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a b s t r a c t

We study the long time behaviour of the solutions of the third grade fluids' equations in dimension 2.
Introducing scaled variables and performing several energy estimates in weighted Sobolev spaces, we
describe the first order of an asymptotic expansion of these solutions. It shows in particular that, under
smallness assumptions on the data, the solutions of the third grade fluids' equations converge to self-
similar solutions of the heat equations, which can be computed explicitly from the data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the behaviour of the non-Newtonian fluids is a
significant topic of research not only in mathematics, but also in
physics or biology. Indeed, these fluids, the behaviour of which
cannot be described with the classical Navier–Stokes equations,
are found everywhere in the nature. For example, blood, wet sand
or certain kind of oils used in industry are non-Newtonian fluids.
In this paper, we investigate the behaviour of a particular class of
non-Newtonian fluids that is the third grade fluids, which are a
particular case to the Rivlin–Ericksen fluids (see [28,29]).
The constitutive law of such fluids is defined through the Rivlin–
Ericksen tensors, given recursively by

A1 ¼∇uþð∇uÞt ;
Ak ¼ ∂tAk�1þu �∇Ak�1þð∇uÞtAk�1þAk�1∇u;

where u is a divergence free vector field of R2 or R3 which
represents the velocity of the fluid. The most famous example of
a Rivlin–Ericksen fluid is the class of the Newtonian fluids, which
are modelled through the stress tensor

s¼ �pIþνA1

where ν40 is the kinematic viscosity and p is the pressure of the
fluid. Introduced into the equations of conservation of momentum,
this stress tensor leads to the well known Navier–Stokes
equations.

In this paper, we consider a larger class of fluids, for which the
stress tensor is not linear in the Rivlin–Ericksen tensors, but a
polynomial function of degree 3. As introduced by Fosdick and
Rajagopal in [13], the stress tensor that we consider is defined by

s¼ �pIþνA1þα1A2þα2A
2
1þβjA1j2A1;

where ν40 is the kinematic viscosity, p is the pressure, α140,
α2AR and βZ0.

We assume in this paper that the density of the fluid is constant
in space and time and equals 1. Actually, the value of the density is
not significant, since we can replace the parameters ν, α1, α2 and β
by dividing them by the density. Introduced into the equations of
conservation of momentum, the tensor s leads to the system

∂tðu�α1ΔuÞ�νΔuþcurlðu�α1ΔuÞ4u�ðα1þα2Þ
�ðA �Δuþ2 divðLLtÞÞ�β divðjAj2AÞþ∇p¼ 0;div u¼ 0;ujt ¼ 0 ¼ u0;

ð1:1Þ
where L¼∇u, AðuÞ ¼∇uþð∇uÞt and 4denotes the classical vector-
ial product of R3. For matrices A;BAMdðRÞ, we define A :
B¼∑d

i;j ¼ 1Ai;jBi;j and jAj2 ¼ A : A. If the space dimension is 2, we
use the convention u¼ ðu1;u2;0Þ and curl u¼ ð0;0; ∂1u2�∂2u1Þ.
Notice also that if α1þα2 ¼ 0 and β¼ 0, we recover the equations
of motion of second grade fluids, which are another class of non-
Newtonian fluids, introduced earlier by Dunn and Fosdick in 1974
(see [10,15] or [9]). If in addition α1 ¼ 0, then one recovers the
classical Navier–Stokes equations.

The system of equations (1.1) has been studied in various cases,
on bounded domains of Rd, d¼2,3 or in the whole space Rd (see
[1–5,25]). On a bounded domain Ω of Rd with Dirichlet boundary
conditions, Amrouche and Cioranescu have shown the existence of
local solutions to (1.1) when the initial data belong to the Sobolev
space H3ðΩÞd (see [1]). In addition, these solutions are unique. For
this study, the authors have assumed the restriction

jα1þα2jr ð24νβÞ1=2;
which is justified by thermodynamics considerations. The proof of
their result is obtained via a Galerkin method with functions
belonging to the eigenspaces of the operator curlðI�α1ΔÞ.
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In dimension 3, a slightly different method has been applied by
Bresch and Lemoine, who used Schauder's fixed point theorem to
extend the result of [1] to the case of initial data belonging to the
Sobolev spaces W2;rðΩÞ3, with r43. They have shown in [3] the
local existence of unique solutions of (1.1) in the space
C0ð½0; T �;W2;rðΩÞ3Þ, where T40. In addition, if the data are small
enough in the space W2;rðΩÞ3, the solutions are global in time.
Notice also that the existence of such solutions holds without
restrictions on the parameters of the system (1.1).

