
particular case to the Rivlin-Ericksen fluids (see [28,29]).
The constitutive law of such fluids is defined through the Rivlin-
Ericksen tensors, given recursively by

A1 = Vu+(Vu),
A= 0Ax_1+U- VA 1 +(VU)A_ 1 +A 1 VU,

where u is a divergence free vector field of R?> or R> which
represents the velocity of the fluid. The most famous example of
a Rivlin-Ericksen fluid is the class of the Newtonian fluids, which
are modelled through the stress tensor

o= —pl+vA;

where v > 0 is the kinematic viscosity and p is the pressure of the
fluid. Introduced into the equations of conservation of momentum,
this stress tensor leads to the well known Navier-Stokes
equations.

In this paper, we consider a larger class of fluids, for which the
stress tensor is not linear in the Rivlin-Ericksen tensors, but a
polynomial function of degree 3. As introduced by Fosdick and
Rajagopal in [13], the stress tensor that we consider is defined by

0 = —pl+VA| + 1Az + AT + PlA; PAs,

http://dx.doi.org/10.1016/j.ijnonlinmec.2014.03.013
0020-7462/© 2014 Elsevier Ltd. All rights reserved.

where v > 0 is the kinematic viscosity, p is the pressure, @; >0,
azeRand f>0.

We assume in this paper that the density of the fluid is constant
in space and time and equals 1. Actually, the value of the density is
not significant, since we can replace the parameters v, a;, @, and 8
by dividing them by the density. Introduced into the equations of
conservation of momentum, the tensor ¢ leads to the system

or(U— a1 Au) —vAu+curl(u—a; Au) A u— (a1 +ay)
x(A - Au+2 div(LL"))— B div(JAl*A)+ Vp =0, div u = 0,u; _ o = U,
(1.1

where L = Vu, A(u) = Vu+(Vu)' and  denotes the classical vector-
ial product of R3. For matrices A,Be My(R), we define A:
B=Z?j=1AuB,~J and |A|> =A: A. If the space dimension is 2, we
use the convention u=(uq,u,,0) and curl u=(0,0,0;uy —druq).
Notice also that if oy + @, =0 and f =0, we recover the equations
of motion of second grade fluids, which are another class of non-
Newtonian fluids, introduced earlier by Dunn and Fosdick in 1974
(see [10,15] or [9]). If in addition a7 =0, then one recovers the
classical Navier-Stokes equations.

The system of equations (1.1) has been studied in various cases,
on bounded domains of R, d=2,3 or in the whole space R? (see
[1-5,25]). On a bounded domain £ of R? with Dirichlet boundary
conditions, Amrouche and Cioranescu have shown the existence of
local solutions to (1.1) when the initial data belong to the Sobolev
space H3(©2)? (see [1]). In addition, these solutions are unique. For
this study, the authors have assumed the restriction

lag +az| < (24vp)'/2,

which is justified by thermodynamics considerations. The proof of
their result is obtained via a Galerkin method with functions
belonging to the eigenspaces of the operator curl(l—a;4).
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In dimension 3, a slightly different method has been applied by
Bresch and Lemoine, who used Schauder's fixed point theorem to
extend the result of [1] to the case of initial data belonging to the
Sobolev spaces W2"(£2)3, with r > 3. They have shown in [3] the
local existence of unique solutions of (1.1) in the space
C°([0, T], W' (£2)%), where T > 0. In addition, if the data are small
enough in the space W2'(Q2)%, the solutions are global in time.
Notice also that the existence of such solutions holds without
restrictions on the parameters of the system (1.1).

In the case of third grade fluids filling the whole space RY,
d=2,3, Busuioc and Iftimie have established the existence of global
solutions with initial data belonging to H>(R%)¢, without restric-
tions on the parameters or on the size of the data (see [4]). In this
study, the authors used a Friedrichs scheme and performed a
priori estimates in H? which allow us to show the existence of
solutions of (1.1) in the space L{.(R*,H?(R%)%). Besides, these
solutions are unique if d=2. Later, Paicu has extended the results
of [4] to the case of initial data belonging to H'(R%)?, assuming
additional restrictions on the parameters of the equation; the
uniqueness is not known in this space (see [25]). The method that
he used is slightly different from the one used in [4]. Indeed,
although Paicu also considered a Friedrichs scheme, the conver-
gence of the approximate solutions to a solution of (1.1) is done via
a monotonicity method. Notice that Theorem 1.1 of this paper
shows the existence of solutions of the equations of third
grade fluids on R? for initial data in weighted Sobolev spaces
(see Section 3).

In what follows, we consider a third grade fluid filling the
whole space R?. Actually, the equations that we consider are not
exactly the system (1.1) but the one satisfied by w=curlu=
01Uy —douq. In dimension 2, the vorticity equations of the third
garde fluids are given by

(W —a1 Aw) —vAW+u - V(w—a; Aw) — S div(JA>Vw)
— B div(V(JAI?) A A) = 0,div u=0,w _ g = wg = curl up. (1.2)

Notice that the parameter a, does no longer appear in (1.2) and
thus does not play any role in the study of these equations. Indeed,
due to the divergence free property of u, a short computation
shows that curl(A - Au+2 div(LL")) = 0, or equivalently there exists
q such that A-Au+2div(LL') = Vq. This phenomenon is very
particular to the dimension 2 and does not occur in dimension 3.
Notice also that the previous system is autonomous in w. Indeed,
the vector field u depends on w and can be recovered from w via
the Biot-Savart law, which is a way to get a divergence free vector
field such that curl u=w. The motivation for considering the
vorticity equations instead of the equations of motion comes from
the fact that, due to spectral reasons, we have to study the
behaviour of the solutions of (1.2) in weighted Lebesgue spaces.
Indeed, in what follows, we will consider scaled variables, which
make appear a differential operator whose essential spectrum can
be “pushed to the left” by taking a convenient weighted Lebesgue
space. We will see that the rate of convergence of the solutions of
(1.2) is linked to the spectrum of this operator. Unfortunately, the
weighted Lebesgue spaces are not suitable for the equations of
motions and are not preserved by the system (1.1). Anyway, one
can obtain the asymptotic profiles of the solutions of the equations
of motion (1.1) from the study of the asymptotic behaviour of the
solutions of the vorticity equations (see Corollary 1.1 below). We
also emphasize that the system (1.2) allows us to consider
solutions whose velocity fields are not bounded in L2,

In this paper, we establish the existence and uniqueness of
solutions of (1.2) in weighted Sobolev spaces, but the main aim is
the study of the asymptotic behaviour of these solutions when t
goes to infinity. More precisely, we want to describe the first order
asymptotic profiles of the solutions of (1.2). We consider a fluid of

third grade which fills R* without forcing term applied to it. In this
case, as it is expected, the solutions of (1.2) tend to 0 as t goes to
infinity. Our motivation is to show that these solutions behave like
those of the Navier-Stokes equations. In our case, we will show
that the solutions of (1.2) behave asymptotically like solutions of
the heat equations, up to a constant that we can compute from the
initial data. The methods that we use in the present paper are
based on scaled variables and energy estimates in several func-
tions spaces. This work is inspired by several older results
obtained for other fluid mechanics equations. The first and second
order asymptotic profiles have been described for the Navier—
Stokes equations in dimensions 2 and 3 by Gallay and Wayne (see
[18-21]). In dimension 2, they have shown in [18,20] that the first
order asymptotic profiles of the Navier-Stokes equations are given
up to a constant by a smooth Gaussian function called the Oseen
vortex sheet. More precisely, for a solution w of the vorticity
Navier-Stokes equations (that is the system (1.2) with oy =f# =0),
for every 2 < p < + oo, the following property holds:

JreWo) dx [ -
-5 5()

where G is the Oseen vortex sheet

— 0(t73/2+]/p)’
P

when t - 4 oo,

GOy = g™/ (13)

The methods that they used in [18] are very different from the ones
that we develop in this paper. Although they also considered scaled
variables, the convergence to the asymptotic profiles is not
obtained through energy estimates. Indeed, using dynamical sys-
tems' arguments, they established the existence of a finite-
dimensional manifold which is locally invariant by the semiflow
associated with the Navier-Stokes equations. Then, they showed
that, under restrictions on the size of the data, the solutions of the
Navier-Stokes equations behave asymptotically like solutions on
this invariant manifold. The description of the asymptotic profiles
is thus obtained by the description of the dynamics of the Navier—
Stokes equations on the invariant manifold. Later, the smallness
assumption on the data has been removed (see [20]). In [23], Jaffal-
Mourtada describes the first order asymptotics of second grade
fluids, under smallness assumptions on the initial data in weighted
Sobolev spaces. She has shown that the solutions of the second
grade fluids' equations converge also to the Oseen vortex sheet. In
this paper, we apply the methods used by Jaffal-Mourtada, namely
scaled variables and energy estimates. According to these results,
one can say that the fluids of second grade behave asymptotically
like Newtonian fluids. In this paper, we show that, under the same
smallness assumptions on the initial data, the same behaviour
occurs for the third grade fluids' equations. We emphasize that the
rate of convergence that we obtain is better than the one obtained
in [23]. Actually, we show that we can choose the rate of
convergence as close as wanted to the optimal one, assuming that
the initial data are small enough. Since second grade fluids are a
particular case of third grade fluids, we establish an improvement
of the rate obtained in [23]. Actually, the main difference between
third and second grade fluids' equations in dimension 2 is the
presence of the additional term g div(JA|?A) in the third grade
fluids' equations. Sometimes, this term helps us to obtain global
estimates, like in [4] or [25], but introduces additional difficulties
when one looks for estimates in H> or in more regular Sobolev
spaces (see [1,2] or [5]). Here, we have to establish estimates in
weighted Sobolev spaces with H? regularity for the vorticity w,
which is harder than doing estimates in H> for u.

We next introduce scaled variables. In order to simplify the
notations, we assume that v=1. Let T > 1 be a positive constant
which is introduced in order to avoid restrictions on the size of
the parameter a; and which will be made more precise later.
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We consider the solution w of (1.2) and define W and U such that
curl U=W through the change of variables X=x/+t+T and
7=log (t+T). We set

1 X
t = U l t T T —= )
e = U (logiean. ) o
1 X ’
w(t, X) _t+_TW<10g (t+T),ﬁ>.
For 7 > log (T), we have
U(z,X) = e2u(e” — T, e"/%X),
2 (1.5)
W(z,X) =e*w(e? —T, e"/%X).

These variables, called scaled or self-similar variables, have been
introduced in order to study the long time asymptotic of solutions
of parabolic equations and particularly to show the convergence to
self-similar solutions (see [11,12,14] or [24]), that is to say under
the form (1/(t+T))F(x/~/t+T).

Scaled variables have been used to deal with the asymptotic
behaviour of many equations, not necessarily parabolic ones (see
[6,7,23,16] or [17]). For instance, in [16], Gallay and Raugel have
described the first and second order asymptotic profiles in
weighted Sobolev spaces for damped wave equations, using scaled
variables. In [17], they use scaled variables to show a stability
result of hyperbolic fronts for the same equations.

For the sake of simplicity, we set AY = 0;U;+09,;U;. Considering
self-similar variables, one can see that W and its corresponding
divergence free vector field U satisfy the system

o:(W—aie TAW)—LW)+U - VIW —a1e "AW)+ae AW
+a1e’7§- VAW —fe~ 2" div(JAP VW)

— e 2" div(V(JA]?) A A) =0,div U =0,
W\r:ro = WO, (1-6)

where 7o =1log(T), Wy(X)=e"wy(e®/2X) and £ is the linear
differential operator defined by

[:(W):AW+W+%<~VW.

Notice that the initial time of the system (1.6) is log (T). By
choosing T sufficiently large, one can consider a;e~7 as small as
wanted. This fact allows us to study the behaviour of the solutions
of (1.6) without restrictions on the size of r;. Formally, we see that
most of the terms of the system (1.6) tend to O as time goes to
infinity. The purpose of the present paper is to show that the
solutions of (1.6) asymptotically behave like solutions of

0:Woo = LW o). 1.7)

In order to describe the solutions of the system (1.7), we have to
study the spectrum of the linear differential operator £ in appro-
priate functions spaces. The form of the previous system and the
definition of £ lead to consider weighted Lebesgue spaces. For
me N, we define

L*(m) = {u e [A(R?) : (1+|x1)"?u e [X(R?)),

equipped with the norm

1/2
= [ 1m0 di)
RZ

The spectrum of £ in L?(m) is given in [18, Appendix A]. It is
composed of the discrete spectrum

g4(L)= {—g:ke{O,l,...,m—Z}},

and the continuous spectrum
oe(L)= {,1 €C:Re() < —%‘1}

In particular, the eigenvalue O is simple and the Oseen vortex G
given by (1.3) is an eigenfunction of £ associated with 0. Of course,
G is a solution of (1.7) and we will show that the solutions of (1.6)
behave like G when the time goes to infinity. To this end, we
decompose the solutions W of (1.6) as follows:

W(7) =nG+f(2),

where 7 e R will be made more precise later and f(z) is a rest
which will tend to 0 as 7 goes to infinity.