In the case of third grade fluids filling the whole space Rd,
d¼2,3, Busuioc and Iftimie have established the existence of global
solutions with initial data belonging to H2ðRdÞd, without restric-
tions on the parameters or on the size of the data (see [4]). In this
study, the authors used a Friedrichs scheme and performed a
priori estimates in H2 which allow us to show the existence of
solutions of (1.1) in the space L1locðRþ ;H2ðRdÞdÞ. Besides, these
solutions are unique if d¼2. Later, Paicu has extended the results
of [4] to the case of initial data belonging to H1ðRdÞd, assuming
additional restrictions on the parameters of the equation; the
uniqueness is not known in this space (see [25]). The method that
he used is slightly different from the one used in [4]. Indeed,
although Paicu also considered a Friedrichs scheme, the conver-
gence of the approximate solutions to a solution of (1.1) is done via
a monotonicity method. Notice that Theorem 1.1 of this paper
shows the existence of solutions of the equations of third
grade fluids on R2 for initial data in weighted Sobolev spaces
(see Section 3).

In what follows, we consider a third grade fluid filling the
whole space R2. Actually, the equations that we consider are not
exactly the system (1.1) but the one satisfied by w¼ curl u¼
∂1u2�∂2u1. In dimension 2, the vorticity equations of the third
garde fluids are given by

∂tðw�α1ΔwÞ�νΔwþu �∇ðw�α1ΔwÞ�β divðjAj2∇wÞ

�β divð∇ðjAj2Þ4AÞ ¼ 0;div u¼ 0;wjt ¼ 0 ¼w0 ¼ curl u0: ð1:2Þ

Notice that the parameter α2 does no longer appear in (1.2) and
thus does not play any role in the study of these equations. Indeed,
due to the divergence free property of u, a short computation
shows that curlðA �Δuþ2 divðLLtÞÞ ¼ 0, or equivalently there exists
q such that A �Δuþ2 divðLLtÞ ¼∇q. This phenomenon is very
particular to the dimension 2 and does not occur in dimension 3.
Notice also that the previous system is autonomous in w. Indeed,
the vector field u depends on w and can be recovered from w via
the Biot–Savart law, which is a way to get a divergence free vector
field such that curl u¼w. The motivation for considering the
vorticity equations instead of the equations of motion comes from
the fact that, due to spectral reasons, we have to study the
behaviour of the solutions of (1.2) in weighted Lebesgue spaces.
Indeed, in what follows, we will consider scaled variables, which
make appear a differential operator whose essential spectrum can
be “pushed to the left” by taking a convenient weighted Lebesgue
space. We will see that the rate of convergence of the solutions of
(1.2) is linked to the spectrum of this operator. Unfortunately, the
weighted Lebesgue spaces are not suitable for the equations of
motions and are not preserved by the system (1.1). Anyway, one
can obtain the asymptotic profiles of the solutions of the equations
of motion (1.1) from the study of the asymptotic behaviour of the
solutions of the vorticity equations (see Corollary 1.1 below). We
also emphasize that the system (1.2) allows us to consider
solutions whose velocity fields are not bounded in L2.

In this paper, we establish the existence and uniqueness of
solutions of (1.2) in weighted Sobolev spaces, but the main aim is
the study of the asymptotic behaviour of these solutions when t
goes to infinity. More precisely, we want to describe the first order
asymptotic profiles of the solutions of (1.2). We consider a fluid of

third grade which fills R2 without forcing term applied to it. In this
case, as it is expected, the solutions of (1.2) tend to 0 as t goes to
infinity. Our motivation is to show that these solutions behave like
those of the Navier–Stokes equations. In our case, we will show
that the solutions of (1.2) behave asymptotically like solutions of
the heat equations, up to a constant that we can compute from the
initial data. The methods that we use in the present paper are
based on scaled variables and energy estimates in several func-
tions spaces. This work is inspired by several older results
obtained for other fluid mechanics equations. The first and second
order asymptotic profiles have been described for the Navier–
Stokes equations in dimensions 2 and 3 by Gallay and Wayne (see
[18–21]). In dimension 2, they have shown in [18,20] that the first
order asymptotic profiles of the Navier–Stokes equations are given
up to a constant by a smooth Gaussian function called the Oseen
vortex sheet. More precisely, for a solution w of the vorticity
Navier–Stokes equations (that is the system (1.2) with α1 ¼ β¼ 0),
for every 2rprþ1, the following property holds:

wðtÞ�
R
R2w0ðxÞ dx

t
G

� ffiffi
t

p
� ����� ����

Lp
¼Oðt�3=2þ1=pÞ; when t-þ1;

where G is the Oseen vortex sheet

GðxÞ ¼ 1
4π

e�jxj2=4: ð1:3Þ

The methods that they used in [18] are very different from the ones
that we develop in this paper. Although they also considered scaled
variables, the convergence to the asymptotic profiles is not
obtained through energy estimates. Indeed, using dynamical sys-
tems' arguments, they established the existence of a finite-
dimensional manifold which is locally invariant by the semiflow
associated with the Navier–Stokes equations. Then, they showed
that, under restrictions on the size of the data, the solutions of the
Navier–Stokes equations behave asymptotically like solutions on
this invariant manifold. The description of the asymptotic profiles
is thus obtained by the description of the dynamics of the Navier–
Stokes equations on the invariant manifold. Later, the smallness
assumption on the data has been removed (see [20]). In [23], Jaffal-
Mourtada describes the first order asymptotics of second grade
fluids, under smallness assumptions on the initial data in weighted
Sobolev spaces. She has shown that the solutions of the second
grade fluids' equations converge also to the Oseen vortex sheet. In
this paper, we apply the methods used by Jaffal-Mourtada, namely
scaled variables and energy estimates. According to these results,
one can say that the fluids of second grade behave asymptotically
like Newtonian fluids. In this paper, we show that, under the same
smallness assumptions on the initial data, the same behaviour
occurs for the third grade fluids' equations. We emphasize that the
rate of convergence that we obtain is better than the one obtained
in [23]. Actually, we show that we can choose the rate of
convergence as close as wanted to the optimal one, assuming that
the initial data are small enough. Since second grade fluids are a
particular case of third grade fluids, we establish an improvement
of the rate obtained in [23]. Actually, the main difference between
third and second grade fluids' equations in dimension 2 is the
presence of the additional term β divðjAj2AÞ in the third grade
fluids' equations. Sometimes, this term helps us to obtain global
estimates, like in [4] or [25], but introduces additional difficulties
when one looks for estimates in H3 or in more regular Sobolev
spaces (see [1,2] or [5]). Here, we have to establish estimates in
weighted Sobolev spaces with H2 regularity for the vorticity w,
which is harder than doing estimates in H3 for u.

We next introduce scaled variables. In order to simplify the
notations, we assume that ν¼ 1. Let T41 be a positive constant
which is introduced in order to avoid restrictions on the size of
the parameter α1 and which will be made more precise later.
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We consider the solution w of (1.2) and define W and U such that
curl U ¼W through the change of variables X ¼ x=

ffiffiffiffiffiffiffiffiffiffi
tþT

p
and

τ¼ log ðtþTÞ. We set

uðt; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
tþT

p U log ðtþTÞ; xffiffiffiffiffiffiffiffiffiffi
tþT

p
� �

;

wðt; xÞ ¼ 1
tþT

W log ðtþTÞ; xffiffiffiffiffiffiffiffiffiffi
tþT

p
� �

:

8>>><>>>: ð1:4Þ

For τZ log ðTÞ, we have

Uðτ;XÞ ¼ eτ=2uðeτ�T ; eτ=2XÞ;
Wðτ;XÞ ¼ eτwðeτ�T ; eτ=2XÞ:

(
ð1:5Þ

These variables, called scaled or self-similar variables, have been
introduced in order to study the long time asymptotic of solutions
of parabolic equations and particularly to show the convergence to
self-similar solutions (see [11,12,14] or [24]), that is to say under
the form ð1=ðtþTÞÞFðx= ffiffiffiffiffiffiffiffiffiffi

tþT
p Þ.