In order to get a good rate of convergence for f, we shall “push”
the continuous spectrum of £ to the left by choosing an appro-
priate weighted Lebesgue space. For this reason, we work in L%(2),
so that g(£)={4e C:Re(l) < —1}. Since the second eigenvalue
of £ in [%(2) is —1, the best result that we expect is

f(r)=0(e~"%) in[*2), when 7— + 0.

Notice that choosing a weighted space L?(m) with m > 2 would be
useless for describing the first order asymptotics only. Indeed, if
we take m > 2, the second eigenvalue would still be —1 and the
rate of convergence could not be better than e~%/2,

For later use, we define the divergence free vector field V such
that curl V =G. It is obtained by the Biot-Savart law and given by

‘l_e*\x|2/4 —X2
VX)=———— . 1.8
=" 50 <X1> (18)

In particular, for every X € R?, one has

VX)-X=0, VX)-VGX)=0 and V(X) - VAGX)=0.

Before stating the main theorem of this paper, we have to define
some additional functions' spaces. For m e N, we set

H'(m) = {ue*(m) : gju e L*(m);j e {1,2}},

H*(m)={ueH'(m): ojueH' (m);je{1,2}},

equipped with the norms

2 2
[ttt my = 2y + [ V2L 722 and ]

2 2
= (ulli1 gy + 1 V20 2 m)
where [Vu? = ¥?_ (0w and |V2ul* = ¥4 _, (0idu)°.

The following theorem describes the first order asymptotic
profile of W in H?(2), if one assumes that the initial data Wy are
small enough in the weighted Sobolev space H?(2).

Theorem 1.1. Let € be a constant such that 0 <@ < 1. There exist
two positive constants y, = yo(a1, ) and To =To(a1) > 1 such that,
for all Wy e H*(2) satisfying the condition
IWoll7n +SHIAWoZ + IIXPWol2 O XPAWIR, < 71— 0
ollg + ollj2 ollz+o2 ollz =Y >
(1.9

for some T =Ty and 0 <y <y,, there exist a unique global solution

W e C%([zg, +00), H*(2)) of (1.6) and a positive constant
C=C(ay,p3,0) such that, for all T > 1
H(1 —aie MW@ -1G)||%,,, < Cre 7, (1.10)

where = [..Wo(X) dX, 7o =log (T) and the parameters o and
are fixed and given in (1.1).

Remark 1.1. The smallness assumption (1.9) is not optimal. By
working harder, it is possible to get y(1—6)? with p < 6 in the right
hand side of the inequality.
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Remark 1.2. Notice that Theorem 1.1 establishes an improvement
of [23, Theorem 1.1] concerning the first order asymptotics of the
second grade fluids' equations. Indeed, the above theorem also
holds with =0 and consequently describes the first order
asymptotic profiles of the solutions of the second grade fluids’
equation. The improvement comes from the fact that one can
choose 6 as close as wanted to 1, which is the optimal rate. In [23],
the constant € cannot be bigger than 1.

Theorem 1.1 implies the following result in the unscaled
variables. In particular, it gives a description of the asymptotic
profiles of the solutions of the equations of motion (1.1).

Corollary 1.1. Let @ be a constant such that 0 <6 < 1. There exist
two positive constants y,=yq(a1,) and To=To(a1,)>1 such
that, for all wy e H(2) satisfying the condition

1
T|wol| 2+ T2 | Vwo [+l wol -

az
+anT? | Awo |7+ |1 Awo | 72 < 7(1-6)°, (1.11)
for some T >Ty and 0 <y <y,, there exists a unique global solution
w e C9([0, +00), H*(2)) of (1.2) such that, for all 1 < p < 2, there exists
a positive constant C = C(a1, 3, 0) such that, for all t >0

H(]_alA)<W(t)—LG p <Cy(t+T)~1-0/2+1/p,

1))

where 11 = [, Wo(x) dx.
Moreover, for all 2 <q< +oo, there exists a positive constant
C=C(ay,p,0,q) such that, for all t >0

H(l_aﬂ)(u(t)_w’?”v( tiT))

where V is obtained from G via the Biot-Savart law and defined by
(1.8).

Lo < Cy(t4+T)~V2-0/2+1/a,

Theorem 1.1 describes the asymptotic behaviour of the solu-
tions of (1.6) in H*(2) at the first order. Since the solutions of the
Navier-Stokes equations also converge to the Oseen vortex sheet,
we can say that the fluids of third grade behave asymptotically like
Newtonian fluids. Notice that the function space H2(2) is suitable
for the first order asymptotics because it “pushes” the continuous
spectrum of £ far enough to get 0 as an isolated eigenvalue. If we
had to describe the asymptotics of (1.6) at the second order, we
should work in a space where £ has at least two isolated
eigenvalues. Due to the forms of o, and o4 the second order
asymptotics must be studied in functions space with polynomial
weight of degree at least 3, in order to get the two isolated
eigenvalues 0 and —1.

Notice also that as the system (1.2) and our change of variables
preserve the total mass. We have, for all 7> 79 and t >0

77=/RZW0(X) dx=/sz(t,x) dx=/RzW0(X) dX:/RzW(T’X) dx.

The plan of this paper is as follows. In Section 2, we recall classical
results concerning the Biot-Savart law and give several technical
lemmas. In Section 3, we introduce a regularized system, which is
close to (1.6) and depends on a small parameter ¢ > 0. Actually, we
add the regularizing term eA’W to the system (1.6) and show the
existence of unique regular solutions W, to this new system. In
Section 4, using energy estimates in various functions' spaces, we
show that W, satisfies the inequality (1.10) of Theorem 1.1, and thus
tends to the Oseen vortex sheet G when 7 goes to infinity. In Section 5,
we let € go to 0 and show that W, tends in a sense to a solution W of
(1.6). Additionally, this solution satisfies the inequality (1.10) of
Theorem 1.1 and consequently also tends to the Oseen vortex sheet.
Finally, we establish the uniqueness of W, which enables us to say that

every solution of (1.6) satisfying the assumption (1.9) converges to the
Oseen Vortex sheet when 7 goes to infinity.

2. Biot-Savart law and auxiliary lemmas

In this section, we state several technical lemmas which are
useful to prove Theorem 1.1. These lemmas concern the Biot-
Savart law and state several inequalities involving weighted
Lebesgue norms. In what follows, we use the notation

llull = ful

e

and C denotes a positive constant which can depend on the fixed
constants a; and S.

The first lemma will be useful in Section 4 to obtain estimates
in Sobolev spaces of negative order. We define, for seR, the
operator (—A)°, given by

(—Ayu=F(&>u),
where u (also denoted F(u)) is the Fourier transform of u, given by
(6 = / u(xje ¢ dx,

[RZ

and F denotes the inverse Fourier transform

1 .
2n? /R Zv(eS)e'X'<s dé.

FWx) =

Lemma 2.1. Let s be a positive real number such that 3 <s <1, then
we have the following two inequalities:

1. Let gel?(1). Then (—A)~°Vgel?(R*) and there exists C>0
independent of g and s such that

[(=4)~*vg| < 2.1

C
a _5)3/2”gHL2(1)‘

2. Let g e [*(2) such that [.g(x) dx=0. Then (—A)~°g e [*(R?) and
there exists C > 0 independent of g and s such that

- C
I(=2)~g| 2 Sm”gHLz(Z)' 22)

Proof. We start by proving the inequality (2.1). For j e {1, 2}, using
Fourier variables, one has

" 1
I8y ogli=C [ earl8R de+ s

1 2s—1)/s 25/0 (1-3)/s 5
< C(/ —d«:) (/ gPs/a-9 df) +1ig]
e <118% Jig<1 v

C
) i AR i

<

|2

We now use the continuous injection of H'(R?) into L2/ ~9(R?).
Looking at the computations of [8, pp. 723-724], one can see that
there exists a constant C > 0 such that

|ull, <Cplul|,; forall ueH'(R?) and 2<p < +oo. 2.3)

Notice that Cp is not the optimal constant in the previous inequal-
ity. Using the inequality (2.3), one has
C

2
a_splliar

_ 2 C 42
l(—2) o] sm\\g\\m +llgl% <

We now prove the inequality (2.2). Since [.f(x)dx=0, using
Fourier variables, we get

1

| 5‘45@«:»2 dé

I-2) g =@ [
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<(Qny* i §|45 B(E)I” d+1igll?

27)? s
<@ /5 [ / £.VE(0E)do d§+||g||L
‘C/ama“s 2/ VE(08)| do dé+||g||

Cauchy-Schwarz inequality and Fubini's theorem give

1
1 N
SC// ————|Vg(a&)? dé do+||g||%.
0 ‘§‘£1‘5|4572| g( 5)' 5 ||g||,_2

Using Holder inequality, we get

—s ! 1 °
I=4) g||§zsC/0 ([:Ma‘l Z/Sdf)

( /m IVE@HR/ dé) do+ gl

<2 [ (), peoor +a)

do+ g%

I(—4)~*gli%

The change of variables { = g¢ yields

s 1 1 1-s
g se(g=) [ ([ s )

do+ligI%

s\ 1 5112 2
<C(+=) (m) IVENZ 0o+ gl

Finally, we use again the inequality (2.3) and obtain

-2 g <¢(;2) (5557) <lzs> Ig

- C
T(-s?

which concludes the proof of this lemma. ©

2.+ ligl

I11% 5,

Lemma 2.2.

1. Let 1<p< +oc and felP(R%) such that |x*f e [P(R?), then
x| f € [P(R?) and the following inequality holds:
|1 £l < WP N1XF 152 (2.4)

2. Let f € H%(2), there exists C > 0 such that
[1x12V2F|| < CAUF I+ IXIVEI+ X AF ). (2.5)

3. Let f e H*(2), then |x|2Vf e LY(R?) and there exists C >0 such
that
x9S [[po < ClIPVET 2PN+ [[1xIVF 2+ 102 AF2).
(2.6)

Proof. The inequality (2.4) comes directly from Hélder's inequal-
ity. To prove the inequality (2.5), we show by a simple calculation
that, for every j, ke {1,2}

[[1x12 0501 |2 < CILF|2 + | IV [| + [[1x1> AF[[2). 2.7)
Indeed, we notice that

X120;0kf = 00k (1X12f) — 28 kf — 2x;01f — 2X¢0if , (2.8)

and furthermore
[0 xI”A)||* < ClAGxN|[> < CIF |2 + [[IXIVF]|> + [|1xI AF[[).
(2.9

Combining (2.8) and (2.9) we get the inequality (2.7).
To obtain (2.6), we use Gagliardo-Nirenberg's inequality as follows:

1/2‘

X2 |+ < ClxvfI 2 v (xvn) | 2

< Cl[lxPVF| 2| vf |2 + [ IxP O3S |2,
and consequently inequality (2.5) implies (2.6). ©

Biot-Savart law: Let w be a real function defined on R?. The
Biot-Savart law is a way to build a divergence free vector field u
such that curl u=w. It is given by

1
u(x) =21 XV dy, (2.10)

7 Jw2 |x—y|?
where (x1,X3)" = (—X2,%).

The next two lemmas give estimates on the divergence free
vector field u obtained from w via the Biot-Savart law.

Lemma 2.3. Let u be the divergence free vector field given by (2.10).

1. Assumethat1<p<2<q<ocoand1/q=1/p—1/2.Ifw e [P(R?),
then u e LY9(R?)? and there exists C > 0 such that
[|ullze < Cl|w| - (2.11)

2. Assume that 1<p<2<q<oo, and define ae(0,1) by the
relation 1/2=a/p+(1—a)/q. If wel’(®R?) nLYR?), then
u e L°(R%)? and there exists C > 0 such that

el = ClIw [ [ wllem (2.12)

3. Assume that 1 < p < co. If w e [P(R?), then Vu e [P(R?)* and there
exists C > 0 such that

[vully = Cllwl. 213)

In addition, divu =0 and curl u=w.
We refer to [18] for the proof of this lemma.

Lemma 2.4. Let u be the divergence free vector field given by (2.10).

1. If we L?(2), then u e L*(R?)? and there exists C > 0 such that
|l <Clwl 2. (2.14)

2. Ifwe2(2) n H'(R?), then u e L®(R?)? and there exists C > 0 such
that

1/2 1/2

lull < CIw| " [w] 25, (2.15)
3. let seR. If (=ASV2wel?R?) for seR, then

(—AYu e [>(R%)? and there exists C > 0 such that

(=42l < Cll(—=4) V2w, (2.16)

4. Let seR. If we HY(R?), then Vu e H(R*)* and there exists C >0
such that

HVUHHS SCHWHHS (2.17)

The proof of the two first inequalities is shown in [23]. The two
other inequalities are obvious when using Fourier variables. The
next lemma is useful to get energy estimates in weighted Sobolev
spaces for solutions of (1.6). For a vector field u, we set

2
VuP= ¥

ijkl=

(950k01u)*.
1
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Lemma 2.5. Let w e [>(R?) and u be the divergence free vector given
by (2.10).

1. If we H'(1), then V2u e [%(1) and there exists C > 0 such that
HVZUHLZ(U < C(IW|[ i + || 1XIVWI)). (2.18)

2. If we H%(1), then |x|V2u e L*(R?) and there exists C > 0 such that
[1x1V2ul|,« < C(|w||+][IxIVWID2(| VW] + [[IxIAWD2. (2.19)

3. If we H%(2), then u e [x)2V3u e L*(R?) and there exists C > 0 such
that
[[1X1V2ul| < CAWII+ 1XYWl + [l 1x|* Aw]). (2.20)
4. Ifwel?(1) and [.w(x)dx=0, then ue H'(1) and there exists a
positive constant C such that
lull+ x| Vull < CllIxjw]. (2.21)
5. If weH'(2) and [ w(x)dx =0, then |x?V?u € L*(R?) and there
exists a positive constant C such that

[[1X12V2u|| < Clw| (2.22)

2y

Proof. Let us show the inequality (2.18). Let w belong to H'(1) and
u be the divergence free vector field obtained via the Biot-Savart

law. From the inequality (2.13) of Lemma 2.3, we obtain
[[V2ul|,2 < C||vw/| 2. (2.23)

Since the divergence of u vanishes and since we are in dimension
2, it is enough to show the inequality

(2.24)

xiofu|| < Cawil+ IxIvwi),

where i,j, ke {1,2}.
We omit k that does not appear in the following calculations.
One has

Iioful” =@ [ 0P d
R
< C/ &2 d§+C/ Eoiif? dé
R? R?
SCHVuH2+C/ |F(Axu)?* dé
RZ
<€ vu|* +C]|ix1 A2

Using the inequality (2.13) of Lemma 2.3 with p=2 and remarking
that o,w= Au, and d,w = Au,, we obtain (2.24). Combining it
with the inequality (2.23), we get (2.18).

The inequality (2.19) is a direct consequence of (2.18) and
Gagliardo-Nirenberg inequality. Indeed, one has

|xi07u| 4 < Clixioful| /2| v (xiofw)||'/2

= Clxofu]”?

(|o7ul|+[[xiof vulh'/2.
Furthermore, the inequalities (2.13) and (2.18) yield
[xio7u .« < CAWI+1IXIVWID (VW] + 1% V2w /2.

Making the same computations as the ones we made to establish
(2.18), we obtain

[x V2w < CUIvW +[l1x| Aw]),
which gives
[xi07u e < CAWI+1IXIVWID (VW + | X Awl)'2,

and the inequality (2.19) comes when summing for i e {1, 2}.

In order to get the inequality (2.20), it suffices to obtain it for
[x|20;0%u, where j,k € {1,2}. One has

Iwgotul® = @m? [ 1A 2
< c< /R IERE+EVATIR dé
+Az|(§j+§k)ﬁ|2 dcf+/R2||c§|2vﬁ|2 de:)
<C<VA(|x|2u)2+Vu|2+ él |A(x,»u)|2>

< C([[lx* v Aul[* + [ vul|* + [[Ix1Au||?)
< C([Ix2 V2w + [[w]f + [IxI vw[?).

Applying the inequality (2.5), we get (2.20). The proof of the
inequality (2.21) is made in two steps. It is shown in [23] that

llull < Cllix|w]|. (2.25)

To finish the proof of the inequality (2.21), we notice that

H |X‘W”2 = |||x|o1 U3 Hz + H |X|02u4q ”2 —2/2 |X|201UZ02U1 dx. (2.26)
R

Integrating by parts, one gets
—2/ X201 U202 U1 dx:/ X201 02 U4 dx+2/ XqlUyoal; dx
R? R? R?
+/ \x|20162u2u1 dX+2/ X201 Uyl dX.
R? R?

Using the divergence free property of u and integrating by parts,
we have

—2/2|x|2()1u202u1 dx = |[|x|o1uq ||2+ H|x\02u2H2+4/2x2u202u2 dx
R (33
+4/ X101Uq Uy dx.
JR?
Finally, integrating again by parts, we get
—2/Rz|x|zaluzazu1 dx = |[|x|01ur |2+ || IxI02u2 |2 — 2| |u|%.

Thus, going back to (2.26), one has
[[1xva[2 = [[lxiw][* +2[u .

Combining this equality with (2.25), we get the inequality (2.21).
The inequality (2.22) is obtained in the same way. ©

3. Approximate solutions

In this section, we introduce a “regularized” system of equa-
tions, whose solutions are more regular than the solutions of (1.2).
Actually, this new system is very close to (1.2), and is obtained by
adding the small term eA*w to (1.2). Here, the positive constant &
is supposed to be small and is devoted to tend to 0. Adding this
term, we are able to prove the existence of solutions to the
regularized system via a semi-group method. The presence of
the term u - VAw would not let us obtain solutions to (1.2) by a
semi-group method because of the too high degree of derivatives
in this term compared to the linear term Aw. We introduce now
the following regularized system of equations:

0r(We — a1 Awe) + eA*w, — Aw, + U V(We — 1 AW,)
=B div(|Ac P YWe) — B div(V(IAe1*) A Ae)
=0, W0 =Wo e H(2), (3.1

where A, = Vi, +(Vug).
The aim of this section is to prove the following theorem.
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Theorem 3.1. Let wy € H*(2). For all € > 0, there exists t, > 0 and a
unique solution w, of the system (3.1) such that

we € C1((0, t.), H'(2)) N C°([0, t.), H*(2)) N C°((0, ), H>(2)).

Proof. First of all, we introduce the change of variable X = yx,
where y is a positive constant that is close to 0 and will be made
more precise later. This is made in order to not have to consider
restrictions on the size of a;. We note v,.(x) = w.(x/y). The system
(3.1) provides a new system in v, that we will solve in H>(2).

0(Ve — a1 P2 AVe) + ey A%V — P2 AVe +yU, - V(e —ar 72 Avy)
—BrV(IAel?) - Ve — Br*1Ac > Ave — B diV(V(|Ae?) A Ag) =0,

Ve = 0 = Wo(x/7) € H*(2). 3.2)

Although there are terms involving u, in this system, it is actually
autonomous. In fact, one recover w, from v, and then recover u,
via the Biot-Savart law (2.10) applied to w,. We set

Ze(X) = q(X)ve(X),

where q(x) = (1+|x|?).

To show the existence of a solution in H2(2) to the system (3.2),
we are reduced to show that there exists a solution in H*(R?) of
the system

-1

0tz — 2 Aze — 172 qAG 2o — 2721qVq 1 - Vzo) + eyt A%z, = F(ze),

Zeie - 0 = qWo(x/7) € HA(R?), 3.3)
where
F(ze)= —er*qA*(@ 'ze)+7%qAq 'z)

—yqu V(G Ze— a1 AT 120))

+Brav(Ac?) - V(@ 'ze)+ Pr2alAc P A z)

+Pq div(V(IAe1) A Ae). (34

We define the two linear operators B : D(B)=H'(R?)—H ™ '(R?)
and D : D(D) = [*(R?)—H~ (R?) as follows:
B2)=a1y*Az+a1y*qAq 'z,
D(z)=2a1y*°qvq~"' - vz
Via Lax-Milgram theorem, it is easy to show that A=(I—B—D) is
invertible. We define the bilinear form on H'(R?)
a(u, v) = (U, V)2 +a17*(Vu, V). —ar Y2 (qAq ~ ', v),2

—20172(qVq™" -V, v).

We notice that a is obviously continuous on H'(R?) x H'(R?).
Using the fact that gAq~' and qvq~' are bounded on R?, one
has, for all u,ve H'(R?)

la(u, v)| < C@r, PIul[g ||V||g.

where C(ay,y) is a positive constant depending on a; and .
We show now that a is coercive. Via an integration by parts, we
get

a(u, u) = HuHZeryznVuHZ—myz/ qAq~u|? dx
JRr?
+0¢1y2/2div(qVq’1)|u|2 dx.
R

Due to the boundedness of gAq~—! and div(qvq~"), there exists
C > 0 such that

a@u, u) = (1—ay?0)l|ul|* + a1 72| Vu|?.

If we take y sufficiently small, the bilinear form a is both
continuous and coercive on H'(R?). From the Lax-Milgram theo-
rem, we conclude that for all f e H'(R?) there exists ue H'(R?)
such that

a@,v)={f,v), 1, forall ve H(®R?), (3.5)

and consequently —B—D)~! is defined from H~!(R?) to H'(R?).
We define A : D(A) = H*(R%)—H"(R?) the linear differential opera-
tor on H'(R?)

A=ey*(1-B—D) 1A%
We rewrite the system (3.3) as follows:
oze+AzZe) = F(ze),
Ze =0 = qWo(x/y) € HA(R?),
where F(z.)=(—B—D) 'F(z.).

To finish the proof of this theorem, we show that the operator A
is sectorial on H'(R?), which is equivalent to the fact that —A
generates an analytic semigroup on H!(R?). Then, we check that F

is locally Lipschitz from bounded sets of a Sobolev space H*(R?) to
H'(R?), where 1 <s < 3. An easy computation leads to

(3.6)

A=ey*I—B) 'A*—ey*(I—B—-D) 'D(—B)~'A*
=I+ey*d—B) 'A*—1—ey*I—B-D)"'D(I-B)~'A* =] +R,
where

J=I+ey*d—B)~ 'A%,
R=—I-ey*I-B—D)"'D(I—B)~ 'A%

Using the same method as the one used to invert (I—B—D), one
can invert (I—B) and define (I—B)~! from H™1(R?) to H!(R?).
Consequently, J is well defined from H3(R?) to H'(R?). In the
remaining of this proof, we will show that —] generates an
analytic semi-group on H'(R?) and then show that R satisfies the
conditions of [27, Theorem 2.1, p. 81]. According to this result, it
implies that —A generates an analytic semi-group on H!(R?). In
order to show that J is sectorial on H'(R?), we associate it with a
continuous and coercive bilinear form on H?(R?) x H?(R?). To this
end, we define a H!-scalar product which is suitable to J. Let us
define, for u,v e H'(R?), the bilinear form on H' given by

WV =((1—a172qAq~ Hu, v) 2 +ar 72 (Vu, Vv)e.

If y is sufficiently small compared to a;, then (,-),: is a scalar
product on H'(R?). Furthermore, for u € H*(R?) and v € H'(R?), one
has

WU, vy =((I=B)u,v),2.

We define, using this scalar product, the bilinear form j on
H?(R?) x H?(R?) associated with J by the formula

JW,v) =W vy +eyt(Au, Av)p.

A short computation shows that, for u e H*(R?) and v e H*(R?), one
has

Ju,v) =(Ju, vy
Furthermore, if y is small enough, using the definition of (., -),; and
J, we see that there exists C(aq,&,7)>0 such that, for all
u,ve H*(R?)

javy < Car,enlullp||v]e-

Besides, it is simple to check that, if y is mall enough, there exists
C(a1,7.€) > 0 such that, for all u e H*(R?)

3.7)

jauy = Car,y.e)|ulj.

The bilinear form j is thus continuous and coercive on H*(R?) and
the operator J is consequently sectorial on H!(R?). Additionally, the
linear operator R is defined from H?(R?) to H'(R?), and one can
check that there exists C(ay,7,€) > 0 such that, for all u e H*(R?)
|Rul;p < C@r, 7, 8| (3.8)
Applying the equality (3.7) to u e H3(R?), we get

jw,uy=(u,uy,  forall ue H3(R?).
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Because j is coercive on H? we obtain, via Cauchy-Schwartz
inequality

Jul?2 < Car, v, &) Jul |l forall ue H3(R?).
Going back to (3.8), the following property holds:
IRull?: < C(ar,y.&)|Ju i |ul,; forall ue H*(R?).

In particular, the Young inequality yields, for all 6 > 0
IRull: < S\Jull?: +Clar, ye)llul?,  for all u e H*(R?).

By a classical result that we can find in [22], —A is thus the
generator of an analytic semigroup on H'(R?).