Scaled variables have been used to deal with the asymptotic
behaviour of many equations, not necessarily parabolic ones (see
[6,7,23,16] or [17]). For instance, in [16], Gallay and Raugel have
described the first and second order asymptotic profiles in
weighted Sobolev spaces for damped wave equations, using scaled
variables. In [17], they use scaled variables to show a stability
result of hyperbolic fronts for the same equations.

For the sake of simplicity, we set Ai;j ¼ ∂jUiþ∂iUj. Considering
self-similar variables, one can see that W and its corresponding
divergence free vector field U satisfy the system

∂τðW�α1e�τΔWÞ�LðWÞþU �∇ðW�α1e�τΔWÞþα1e�τΔW

þα1e� τX
2
� ∇ΔW�βe�2τ divð Aj2∇WÞ

��
�βe�2τ divð∇ðjAj2Þ4AÞ ¼ 0;div U ¼ 0;

W jτ ¼ τ0 ¼W0; ð1:6Þ

where τ0 ¼ log ðTÞ, W0ðXÞ ¼ eτ0w0ðeτ0=2XÞ and L is the linear
differential operator defined by

LðWÞ ¼ΔWþWþX
2
� ∇W :

Notice that the initial time of the system (1.6) is log ðTÞ. By
choosing T sufficiently large, one can consider α1e�τ as small as
wanted. This fact allows us to study the behaviour of the solutions
of (1.6) without restrictions on the size of α1. Formally, we see that
most of the terms of the system (1.6) tend to 0 as time goes to
infinity. The purpose of the present paper is to show that the
solutions of (1.6) asymptotically behave like solutions of

∂τW1 ¼LðW1Þ: ð1:7Þ

In order to describe the solutions of the system (1.7), we have to
study the spectrum of the linear differential operator L in appro-
priate functions spaces. The form of the previous system and the
definition of L lead to consider weighted Lebesgue spaces. For
mAN, we define

L2ðmÞ ¼ fuAL2ðR2Þ : ð1þjxj2Þm=2uAL2ðR2Þg;

equipped with the norm

:u:L2ðmÞ ¼
Z
R2
ð1þjxj2ÞmjuðxÞj2 dx

� �1=2

:

The spectrum of L in L2ðmÞ is given in [18, Appendix A]. It is
composed of the discrete spectrum

sdðLÞ ¼ �k
2
: kA 0;1;…;m�2f g

� �
;

and the continuous spectrum

scðLÞ ¼ λAC : ReðλÞr�m�1
2

� �
:

In particular, the eigenvalue 0 is simple and the Oseen vortex G
given by (1.3) is an eigenfunction of L associated with 0. Of course,
G is a solution of (1.7) and we will show that the solutions of (1.6)
behave like G when the time goes to infinity. To this end, we
decompose the solutions W of (1.6) as follows:

WðτÞ ¼ ηGþ f ðτÞ;
where ηAR will be made more precise later and f ðτÞ is a rest
which will tend to 0 as τ goes to infinity.

In order to get a good rate of convergence for f, we shall “push”
the continuous spectrum of L to the left by choosing an appro-
priate weighted Lebesgue space. For this reason, we work in L2ð2Þ,
so that scðLÞ ¼ λAC : ReðλÞr�1

2

	 

. Since the second eigenvalue

of L in L2ð2Þ is �1
2 , the best result that we expect is

f ðτÞ ¼Oðe�τ=2Þ in L2ð2Þ; when τ-þ1:

Notice that choosing a weighted space L2ðmÞ with m42 would be
useless for describing the first order asymptotics only. Indeed, if
we take m42, the second eigenvalue would still be �1

2 and the
rate of convergence could not be better than e� τ=2.