Lastly, it is easy to check that F is Lipschitzian from the
bounded sets of H?(R?) into H'(R?). Combining several results
from [22, Chapter 3] and [27, Section 6.3], we conclude that there
exists t,>0 and a unique solution z. e Cl((0,t,),H (R?)N
C°([0, t,), HX(R%)) N C°((0, t,), H*(R?)) of the system (3.3). Thus,
there exists a unique solution w, e C'((0,t.),H'(2)) N C%([0, t,),
H?(2)) N C°((0, t.), H>(2)) to the system (3.1). o

4. Energy estimates

In this section, we perform energy estimates on the regularized
solutions of the third grade fluids' equations in the weighted space
H?(2). These estimates are independent of ¢ and allows us, in Section
5, to pass to the limit when & tends to 0. Thus, we consider the
solution w,(t,x) of (3.1). Let T, T > 1 be a fixed positive constant and
7o = log (T). We define W,(z, X), obtained from w, by the change of
variables (1.4) and (1.5). A short computation shows that W, satisfies
the system

0:(We—are TAW,) +ee T A* W, — L(W,)
+Ug - V(Wg—ale‘TAWg)+ale‘TAW€
+ale’7)2—<- VAW, — Be =27 div(|Ac|>VW,)
—Pe " div(V(IAel*) A Ae) =0,

divU, =0,
W£|‘r =10 — WO= (41)

where 7o =log(T), U, is obtained from W, via the Biot-Savart law
(2.10), Ae = VU +(VU,)" and we recall that

X
L(W,) = AW€+W8+§ -VWe.

By Theorem 3.1, it is clear that there exists 7. > 7o such that
We e C'((70.7:). H'(2) N C°(70. 7). H> (2)).

We also assume that the initial datum W, e H?(2) satisfies the

assumption (19) of Theorem 11, for some y>0. Let
n= [Wo(X) dX, we write the following decompositions:

Wé‘ = ’7 G +f &

U =nV+Ke, 4.2)

where G is the Oseen vortex sheet defined by (1.3) and V is the
divergence free vector field obtained from G via the Biot-Savart law
(2.10). Using the fact that £(G) =0, one has the equality
a‘l’(fe_aleirAfg)'i'eeirAz E_E(f&')_'_I(S . V(fg_aleitAfg)
+nV . -V(fo—ai1e TAf ) +nKe - V(G—a1e " TAG) +are " TAf,
+ale‘f)§( . VAfg+17ale‘TAG+;7a1e‘T%( -VAG+nee "A%G
—pe " div(IAc P Vf . +1|Ac PV G) — fe %" div(V(|Ae[*) A Ae) =0.
(4.3)

Let M = M(a, ) > 2 be a positive constant which will be made more
precise later. Let 7% € (7o, 7] be the largest time (depending on M)

such that, for all 7 € [7¢, 7%), the following inequality holds:
IWe@)l2: +are T IAW(D)|1% + X We(D)]|%
+aie T IXPAW (D)% < My(1-0)°. (4.4)
To simplify the notations in the following computations, we assume
that O0<y <1 and we take T sufficiently large so that a;/T =
ae” < 1.
Since W, e C°([zo, 7¢), H*(2)) and the condition (1.9) holds, Tk is

well defined. Furthermore, there exists a positive constant C
independent of W, such that, for all 7 € [z¢, 7%)

e AF[|% + | ixife
+ale 4 <CMy(1-0)°. (4.5)

n”+

lz-ll +a1€77

IXI2Af,

iz-f—‘

2
12

-2t

Indeed, using the Cauchy-Schwartz inequality, we get

14 1X)?
w1+ (X

1/2 12
1
—dX 14+ 1X12)? | Wo(X de)
S(/n@2(1+|X|2)2 > (/[RZ( +IX|9) Wo X))

< CHWO
Considering the decomposition (4.2) and the smoothness of G, we
obtain the inequality (4.5).

To simplify the notations, in this section we write finstead of f .,
W instead of Wg, U instead of U, and K instead of K.

The aim of this section is to show that the inequality (1.10) of
Theorem 1.1 holds for the regularized solutions of the system (4.1),
provided that the condition (1.9) is satisfied by Wj. To this end, we
consider a fixed constant @ such that 0 < 6 < 1 which is twice the rate
of convergence of W to #G in H%(2). In fact, we will show that, under
the assumption (1.9), the decaying of f to 0 in H*(2) is equivalent to
e~ 97/2, As it is explained in Section 1 of this paper, the spectrum of £
in L?(m) does not allow the rate of convergence to be better than
e~ 7/2,

In order to get the inequality (1.10), we construct in this section
an energy functional E = E(7) such that, for every 7 e [7¢, 7%)

E@) ~ If @7z o)

and there exists a positive constant C = C(a4, 3, 0) such that, for all
T €[10,T%)
0:E(t)+0E(t) < Cye~". (4.6)

This inequality will enable us to show that 7% = + oo and obtain, by
the application of Gronwall lemma

0= / W) dX = W) dX
RZ

122)

E(r) <Cye % forall 7 e[z, +00).

This functional is built as the sum of several intermediate energy
functionals in various functions' spaces, for which we perform
convenient estimates.

. . —(146))2
4.1. Estimates in H a+ey

We start by performing an estimate of the solution of (4.3) in the
homogeneous Sobolev space H /2( R?). Combined with the other
estimates, it will give us an estimate in the classical Sobolev space
H~1+9/2(R2) The motivation to do this comes from the fact that the
H'-estimate that we will perform later (see Lemma 4.3) makes the
term ||u||f2 appear on the right hand side of our H'-energy inequality.
In order to absorb this term, we look for an estimate in a Sobolev
space of negative order. To this end, due to Lemma 2.1 and the fact
that [,.f(X) dX =0, for 3 <s <1, one can apply the operator (—A)~*
to the equality (4.3) and take the inner L?>-product of it with (—A) ~*f.
Through the computations that we will perform below, one can see
that, in order to get the estimate (4.6), we have to choose at least
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s =(1+6)/2. Actually, since we have to absorb terms coming from the
non-linear part of (4.3), it is more convenient to take (1+6)/2 <s <1,
for instance s=(3+6)/4. In [23], the considered operator was
(—A)~34, which implied the restriction 0 <0 <1.

The next lemma summarizes the computations needed when
applying (—A)~° to (4.3) and taking the L?-scalar product of it
with (—A4)~%f.

Lemma 4.1. Let f e H>(2) such that Jw2f(X)dX =0, then, for all
1 <s<1 the three following equalities hold:

X 1
(a5 9) -a7F) == (s45)10-2 A1,
L
(=)L), (—A) )
=== *f)1% - (s%) (=4)"*f 172,

x ((—A)*S (g vAf),(—A)*5f> o s+ DI(=2)">*f |12,
(4.7)

Proof. Using Fourier variables, it is easy to see that

X o, S EEP 2
5 VAf =2I&Pf +>5-Vf.

The proof of this lemma is then obtained through the Plancherel
formula and direct computations. ©

%(-Vf: —f—g- Vf and

—(1+0)/2

In order to obtain a priori estimates of fin H (R?), we

define the functional

Ei(0) =1 ([[(—= )~ CHO4f|* paje=7|(— )~ T+O/4f|2).

The estimate in H~ "7/

the next lemma.

of funder the condition (4.4) is given in

Lemma 4.2. Let W e C'((zo,7¢), H' (2)) N C%((zo, 7¢), H>(2)) be the
solution of (4.1) satisfying the inequality (4.4) for some y > 0. There
exist y, >0 and Ty > 1 such that if T>Ty and y <y,, then, for all
T € [0, 7%), E; satisfies the inequality

0TE1+9E1+<1+¥0:18’7) [(=4)~ 074 |2 < CMPy(1— 022

+CMy(1 =0 (If 12y, + | VS |* +aZe 2N AFIZ ;) (4.8)

2) ®m”

where 8, 0 <6 <1 is the fixed constant introduced at the beginning
of Section 4.

Proof. Since  [.f(X)dX=0, according to Lemma 2.1,
(—A)~C+9/4f is well defined. Thus, we apply (—4) C+9/4 to
the equality (4.3) and we get

0c (=) CHOf ware (= A)1O/Af ) e (=) OV
—(=A)7CHIHLE)  —aneT(=A) TP
+aje T (—A)~ G+ (’g : vAf) =H(z,G,f,W), (4.9)

where

H(T,G.f,W)=(~A) B4 K.V(f —are "Af)—nV - V(f —are " Af)
—nK - V(G—ale’TAG)—nale*’AG_nme*T%(. VAG

—nee "A*G+fe % curl div(|A[2A)).

Taking the L>-scalar product of (4.9) with (—A)~G+9/4 and taking
into account the equalities

(= (=)= CHDAL(f)), (—A)~CHO/4f)
= [(~4)" (1+9)/4fH +<1+0>”( Ay~ (3+6)/4fH

and
<a1e*f(—4)*<3+">/4 (%( VAf)A—A)’“*"’/“f)LZ
_ (7%9>ale*TH(—A)‘(”e)/“sz,
given by Lemma 4.1, we obtain
%@(H(74)43*9)/‘7\\2+a1e*f||<fAr“*9)/4f|}2)
et -2 4 (L0 ooy

# (1 (550 )me 1o

= (H(z,G.f),(=A)"C+0/4f) . (4.10)

Now, it remains to estimate the right hand side of (4.10), that we
write as

(H(,G.),(=A) "0 s =1 + L+ I3 +14+Is,
where

= ()" CHO—K - V(f —are T Af).(—4)"CHOAf)
L =((=2)" CH4(—nV - V(f —are T Af),(—A)"BTOAf) .
I3 =((—=2) G4 —nK - V(G—a1e~"AG)),(—A)~B0/Af) .
lo= ((=2)7 G4 (—paye*AG). (- 4)~C+ 04,

+ (uA)*(“”’/“(fnale*é -VAG). (~4)”C+0f),
n ((—A)"3+H’/4(—nae‘7A2G),(—A)“3+9)/4f)Lz
_ ((—A)"”H)/“],(—A)’G*a)/“f)Lz,
Is = ((=4)~ G4 Be=2curl div(APA), (~4)~ /4 ..

The remaining of the proof of this lemma is devoted to the
estimate of these terms. We recall that curl K =f, curl V=G and
curl U= W. Since the divergence of K vanishes, we obtain

I = ((—=A)CHO4(—div(K(f — are " Af)), (—A)~C+/4f),
< [(=2)~CFOAYEK( —areTAf) [|(—A)~C 4.

Using the inequalities (2.1) of Lemma 2.1 and (2.15) of Lemma 2.4,
together with the Young and Hélder inequalities and the property
(4.5), we get

h < —— 5 [K(F—are AR ) [ (=4)~C O |

a- 6)3/

s gkl —are TAfHLZmH( 2)-0+004y]

Sﬂl\(—ﬂ)““a)/“fHZJr 0)3 [ iz IF 0 U = rne ™" A,

CMy(1-0)3

_ 2 _
< p[(—A)~CG+Orap) 2 1 (|[f||fz(1)+a%e 2T”Af”fz(]))’

4.11)

where y is a positive constant which is made more precise later.
Similar computations and the inequality (4.5) give similar
estimates for I,. One has

CMy(1-6)?

I < p|(—4)~C+OMAF|% 4 (I, + e T UAFIIE )-

(4.12)

Likewise, we estimate the term Is. Indeed, the same computations
and the smoothness of G yield

_ 2 _
I3 < p|(—2)~CO/f| +/TZ‘7)3HJ(HLZ(2)WHH1 IG—a1e "AGIE
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CMy(1-0)3

< [(—2)=COp |24 (1120, + IFIZ)(1 +re ).

Taking Ty sufficiently large so that ;e 7 <1, we get

CMy(l )3

I < | (— )~ CHO/4p) 2 4 W12, + [ VFI). (4.13)

Estimating I, is simple, because of the smoothness of G. We
remark that [,J(X)dX=0. Thus we can apply the inequality
(2.2) of Lemma 2.1 to obtain

J(-ay-orory) < L0 ey
(1-0)32
Using the above inequality and the smoothness of G, we can write
Cne

m”(_A)—(He)MfH

4 <
CMy(1—0)3e-27
——

It remains to estimate the term Is. The inequality (2.1) of Lemma
2.1 implies

<ul(—A)- G474 (4.14)

Cpe~—2*
15 <P vaara) .

Sa-0p”2 \(—A)“w”“f\\

m\

<p|(~a)-C+orap2 . S IVUARA)I%

(1 0)3| “>'

A short computation leads to

IVIAPA%, ,, < CIIVUPV2U|%

™= (0D

Using Holder inequalities, the inequality (2.15) of Lemma 2.4 and

the inequality (2.18) of Lemma 2.5, we get
IVUAPAIE ) < CIVUIIE IV2UIIR:

< W1 W (IWIZ + [ VW12

(1)
@) @
Finally, taking into account the inequality (4.4), we get
332,301 __ 18,41 T
2+CMﬂy(L 0)°e <]+e_)

Is < p|(—4)~C+0/4f Ol1

CM3}/3(1 _0)186—31
4 .
The equality (4.10) and the inequalities (4.11)-(4.15) imply that

<ul(—4)~ G2 4 (4.15)

%af<u<—A)—<3+“’>/“f|\2+a1e*’H(—Ar“”)/“fuz)
1-20u+6 -
() I-yer o

o i [ T i

3 _0\3p-21 —_0)3
SCM y(1-0)%e +c1v1y(1 0)

M H
(I W2+ | VF* +ade 2 IAFI ).

Setting u = (1—6)/20, we finally get

(4.16)

t)TE] +9E1 + (1 —I—ﬂaﬂ?

i )H( )~ O+ |2 < CMPy(1 - 0)%e 2

+CMy(1 =0 (If 2y, + | VF | >+ Fe (I AfIZ,,). O

2) 1

4.17)

4.2. Estimates in H'(R?)

We next establish the H'-estimate of f. As explained earlier, we get
it by performing the [2-scalar product of (4.3) with f. In this section, we
will see how useful Lemma 4.2 is for absorbing bad terms which

appear in the computations made below. One defines the functional
Ex(@) =3 (|If*+are || Vf[[?).
The H'-estimate of f is given by the following lemma.

Lemma 4.3. Let W e C!((z0,7.), H'(2)) N CO((z0, 7¢), H*(2)) be the

solution of (4.1) satisfying the inequality (4.4) for some y > 0. There

exist yo >0 and Ty > 1 such that if T>Ty and y <y,, then, for all

T € [19, 7%), E> satisfies the inequality

1
0;Ey+E, +§|\vf\\2+§e—zfu |A|vf|\2
< |IF | + My —0)5(|f|* + | IX12f | *) + CM2y (1 — )P 7,

(4.18)

where 0, 0 <@ < 1, is the fixed constant introduced at the beginning
of Section 4.

Proof. Taking the L?-inner product of (4.3) with f, performing
several integrations by parts and taking into account the equalities

(— L) = ||Vf]|* -3

and

ae ° <)—< - VAf,f) =ae "
2 :

we obtain the equality
0:E2 +Ex+ee || Af|]> + (1 —are )| Vf |2 + e~ ¥ || |AIVF]|?
=|If|[>+1 + L +13+15+]s, (4.19)

where

I =—& - V{f—aie "Af).f)p,
L= —nK-V(G—are "AG).f)z,
I3=—nV-V({f—aie "Af).f)q,

14:—;70{1(3’7( AZG+AG+ VAGf>

+npe”* (div(JAPPVG),f)z2,
Is = (fe =" div(V(AI?) A A). ).
We notice that, since K is divergence free, (K- Vf,f),2 =0. Inte-

grating by parts and using the inequality (2.15) of Lemma 2.4 and
the inequality (4.5), we obtain

I = —ale’T(KAf, Vf),_z
<Caie”

< Ca1e

WU, | ATV

< C/arMy(1-6)5e=/2||vf||
CM?y2(1-0)"?
gﬂuvf\ﬁ%e*z

where y > 0 will be made more precise later.
By the same method, using the inequality (2.14) of Lemma 2.4
and the smoothness of G, one has

L =nK(G—-aie *AG), Vf),2
< I[K] s [G—ane ™" AG 4| Vf |
< Ca+are)ml|f |z VS|

CMy(1—0)°

T

(4.20)

<u|vF|*+ (F I+ 11X PF| ). (4.21)

The same method gives

I3 = —ale”n(VAf, Vf)l_z
<are " nl||V||= || AfIIVSI
< CyarMy(1-0)°e~ /2| vf||
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CM?y2(1 —9)‘26,,
u
Because of the regularity of G, the estimate of I, is simple. Indeed,
an integration by parts and Holder inequalities yield
ls < Cinl(e+an)e "Ilfl| —npe~ > (APVG, Vf)2
< Clnie+ane*|[fI+Clnlpe 27|

<u|VF|*+ (422)

Then, by the inequality (2.13), the continuous injection of H'(R?)
into L3(R?) and the inequalities (4.4) and (4.5), one obtains

“TIFI 4 ClglBe = 2 UWIE 1V || 5
< Cle+a)My(1—6)°e~"+Cinlfe " W7 (| Vf

Iy <Cinl(e+ar)e

|+ 1Af1)
< Ce+a)My(1—6)5e 7+ CM32y32(1 - @)% 372
<CM*?y(1-6)%e 7. (4.23)

Finally, using the same arguments, due to the inequality (2.13) and
the continuous injection of H'(R?) into L*(R?), one has

Is = — e~ 2 (V(AP®) A A, V)2
< CPe”7||VU| 4 ||V2U|| s |AIVFI
<Cpe W[ HWHHz HIAIVfH

< CAMy(1—0)be 27 HIA\VfH

o ‘ZTHIAIVfH +CM272(1 0)'%e". (4.24)

Taking into account the inequalities (4.20)-(4.24) and assuming
that y < 1, we deduce from (4.19) that
90:Ey+Ey+(1 —3y—a1e*7)|\VfH2+'§e*ZTH AV

CMy(1-6)°
#d\f P+ 1XPF ")+ CMPy(1 —6)°e .

(4.25)

If we choose for instance y =4 and T, large enough to have
ae” 7_4, we get

2
<|fI"+

1
s+ Ex-t 3| VF |2+ Be 2 iy
< |FIP + My —05(|f >+ [ IX12f |H+ CMP*y(1—6)fe~7. o
(4.26)

To achieve the H'-estimate of f, we have to combine the
inequalities (4.8) and (4.18). We can interpolate If|> between
[(=4)=0+/4F|* and |vf|*. Indeed, via Hélder and Young
inequalities, we get

2 2 1 20040)/3+0) (71201 +0)/(3+0) (F14/(3+ 0)
Hf” =(2m) -/Rzmlfl If \fl dé

2/B+0) N 1+6)/3+6)
< @ny </2|§|”9m2 dé) ([ erireae)

< H(_A)7(1+0)/4f”4/(3+9) HVfH(2+29)/(3+9)

140 2\ /8)\ (102 _
<( >8H v+ (3+9) (g) [(—a)-0+0sf|2

Since, 0 < @ < 1, we obtain
I <3 9F2+5 /(=)= Orag| 2 (4.27)

Thus, we have

1
0.E, +E; +Z|\Vf\\z+ge—zfu |A|vf|\2

<5||(— A)"”H)/“fHZJrCMy(l 0)5
<([f 1+ [1XPF )+ CM?y(1— )0 7. (4.28)
We define E3 = 6E1 +E,. The inequalities (4.8) and (4.28) give
0cE3+0E3+(1+3 (1-O)are™")|(—4) =1 +0/47| *
+1Vf]? < My —0)%e T+ CMy(1 - 07 (|f > + | vf |
+ade | Af |+ [ IXPS]* +ade 2 IXI2Af| ).
Interpolating again ||f || between | Vf|?* and |(—A4)~ @ +®/4f||* and
taking y sufficiently small, we obtain
0:E3+0E3+1 [[(—4)~ T+ 2 L 1| vf | < CMPy(1—0)%e~*
+CMy(1— 072 (@5e 27 | Af | + | IXIPf | > + ade 2 [ IXPAf ).
(4.30)

(4.29)

4.3. Estimates in H*(R?)

We now perform the H?-estimate of f. This is done with the
same method as for the H'-estimate in the previous section.
Indeed, we perform the L?-product between (4.3) and — Af and,
after some computations, we see that the inequality (4.4) enables
us to absorb all the terms involving the H*-norm of f. Combined
with (4.30), we get an estimate in H?, where only terms with
weighted norms remain. More precisely, we introduce the follow-
ing functional:

Ea(@) =} (|Vf|* +ane =" | AF ).
The H?-estimate of f is given by the lemma below.

Lemma 4.4. Let W e C!((to,7.), H' (2)) N C°((zo, 7c), H3(2)) be the

solution of (4.1) satisfying the inequality (4.4) for some y > 0. There

exist y, >0 and To > 1 such that if T>To and y <y, then for all

T € [70, T%), E4 satisfies the inequality

0.Es+Ea | AF [P Do -2 A af | < 2] vf P+ Myt -0
+ My (1= (IF |+ | VF*+ [1XPF . (431)

where 6, 0 <0 < 1 is the fixed constant introduced at the beginning
of Section 4.

Proof. We take the L?-product of (4.3) with — Af. Doing several
integrations by parts, it is easy to see that

(=L, -

and

X 1
~(me 5 VALAF) —jme|Af|”

Furthermore, one also has
Pe*"(div(APVf), Af)
2
— fe 2 ||AIAf|? +fe 3 /RZA:ajAaijf dX.
j=1
Using Hoélder inequalities, the inequality (2.13) of Lemma 2.3, the

continuous injections of H'(R?) into [*(R?) and the inequality
(4.4), we get

Pe % Z /A 9Adf Af dX < Che=% | |AIASIIIVAVS]

< Cpe= > [IAIAF(|[[V2U |V £] s
< Cpe | AIAF VW L[|V L
<ppe”* || AIAfI°

C
Lo w5+ A )
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< e ||JAIAS |2
6
MO g+ AP

where y; > 0 will be chosen later.
Consequently, we get

0cEq-+ee 7| VAF|”+ (1-Sle ) | AF[*+ 50 — e |AIAT|?

CMy(1—0)°
Hiq

< |vf|*+ e (| VFP+ | Af|[P) + 11 + Lo+ L5 + 14 +1s,

(4.32)

where
L=U-V(f-aie "Af), Af)2,
L=nK-V(G—aie 'AG), Af),
Iy = nale*t<iAzG+ Ac+X vac, Af)
(¢4 2 12
+nfe”*(div(APPVG), Af);z,
Iy = fe=(div(V(IAI*) A A), Af)p2.
Integrating by parts and using the divergence free property of K,
one can show that
2

L=— % /R aUjofaf dx.

jk=1
Due to the Gagliardo-Nirenberg inequality and the inequalities
(2.13) and (4.4), it comes
I < CIIVUII| Vf |7

< CIVUIIVSIIASI

CMy(1-6
suzuAfH2+L

(4.33)

where ., > 0 will be chosen later.
We now estimate I, with the help of the inequality (2.15) of
Lemma 2.4, the inequality (4.5) and the smoothness of G

I, < I1IK||1~||G—are " TAG] | Al
< Cpl(+are I IFLS | AF)|

12(2)
SﬂzHAfHZJrM(HfH - VF P+ DX, (4.34)
We rewrite
L=0L+I,
where

I} =naye" <£A26+ AG+X . vaG, Af) ,
aq 2 ?
3 =npe 2 (div(APVG), Af),2.

Using the good regularity of G and the inequality (4.5), one can
show that

I <CM'2y12(1-0)%e 7| Af||
CMy(1-6)°
< | Af [P+ e

The estimate of I3 is slightly more complicated. Actually, we can
bound I§ by two kinds of terms that we estimate separately. In fact,
it is easy to see that

< C\mﬂe*”/w|VA||A||VG||Af| dX+Cm|/3e*27/Rz |AI?IV2GI|Af]| dX.

(4.35)

Each term of the right hand side of (4.35) can be estimated
in a convenient way. We use again the inequality (2.13) of the

Lemma 2.3, the inequality (4.4), the Holder inequalities and the
inequality (4.4). We get

leﬁe*zf/2|VA||A||VG||Af\ dX < Clylpe= > | V2UIIIVG]|=[[|AIAf]]
R

C 2
<mpe s+ U e vw 2

2,201 _@\12

< e aiaf P ML=
Hi

By the same way, we have

CM*y*(1-0)"
Clnlﬁe‘z’/w JAPIV2GIIAf] dxsulﬂe‘ZTlllAlAf\lz+%€‘2’,
1

and thus we have shown
CMZ 2 1 _9 12
B <2u,pe 2 |lAAf|2 + A =07, o
181
Finally, assuming y < 1, one has
CM*y(1-0)° .
.78
minGuy. )
It remains to estimate I4. Recalling that U =#V +K, one has

I < piy | AF |2 +2p, fe =27 ||| AL AF| > + (4.36)

Iy < Clﬂlﬁe’k/ IVAIIAIIV2V]|Af| dX+Cm|ﬁe*2’/ IARIV3V|IAf) dX
R? R?

+Cﬂe*2’/ |VAJIA|IVZK || Af] dX+Cﬁe*21/‘ ARIV3K|IAf) dX.  (4.37)
JR? JR?

We have to estimate each term of the right hand side of the
inequality (4.37). The first two ones can be estimated exactly like
we did for I§ . The inequality (2.13) of Lemma 2.3 and Gagliardo-
Nirenberg inequality yield

e*”/m\VA||A||v2KHAf\ dX <y e % IAIAS|?
Cpe~

x 21112 25112
+T”V Ullz || VK|
<ty ﬁE’ZTI}IAIAf\IZ

+Cﬂ “vwi e

L4

<t /fe—2’|\|A|Af\|2

C
ﬂe “lvw] jaw] |ve] | Af].

Due to the inequality (4.4), we get
ﬁe‘ZTAZ\VA||A||VZI<|\Af\ dX < p, fe 2T AIAf|?

CMv(1 — 6,—37/2
LMy -0)e

2 IAf .
e oA A

By the same method, we obtain
/)’e*Zf'/RZ|A|2|V3K|IAf| dXsmﬂe’z’llIAIAfH2+%;21||VUfo | V2K
<ﬂ1ﬁe‘2’HlA\AfH2
L W YW 61T

smﬁe‘”HlA\Asz
+CMy(l —0)%e-~
Hq

[1AF.

Finally, we have shown that

CMZ 1— 6,—7
I434/41[}6‘27“|A|AfH2+y(T9)e(HVfH2+HAsz). (4.38)
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Going back to (4.32) and taking into account the inequalities
(4.33), (4.34), (4.36) and (4.38), we get

0cEq+(1-3p, —Je-f) IAF|[2+(1=7u;)pe= = |JAIAF|2 < || Vf|2

CM?*y(1-6)° 2 2 2
— A
i (1571 + 7]

CM?*y(1-6)° _

+[IXPf |+t = e

X IO+ minge )

Taking for instance y; =4y, 4, =15, y small enough and T =e%

large enough, we finally have

0B+ Ea+2 | AF|* + D¢~ AIAF < 2| vF | +- My (1~ 02
+CMPy(A=O)°(If|[+ || VFI2+[IXf]2). o (4.39)

In order to finish the H?-estimate of f we define a new
functional Es as a linear combination of E3 and E4 given by

Es = 16E3 +E4.
From the inequalities (4.30) and (4.31), it is clear that one has

0.Es+0Fs+8](—A)~1+0/4f)
+31VF* +3 | AF|? < CMPy(1 - 0%+
+CMPy(1 = 02(f |* + | Vf |* +ate =27 Af|*
+[IXI2 | +a2e 2| IXPAF ). (4.40)

Using the interpolation inequality (4.27) and taking y small
enough and 7y = log (T) large enough, we finally obtain
0cks +0Es + 7] (—4) O f P | vf |

+1[AF|* < CMPy(1-6)%e

+CM?y(1 -0 (|[IXP*f||> + ate =% || X2 Af||*). (4.41)

4.4. Estimates in H*(2)

In order to achieve the estimate of f in H?(2), it remains to
perform estimates in weighted spaces. Combined with the
inequality (4.41), it will give us an estimate in H?(2). To do this,
we make the [2-scalar product of (4.3) with |X|*(f —aie " Af). We
define the functional
Es(0) =3 [ IXP(f—are  TAD|*.

Before stating the lemma which contains the estimate of Eg, we
state a technical lemma, which gives the terms provided by the L>-
product of the linear terms of (4.3) with [X|*(f —aye~TAf).

Lemma 4.5. Let feC'((zo,7¢), H'(2)) N CO®(zo,7¢), H>(2)) and
HX,7.f)= IX|*(f —aie~“Af). For all 7 e(to,7,), the next equalities
hold:

1. (—f.HX.7.f)p = —|[IX1*f)?
+8are 7 |[IXIf||> — are 7| IXI2 VS|
2. (—Af,HX,7.f)p = are 7 |[IXIPAf|?
—8||IXIf||2 +[[1IX 12 V£ |2
X 3
3. (,E.Vf,H(X,r,j)>L2=§|||X|2f|\2—24ale*’|}|X[fH2
+3are” 71X 12 Vf]|2
—%e—f(x VAF. XI*).
1
4 (=L HX 7. /)2 = 5[ IXPF|[* + (A +2a1e )| IX 12 vf |

+are”T|[IXIPAf|?

—(8+16ase~7)|[IX|f||?
~ eI X - VAL X,

<a1e*7)i(~ VAf,H(XX, T,f)> :%e*T(X - VA, |X|4f)L2
LZ

3a?
le

+ 27||\X|2Af“2

6. ee*’(Azf,H(X,T,f))Lz:8ale*2’(|\|X\ VASF|? - 8|IXIAf|?)
+ee"([|IXIPAf||? - 8[1XIVf|[?
+32[f2-16]X - 512

Proof. All these equalities are obtained via integrations by parts.
We only show the first four ones, the others are obtained with the
same method. Let us show the equality 1. Two integrations by
parts imply

(—f X — e T Af)2
2
= — [ IX1Pf|* —are 7 IXIPVF||* —4are 7 z /RZX“XRfajf dX
Jj=

2
= — |IXPf > —are | IXPPVf|* —2are 7 ¥ [ X;XI29i(f) dX
j=1J/r?

= — |IXPf | —are 7| IXPPVSf|* +8are*

The equality (2) is obtained through the same computations. We
show now the third equality of this lemma. Integrating by parts,
we obtain

X; |X|4

o(f1?) dX

XIXI

(-39 wiG-amean) —- z

+ale‘f Z

of Af dX

] )
2

3 2
:§|\|X|2fH2+a1e*T Z/
j=1/r?

Besides, integrating several times by parts, we get

X; \X|4

4
ey [ XX rArdX = e z /fa,(x x| Af)
j=1
=73a1e’7/ XIFAS dX

— e X VAL Xy

H |X[f||2 +3ae”
— e X VALIXE ),

= —24a.e” gD Gavils

and consequently
X 3
(—5- vf. IXI“(f—one*’Af)) , = S IIXPS|[* =24ae Xy

+3me" al e~ "X - VAS, IXI*f),2.

The fourth equality of this lemma is obtained by summing the first
three ones. By the same method, we obtain easily the equalities
(5) and (6) of this lemma. ©

The H?(2)-estimate of f is given in the following lemma.

Lemma 4.6. Let W e C!((t0,7.),H' (2)) N C°((zo, 7c), H3(2)) be the
solution of (4.1) satisfying the inequality (4.4) for some y > 0. There
exist yo >0 and To =1 such that if T>Ty and y <y,, then for all
T € [79, 7%), Es satisfies the inequality

a
aTE5+9E6+—H|X|2fH +4H|X| VE|*+ e [IXPAf |

1024

<CM*y(1-0)°e "+ HfH +CMm? 1/2(1 0)®



82 0. Coulaud / International Journal of Non-Linear Mechanics 65 (2014) 69-87

(I + [ 12+ AP,

where 0, 0 < 6 < 1, is the fixed constant introduced at the beginning
of Section 4.

(4.42)

Proof. To show this lemma, we perform the L2-product of the
equality (4.3) with |X|*(f—a;e~"Af). Applying Lemma 4.5, we
obtain

1
0cEg +5]|IX1%f||* + (1 +are =) IX*VF |2
2
G e LY

= Cee 7| IX|Vf|]?> + Ceare~2|[|IX|Af||* +(8+8are~)||IXIf|?

+hL+L+13+14+15, (4.43)

where
J=—Pe > (div(APVf), XI*(f —are” TAf)2,
L= (K- V(f—are "Af), IXI*(f —are " Af))2,
L =n(K - V(G—are " AG), IX[*(f —a1e " Af))2,
Iy =n(V - V(f —are "Af), XI*(f —a1e " Af))z,
Iy = —nee” ((A°G, X > (f —are~TAf)),2

+noe” (AG+ - VAG, X4 (f—aqe TAf))

—npe > (div(APVG), XI*(f —are~ TAf)2,
Is = — e~ *(div(V(AP) A A), IXI*(F —are " TAf)) 2.
We now estimate J. One has
J=J]1+)2 (4.44)
where

J1 = — e 2 div(AP V), IXI*f)2,
Jo = Pare 3 (div(APVS), IXI*Af)z2.

We estimate J; and J, separately. Integrating by parts, we obtain
Ji=PBe ¥ IXPIAF|* +4pe > 37, /RZXJIX|2|A|2ajff dX.

Using Holder and Young inequalities, we obtain

2
‘4ﬁe‘27j_21 fszj\X|2|A|zajﬁ‘dX sge‘27\||X|2\A|Vf{|2

+Cpe > IXIf|* VU~

Then, using the inequality (2.15) of Lemma 2.4, the inequality (2.4)
of Lemma 2.2 and the conditions (4.4) and (4.5), we get
4/1’6*2’ Z ﬁ e~ 2| IXIZAIVf |

+Cﬂ€’2’HIXIZfH I£1 HVWHHl VW[ 2

@

sﬁ S IXPIAVE]® + CMPA(1 - 0) e,
and we conclude that
A zge-zfu IXPIAIVF | — CM?p2(1—6)2e 7. (4.45)
By the same way, we estimate J,. A short computation shows that
Jo =Pae | IXIZIAIAf\|2+Z[}ale’3T i] /R2 IX|0;A : Aoif Af dX.

j=

We define
1_‘2ﬁa1e 3 z / X[40iA - AanAde’

Applying Holder inequalities and the continuous injection of

H'(R?) into L*(R?), we obtain
I'< Chare™ > || IXPIAIAS | [IXIPVS | 4 IV2U |
< Chare ™| IXPIAIAS] | XP V] s [ 72U

Using the inequality (2.6) of Lemma 2.2 and the inequality (2.17) of
Lemma 2.4, we get

[ < CPare 3 |[IXI2IAIAS||11X12Vf]| /2
<2+ IXIVFY2 4 [ IXPAF 2] [W e

Due to the Young inequality and the condition (4.4), we obtain
Is§a1e—3f|\|X\2|A|Af\|2
+CBare TUWIR (I + (| VF (> + [[IXI*VF |2+ [[IX 12 Af (%)
sg(xle’37\||X|2|A|Af||2
+CMy(1—=0)°e =27 (||f |+ || VS |2 + [ IX P VF >+ [IX P Af[[?).

Thus, we can conclude that

Jzzgale*3f|||X|2\A|Af|\2
—CMy(1=0)°e ™ *(|[f ||+ | VFI> + [ IX PPV [[2 + [1X I AF|[?).
(4.46)
Combining the inequalities (4.45) and (4.46) and going back to
(4.44), we have shown that
1>ﬁe*2’(H|X| AIVF|[ +are =7 || IXZIAIAS |*) — CM2y2(1 - 0)'2e -
—CMW—9)66*2’<Hf||2+!IVf||2+HIXI VFIP+ X2 Af]?).
(4.47)
Taking into account the inequality (4.47), the equality (4.43)
becomes
1
9cEe+5[IXPf||* +(1+are D)|[IXIVF|[2
2
+<ale’7+%e’2’> [Ix12Af|?

e-2e(| XPIAIVS | +ane | IXIAIAF )

< Cee 7 |IX|Vf > +Ceare™ 2 IX|Af | > +(8+8are~ )| IXIf ||
+CMy(1=0)°e =2 ([[f[|2 + || VF 1>+ [[IXIPVF | + [ IX1* AF[*)
+CMP P21 -0)2e "+ I+ L+ 15+ 14 +s. (4.48)

It remains to estimate every I;, i=1,...,5. Using the divergence
free property of K, integrating by parts and using Holder inequal-
ities, we get

2
L =-2%
ji=1
< C[[K ||~ X1 (f — ane *ANII|[IXI(f —are =T Af)]].
The inequalities (2.15) of Lemma 2.3 and (2.4) of Lemma 2.2, the
Young inequality ab <3 a*3+1b* and the inequality (4.5) yield
I < U IF IS X6 — ane =" AD|P2|If —are = Af||2
< CM'2y1 21— 0P (|| X 12(f —ane A2+ ||If —areTAf]|?)
< CM'2y12(1 -0 (|| IXI?f||? +ate 27| [IX12 Af |2
+FI?+ate* || Af?).
Using the inequality (2.14) of Lemma 2.4, one can bound I, in a
convenient way. Indeed, one has
I < ClnlIIK]| 4 [IXI* V(G — e TAG) |4 [[IX*(f —are~Af)]|
< Cnlf | oy (IIXIPF | +ane ™" [IXI2Af])
<My 21 - 0P (|IXPS|* +ade > | IXPAF*+ (]

RZXJ-\X|2K]-[f—ale_TAf|2 dx

(4.49)

(4.50)
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Via an integration by parts, due to the facts that V(X)-X =0 and
div V =0, we show that I3 vanishes. Indeed

2
=" 3 / IX1*V;0,(If —are " Af?) dX
2j:1 R?
2
=-2nY y IXIX;V;lf —are TAf?> dX =0.
j=1

We rewrite I; = I} +12, where

I = —nale‘7<iAzG+AG+¥v VAG, |X|2(f—ale‘TAf)> ,
a1 2 12

I3 = —npe~2(div(AIPVG), IXI*(f —are " TAf))2.

It is easy, using the smoothness of G and the inequality (4.5), to see
that

15 < Clyle 1G] o, (I I+ are "IAFI ) < CMy(1-6)°e .

The term I3 is not really harder to estimate. Due to the inequality
(2.13) of Lemma 2.3, the inequality (4.5), the continuous injection
of H'(R?) into L*(R?) and the inequality (4.4), we get

13 < inife =2 (IVUIZNIXI*AG] |1~ +[|VU 4| V2U |« [ IXI*VG |1~ )
% ([IF]|+ane || arn)
< Cinlfe= 2 (IWIZ+ W] [ YW/ ) (I | +are 7| Af)

<Clnle 2 (IWIZ: + | W [W/, ) ([[F1+are1ar0)
<CMPp2(1-0)2e =32,

Thus, assuming y < 1, the following inequality holds:
Iy < CM?y(1—0)%e 7. 4.51)

It remains to estimate Is, which is the term that does not appear in
the second grade fluids' equations. We rewrite

Is=I5+12,

where

I} = — e 2 (div(V(IA”?) A A). IXI*f)2.
12 = fare > (div(V(IA”?) A A). IXI*Af) 2.

We begin by estimating Ii. After some computations, we notice
that we have to estimate two kinds of terms. In fact, one has

=i i,

where

I5' = Cﬁe‘2’/2|X|“|V2U|2|VUHf| dX,
R

L2 :Cﬁe‘27/2|X|4|V3U||VU|2[f| dx.
R

In order to simplify the notations, we set
5=My(1-6)5.

Applying the inequality (2.6) of Lemma 2.2 and the continuous
injection of H?(R?) into L*°(R?), we obtain

15" < e [ IXIV2U |+ VU i [ IXIFI

< Cpe (|W|+1XxIvWI) (IVWI-+ IIXIAWI ) 19U [ IXF.
Then, using the inequalities (2.4) of Lemma 2.2 and (2.17) of
Lemma 2.4 and the conditions (4.4) and (4.5), we get
11t < e (W) +Ivw | 2[IX2vw|[1/2)

<(IVWII+ [[AW[[V2[[IXI2AW [[V2)[W [ [ IX2F

< C59731/2 (61/2_'_51/4” |X‘2VWH]/2) (61/24—5]/461/4“ |X|2AWH1/2)

Then, we recall that W =#G+f. Due to the fact that || < 5'% and
the smoothness of G, we obtain

I;’] < CSe—37/2 (51/2+51/4H |X‘2VfH1/2> (51/2+51/4e‘r/4H|X|2AfH1/2>
SCéze,3,/2_'_C57/46731/2” |X|2VfH1/2+C57/4675¢/4H IXIZAle/Z

+C8 e =54 1X2vf |2 | IX 12 Af |2

Using the Young inequalities ab <1a*+3b*? and ab < la342 b2,
the inequality (4.5) and assuming y < 1, we finally obtain

I} < c8%e 324 ¢ (| IXIPVF >+ | IX2Af|12)
+C8°P (e e 52) +.C5" e T X2 Vf |2
<C8e 32408 (| IxPVr| P+ [|IX2Af |2)
+C8” (e ¥ 47 53) 4-Coe 2+ C8%||IX 12V ||?
< CM?y(1-6)°e 72+ CMPy2(1-60)'2 (| IX2VF |12+ | IX AT |2).

(4.52)

12

In order to estimate I;, we use the Holder inequalities and

obtain
13% < CPe 2| IXIAVAU[IIIX %S | 1 IVU %
Then, using the Gagliardo-Nirenberg inequality, we notice that
XAl < [IXPF] 2 v axien ]2
< |2 () + i)

The inequalities (2.13) of Lemma 2.3, (2.20) of Lemma 2.5 and the
continuous injection of H'(R?) into L8(R?) imply
13% < CPe2 | IXIPVAUIIIX %S | IVUII%

<CPe > (IWI+[[IXIVWI + [IXPAW])

IR X+ X 2wz

Finally, using the conditions (4.4) and (4.5) and the Young
inequality ab <1a*+3b*”, we obtain
I;J < C57/4e—3r/4|“x|2f”1/2
<C8%e "+ C8||IX1Pf|)?
< CM*y?(1-0)"2e "+ CMy(1-0)°||IX1*f 2. (4.53)
Thus, combining the inequalities (4.52) and (4.53), we obtain
I} < CMPy(1—6)%e "+ CMPy(1 —6’)6<}||X|2f||2
+[|IxEvr |2+ xi2as]?). (4.54)

It remains to estimate I2. Like in the case of I}, we have to consider
two kinds of terms. Indeed, one can show that

B<IP' 122

where

2 =Ca1ﬁe*37/ IX|4|V2U?|VU| | AS] dX,
RZ

22 :Calﬂe‘37/2|X|4|V3U||VU|2|Af| dx.
R

With the same tools as the ones used to estimate Ii, one can bound
Iéj. Due to Hoélder inequalities and the continuous injection of
H?(R3?) into L®(R?), one has

B < Canfie= |IX2AF| | XIVU| 5| VU
< Canfre > | IXPPAS || IXIV2U 72 | VU .

Then, using the inequality (2.6) of Lemma 2.2 and the inequality
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(2.17) of Lemma 2.4, we obtain
I3 < Cay e || IXP AW I+ IIXIVW DAY W + I XTAW DWW |2
Finally, the condition (4.4) and the Young inequality imply
21 <8 %e7||IXPAS|
< CM?y2(1-0)"2e~ 2"+ CMy(1-0)°|| X 1> Af || (4.55)
Likewise, using the inequality (2.20) of Lemma 2.5 and the
continuous injection of H2(R?) into [(R?), we get
12% < Cpae™ ||| XPAf | IIXIPV2UIIVU 17
< Chare* [[IXPAF| (|| Wi+ 1IXIVW I+ IXPAWI ) IWIZs.
<C3'"%e= 2| IX2Af|[IIWI123.

Using the well-known interpolation inequality

we obtain, using again the condition (4.4) and the Young inequal-
ity
157 < C8"%e 27| X1 AF||IW/| g | Wl

< C53/2 —3‘[/2H|X|2Af||

1/2 v ;’/22 for every v e H?(R?),

< CM*y?(1-0)"%e >+ CMy(1-0)° ||| X2 Af || (4.56)
Finally, the inequalities (4.55) and (4.56) imply
I2 < CM*p*(1—-0)2e 3+ CMy(1 - 0)°|IX 2 AF ||*. (4.57)
Thus, combining the inequalities (4.54) and (4.57), we get
Is < CMPy(1-0)°e ™"+ CMy(1-0)° (|| IXPf
+[[IxEr |+ xi2as]?). (4.58)

Taking into account the inequalities (4.49)-(4.51) and (4.58) and
going back to (4.48), one has

a,EG+%{||X|2f|}2+(1+a1e’7){|\X|2Vf|}2
+<ale*’+%%e*2’> [IXI2AF|? - 8+ 8aze ™) IXIf] 2
< Cee7|IX|Vf||*+Ceare 2| IXIAf | * +CM?y(1-0)%e ~*
w207 (|[r2+ [ vFIP+ | af )
+CMPy 21— 0% (|| IXIZFI2 + [ IXPVF|2+ [ IXPAT| ). 459)

Via the Young inequality and the condition (4.5), it is easy to check
that

e[| IXIVf|]? +Ceare 7| XIAF|]? < &2||IXI>Vf |* +Ce~ || Vf| ]2
+&2(|IX2AS |2+ Cate™ || Af[[* < [ IXIP VF|[* + &2 [[1X1* Af |
+CM(1-0)°e=7".

We assume that ezgmin(%,me*TO/Z). The inequality (4.59)
becomes

1
0o 3 |IXPF +( tare )Hmzvﬂ\2

+ (Gem+ Gle ) IXPAT| - s P =
CM?y(1-6)%e~"+8||IXIf||?
+CiM2y 2 -0 (|IF|2+ (|95 12+ | Ar?)
+ M2y 21— 0 (| IXPFI2+ [[1XI2VF 2+ [1X12AF[2),
(4.60)

where C; is a positive constant dependent on ; and /.

We take now y sufficiently small so that C;M?y1/2 (1-6)° <
(1-6)/4. We obtain

0 1-0 1
ocks+ (5050 ) IRF+ (3 ane~ ) X2
2
+ (e Ge ) IXRAT P —sane Xy
< CM?y(1-6)°e ="+ 8||IX|f||?

+CiM2y 2 =60 ([IFI12+ (9512 + | AF|P)- (4.61)
Using the inequality (2.4) of Lemma 2.2, one has
8[IXIf||* < h|IXPf|? o h |\fH forall h> 0.
Thus, we set h=(1-6)/8 and obtain
0 1 1
d:E+ <2+—> 11X 12f]) >+ < +aje” f) |1X12vf|?
+ (Oge-f+71e—21) |IXPAF | —8are " |IXIf |
< M2y (10 e~ 4120 |2
+CiM2y 2 =0 ([IFI12+ (19712 + | AF|?)- (4.62)
Integrating several times by parts, we notice that
1 o?
= S| IXPF | +are =" |IXI2VS|* +5te > | IXI2Af
—8are 7| IXIf|.
Consequently, the inequality (4.62) can be written
1-0 a
0cEg+ 05+~ | |X|2f\|2+ IIX2vf? +4e |IX12Af |
1024
<CM?y(1-0)°e "+ wz
+CM*y'2(1-6)® x (|}f||2+||Vf|}2+|}Af||2). o (4.63)

5. Proof of Theorem 1.1

In this section, we consider the solution W, of (4.1) with initial
data Wy satisfying the condition (1.9) for some y > 0 and we take
advantage of the energy estimates obtained in Section 4 to show
that W, satisfies the inequality (1.10). Then, we pass to the limit
when ¢ tends to O and show that W, converges, up to a
subsequence, to a weak solution of (1.6) which also satisfies the
inequality (1.10). We recall that

W& = 776 +fga
where G is the Oseen vortex sheet given by (1.3), 7= [ Wo(X) dX
and f, satisfies the equality (4.3). We define the functional

K
1-0
where K is a large positive constant that will be made more precise
later and Es and Eg are the energy functionals defined in Section 4.

If K is large enough, this energy is suitable to estimate the H?(2)
norm of f,, as it is shown by the next lemma.

E; = Es+Eg,

Lemma 5.1. Let f, e C'((zg,7¢), H'(2)) N C((zo, 7). H3(2)). If K is
large enough, there exist two positive constants C; and C, such that,
for all T e (79, 7e)

C
Ey < 725 (Ifellin +ane ™ | AL 2+ | X |2+ ate 2 IXI2AL. ).
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Co([[fe i +are ™| A |+ |XI2Fel [+ ade > XA, |*) <E7.

Proof. The first inequality of this lemma comes directly from the
definition of E;. To prove the second one, we notice that

CK 2 _ 2\ 1 _ 2
E7 Zm(ufSHH]_'_ale THAsz )+§H|X|2(f£—(l]e TAfg)” .

Furthermore, we have already shown that
[XP(e—are ™ Af)||* = [IXI2f.|* +2a1e =" [IX12VS.|®
+ade 2 IXPAf,|* —16] IXIf. |
Via the Holder and Young inequalities, we get
|XP(e—are™ " Afo)|* = [IXIPf.|* +2a1e =7 [IX2VS|*
+ade > IX2Af | 1 | XI%f "~ 128]f. |

Consequently, one has

CK 1
Br = o (IF s +ane " [ AF ) + S IIXPF P e X9, |

a2
+o5re 2 IXPAf | - 64| |

Thus, if K is big enough, we get the second inequality of this
lemma. o

Lemma 5.2. Let W, e CO([zo, 7¢), H>(2)) be a solution of (4.1) satisfy-
ing the inequality (4.4) for some y > 0. There exist To >0 and y, >0
such that if T=e™ >Ty and y <y, then, for all te[ro,7%), E7
satisfies the inequality

0.E7+0E; < CMPy(1—0)e". (5.1)

Proof. We take yo and T, respectively as small and large as
necessary to satisfy the conditions of the Lemmas 4.2-4.6. Accord-
ing to the inequalities (4.41) and (4.42), one has
K _ 1 1

0:E7 + 07 +=—( (= A) "V OSf |2 42 VF | 45| A |

1-6 4 4
e

1024

<My(1-O)e " +—gf |’

1-0
g |IXPFe* + e T IIXP AL

+CME(1 =0y PR (| IXPfe |* +ade 2| XPAS.|®)
+CMP (1= Oy (| |P+ | Ve |2+ | AFe P

Using the interpolation inequality (4.27) of ||f.||*> between
H(—A)*‘”‘g)/“f&.H2 and ||Vf,|? and taking K large enough and y
small enough, we get

0.E7+0FE; <CMPy(1—0)e~ 7. O (5.2)

Remark 5.1. We can see in the proofs of Lemmas 4.2-5.2 that y,
does not depend on 6, but only on &, f and M.

5.1. Regularized problem

Before proving Theorem 1.1, we show an intermediate theorem.
This one gives the same result as Theorem 1.1, but for the solutions
of the regularized system (4.1).

Theorem 5.1. Let O be a constant such that 0 <@ < 1. There exist
eo=¢€0(a1,) >0, yo=vo(1,)>0 and To=To(a1,p)>0 such
that, for all € < &y, T =e™ > T, and Wq e H*(2) satisfying the condi-
tion (1.9) with y <y, there exist a unique global solution
W, e C((to, +00), H'(2)) N C%((70, +00), H>(2)) of (41) and a

positive constant C = C(ay, 3,6) > 0 such that, for all T > 7

<Cye 7, (5.3)

H(] —are A (We(2)—nG)| 52(2)

where n= [,»Wq(x) dx and the parameters oy and f are fixed and
given in (1.1).

Proof. Let W, e H%(2) satisfying the condition (1.9) with 0 <y < 7o
and 0 <Ty < T, where y, and Tp will be made more precise later.
By Theorem 3.1, there exist 7. > 79 =log(T) and a solution W, to
the system (4.1) which belongs to Cl((zo,7:),H'(2)) N CO((
70,7¢), H3(2)). Let = Jw2Wo(X) dX, and f, defined by the equality

W, =nG+f,. (5.4)

Let M>2 be a positive constant that will be set later and
7% € [10,7¢) be the highest positive time such that the inequality
(4.4) holds. As shown at the beginning of Section 4, the inequality
(4.5) holds on [7g, 7%). We take Ty sufficiently large and y, and €
sufficiently small so that the results of Lemmas 4.2-5.2 occur.
Consequently, there exists C=C(a;,f)>0 such that, for all
T €[70,7%)

3:(E7e%7) < CMPy(1—0)e~(1-01, (5.5)

Integrating this inequality in time between 7o and 7 € [7o, 7}), we
obtain

E7(t) <E7(zg)e 9770 1 CMPy(e (1~ D7oe =07 _p- 7). (5.6)

Due to the decomposition (5.4) and Lemma 5.1, for every
7 € [79, 7¥), one has

|We@)|5 + [IXPWe(D)|* +are ™7 AWe(2) |
+aZe || XPAW (D> < Cn? +CEq(2).

Since f, satisfies the inequality (4.5), one has 52 < Cy(1—0)°.
Taking into account the inequality (5.6), it comes

IWe@)| 2+ [IXPWe(@)|* +are 7 | AW, (2) |2
+ate ¥ XPAW (o)
< Cy(1—0)° +E7(zg)e 97~ 4 CMPye 7. (5.7)

Using again Lemma 5.1 and arguing like for the establishment of
the inequality (4.5), we can show that

C
Ex(t0) < 75 (Ife(@o)| iy +are A (7o)
+ [ IXfo(z0)|* +ate 2 |IXIPAf (7o) |*) < Cr(1-0)°.
Consequently, the inequality (5.7) becomes
IWe@)| 20+ [IXPWe(@) > +are =7 | AW, (7) |
+ade 2| IXPAW ()|
< Ciy(1-0)> +C;MPye =™, (5.8)

where C; and C; are two positive constants independent of Wy and
0.
We set M =4C,/(1—-6), and we get
|We@)|| 21 + [IXPWe@) | + are [ AW, (2) |
+ate || XPAW ()|

6
< M+ CoM3ye 7o, (5.9)

Finally, taking T, sufficiently large so that C,M’ye-7 <
My(1—6)°/4, we obtain, for all 7 e [z, 7¥)
[We@)| 2 + [IXEWe@) | + are~ 7 [ AW.(0) |
My(1-6)°
5
This inequality shows in particular that 7% =7, and thus (5.10)

+ade T IXPAW ()| < (5.10)
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holds for all 7 € [z, 7¢). From the inequality (5.10), we also deduce
that 7. = 4+ o0. Indeed, if 7, < + oo, the boundedness of W, in H2(2)
on [7g, T¢) given by (5.10) is a contradiction to the finiteness of z..

In particular, the inequality (5.6) occurs on [zg, +00).
Applying Lemma 5.1 in the inequality (5.6), we finally obtain the
inequality (5.3). ©

5.2. Existence of weak solutions in H*(2)

Now, we show that under the hypotheses of Theorem 5.1, there
exists a global weak solution W of (1.6) which belongs to
C°([ro, +00), H*(2)), and that this solution converges to the Oseen
vortex sheet G when 7 goes to infinity. To this end, we pass to the
limit in the system (4.1) when € tends to 0 and show that, up to a
subsequence, W, converges in some sense to a solution of the
system (1.6) which satisfies the inequality (5.3). Let (&5),. be a
sequence of positive numbers tending to 0. We consider the
solution W, e Cl((7o, + 00), H'(2)) N CO((zo, +00), H3(2)) of (4.1)
which satisfies the conditions of Theorem 5.1. Due to technical
reasons linked to the compactness properties of Sobolev spaces, it
is more convenient to establish the convergence of W, to W in
every bounded regular domain of R?. Let £2 be a bounded regular
domain of R?> and 7; be a fixed positive time such that
To <71 < +o0. In what follows, H*(£2), s > 0, denotes the restric-
tions to £ of the functions of the Sobolev space H*(R%). From
Theorem 5.1, we know that W, is bounded in L([zg, -+0o0), H*(2))
uniformly with respect to n. Consequently, there exists
W e L®([7o, 71], H*(2)) such that

W, ~W weaklyin [P([zo,71],H*(€2)) forall p>2.

n

Looking at the system (4.1), we can see that o.W,, is bounded in
L®([70,71], H'(£2)) uniformly with respect to n. This implies that
W,, is equicontinuous in HY(Q). Indeed, for o105 €[70,71],
o, > 01, we have

a2
[We,(02)=We, (01 |10, = II/U 0:We, ()] 1 )
1

< (0-2 - O-])HaTWSn(S) H L™([zo,711H' (©2))"

Furthermore, for every 7 € [7o, 71], the set Un e nfe, (7) is bounded in
H?(@Q) and thus compact in H'(€2). Using the Arzela-Ascoli
theorem, we get

W, »W, stronglyin C°(zo,71],H'(£2)).

By interpolation, we can show that

W, -»W in C°(zo, 711, H'(2)) foralls<2. (5.11)

This is enough to pass to the limit in the system (4.1) in the sense
of the distributions on [zg,71] x £2 and to show that W is a weak
solution of the system (1.6). Since most of the terms of Eq. (4.1)
have already been studied in [23], we will just show that the
convergence holds for the term —div curl(jAg, |*Ae,) which does
not appear in the second grade fluids' equations.

We consider ¢ € C5([70,71] x £2). For all 7 € [z, 1], we want to
show that

.
[ [ e @ 0PA:, 300V, dX de
70 JO
. / / Az, X)2A(z, X)oV2(z,X) dX dz, (5.12)
170 JQ

when n tends to infinity, where, for A, Be M,(R), we use the
notation

2
AoB = ‘21(A1‘j32‘]' 7A2JB]J').
J=

The term of the right hand side of (5.12) appears naturally via two
integrations by parts, when performing the [?-scalar product of
—div curl(JA]?A) with ¢. The strong convergence of W, to W in
%70, 711, H' (£2)) implies directly the identity (5.12). Indeed, due
to the continuous injection of H'(£2) into L*(£2), W,, converges to
W in C%(zo, 711, L*(£2)). Furthermore, the inequality (2.13) implies

[Ae, = Alls < [[We, =W/,

and consequently A,, converges to A strongly in C°([zo,71], L*(£2)).
This fact suffices to show that the identity (5.12) occurs. Thus W is
a global weak solution of (1.6) which belongs to C°(zo, +0o0),
H?(2)).

The fact that W satisfies the inequality (1.10) is a direct
consequence of the weak convergence of W, to W. Indeed, for
all 7 e [zg, +00), W, (7) is bounded in H?(2) uniformly with respect
to n and consequently we have

W, (1) W (z), weakly in H%(2) for all 7 € [zg, +o0).

Since W,, satisfies the inequality (1.10), it implies that W also
satisfies (1.10).

5.3. Uniqueness

The aim of this part is to prove that the solution w of the
system (1.2) obtained in Section 5.2 is unique in L*(2). Let w; and
w;, be two solutions of (1.2) with the same initial data wg e H2(2).
Let u; and u, be the divergence free vector fields obtained via the
Biot-Savart law respectively from w; and w,. We also define
A; = Vu;+(Vu;)'. Applying the Biot-Savart law to the system (1.1),
we can see that, for i=1,2, the divergence free vector field u;
satisfies the system

or(u; — a1 Auy) — A+ curl(u; — o Auy) A u; — 3 div(jAi|2A) + Vp; = 0,
div u; =0,

Ujit = o = Up, (5.13)

where ug is obtained from wg via the Biot-Savart law.
Notice that since w; belongs to Lf:C(R+,H2(2)) and o,w; belongs
to L(R*,H'(R?)), the inequalities (2.11) and (2.13) imply in

loc
particular

u e [2(RY,IP(R?)?) forall p>2,
vy e L2(R, HA(R?)Y,

ol € L(R*,IP(R%)?) forall p>2,
orAu; e LE(RT, [ (R?)?).

Consequently, the system (5.13) has a meaning in the sense of
distributions.

We note w=w; —Wy, U=1u;—Uy, L=L;—L, and A=A; —-A,. A
short computation shows that u satisfies the system
or(u—ag Au)— Au+curl(u —ay Au) A ug +-curl(uy —a Auy) At
+ 3 div(|Az|*A) — B div(|A; [PA1)+ Vg =0,
divu =0,

U|t:0:0. (5]4)

Notice that, although u; and u, do not belong to [*(R?), the
divergence free vector field u does. Indeed, since w; and w, have
the same initial data, for all t >0, we have

/ w(t,x) dx =0.
RZ

By the application of Lemma 2.5, this fact implies that u belongs to
[*(R?). Let to > 0 be a fixed positive time. We notice that both w,
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and w,, are bounded in L*([0, t], H*(2)). More precisely, one has
su wq(t + |wa(t <C.

Sup (W10 )+ W20 )

Applying Lemma 2.3, it implies in particular

sup (Hu,»(t)||L4+\|Vui(t)||Loo+||Aui(t) L4) <C fori=1,2.
t € [0,to]

In order to show that u = 0, we now perform estimates on the H'-
norm of u. The uniqueness of the solutions of (5.13) has been
shown in [4] for solutions with initial data in H*(R?). In our case,
the proof is slightly simpler, because the vector field u belongs to
H3(R?)?. We consider the [?-inner product of (5.14) with u. First of
all, integrating by parts, we notice that

PAiV(A2 12 A2 — A1 PAr), u)2 = g(lfh PA1 — |A21?As, A) 2
= [ o+ el d
[RZ
+§/ (1A112 = 1A21*) (A1 +Ay) - A dx
RrR2
:/Z}/ (1A11? +1A2*)IAI* dx
R2
+§ / (A1 = 1Az 1%)? dx.
RZ

Thus, using integrations by parts and the divergence free property
of u, we have

1
Soeu]* +af vu|*)+ \|Vu|\2+'§/w(|A1|2+|A2|2)|A| dx

+§/Rz(|A1|2— 1A21%)? dx =1 +1, (5.15)

where

L= (Cl,ll‘l(llz — a1Au2) AU, U)Lz,
I =(curlu A ug,u)pe,

Iz = —ay(curl Au A uq,u)p.

A short computation shows that I; vanishes. Indeed, we set
w=uy;—a;Au, and we recall the notation u=(u!,u?,0) and
curl @ = (0,0, 0;w, — d,@1). We have

I = (curl @ A u,u)2
= — (0102 — w2, ul)2 +((01w2 — drwiu!,u?)2 = 0.

Due to the boundedness of u; in L*(R?), applying Hélder inequal-
ities we obtain

I < [Jun | | Vel
<C(an) (|Jul]2+a [[vul?).
Using [26, Lemma A.1], we check that
I3 sCa1/2|Au1||Vu||u| dx+Ca1/2|Vu1\|Vu|2 dx.
R R
Using Holder inequalities, the Gagliardo-Nirenberg inequality and
the Young inequality ab <1a*+3b*?, we obtain

I < Can[ul| s || Az || 4 || Vull + Can || Vus || = || Vurl |2
< Cary [V 2+ Cry [
< Can(|[ul]? +ax [|vul[?).

Going back to (5.15), we get
Yo (||ulP+al|vul?) < c@) ([ul®+a] vu|?).

Integrating in time this inequality between 0 and t [0, tp] and
applying the Gronwall lemma, we finally obtain

lu®|?>+al[vu@|*=0 forall t €[0,to].

(5.16)

Since ty is arbitrary, we conclude that u=0 on R*. Consequently u
is unique and so is w. Thus, the system (1.2) has a unique global
solution in the space CO(R*, H?(2)).
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