For later use, we define the divergence free vector field V such
that curl V ¼ G. It is obtained by the Biot–Savart law and given by

VðXÞ ¼ 1�e�jXj2=4

2πjXj2
�X2

X1

 !
: ð1:8Þ

In particular, for every XAR2, one has

VðXÞ � X ¼ 0; VðXÞ � ∇GðXÞ ¼ 0 and VðXÞ � ∇ΔGðXÞ ¼ 0:

Before stating the main theorem of this paper, we have to define
some additional functions' spaces. For mAN, we set

H1ðmÞ ¼ fuAL2ðmÞ : ∂juAL2ðmÞ; jAf1;2gg;
H2ðmÞ ¼ fuAH1ðmÞ : ∂juAH1ðmÞ; jAf1;2gg;

equipped with the norms

:u:H1ðmÞ ¼ ð:u:2L2ðmÞ þ:∇u:2L2ðmÞÞ1=2 and :u:H2ðmÞ

¼ ð:u:2H1ðmÞ þ:∇2u:2L2ðmÞÞ1=2

where j∇uj2 ¼∑2
i ¼ 1ð∂iuÞ2 and j∇2uj2 ¼∑2

i;j ¼ 1ð∂i∂juÞ2.
The following theorem describes the first order asymptotic

profile of W in H2ð2Þ, if one assumes that the initial data W0 are
small enough in the weighted Sobolev space H2ð2Þ.

Theorem 1.1. Let θ be a constant such that 0oθo1. There exist
two positive constants γ0 ¼ γ0ðα1;βÞ and T0 ¼ T0ðα1ÞZ1 such that,
for all W0AH2ð2Þ satisfying the condition

‖W0:
2
H1 þα1

T
‖ΔW0‖2L2 þ‖jXj2W0‖2L2 þ

α2
1

T2‖jXj2ΔW0‖2L2 rγð1�θÞ6;

ð1:9Þ
for some TZT0 and 0oγrγ0, there exist a unique global solution
WAC0ð½τ0; þ1Þ;H2ð2ÞÞ of (1.6) and a positive constant
C ¼ Cðα1;β;θÞ such that, for all τZτ0

ð1�α1e� τΔÞðWðτÞ�ηGÞ 2
L2ð2ÞrCγe�θτ ;
������ ð1:10Þ

where η¼ R
R2W0ðXÞ dX, τ0 ¼ log ðTÞ and the parameters α1 and β

are fixed and given in (1.1).

Remark 1.1. The smallness assumption (1.9) is not optimal. By
working harder, it is possible to get γð1�θÞp with po6 in the right
hand side of the inequality.
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Remark 1.2. Notice that Theorem 1.1 establishes an improvement
of [23, Theorem 1.1] concerning the first order asymptotics of the
second grade fluids' equations. Indeed, the above theorem also
holds with β¼ 0 and consequently describes the first order
asymptotic profiles of the solutions of the second grade fluids'
equation. The improvement comes from the fact that one can
choose θ as close as wanted to 1, which is the optimal rate. In [23],
the constant θ cannot be bigger than 1

2 .

Theorem 1.1 implies the following result in the unscaled
variables. In particular, it gives a description of the asymptotic
profiles of the solutions of the equations of motion (1.1).

Corollary 1.1. Let θ be a constant such that 0oθo1. There exist
two positive constants γ0 ¼ γ0ðα1;βÞ and T0 ¼ T0ðα1;βÞZ1 such
that, for all w0AH2ð2Þ satisfying the condition

T:w0:
2
L2 þT2:∇w0:

2
L2 þ

1
T
‖jxj2w0‖2L2

þα1T
3:Δw0:

2
L2 þ

α2
1
T
:jxj2Δw0:

2
L2 rγð1�θÞ6; ð1:11Þ

for some TZT0 and 0oγrγ0, there exists a unique global solution
wAC0ð½0; þ1Þ;H2ð2ÞÞ of (1.2) such that, for all 1rpr2, there exists
a positive constant C ¼ Cðα1;β;θÞ such that, for all tZ0

ð1�α1ΔÞ wðtÞ� η
tþT

G
xffiffiffiffiffiffiffiffiffiffi
tþT

p
� �� �

Lp rCγðtþTÞ�1�θ=2þ1=p;
�������

where η¼ R
R2w0ðxÞ dx.

Moreover, for all 2oqoþ1, there exists a positive constant
C ¼ Cðα1;β;θ; qÞ such that, for all tZ0

ð1�α1ΔÞ uðtÞ� ηffiffiffiffiffiffiffiffiffiffi
tþT

p V
xffiffiffiffiffiffiffiffiffiffi
tþT

p
� �� �

Lq rCγðtþTÞ�1=2�θ=2þ1=q;
�������

where V is obtained from G via the Biot–Savart law and defined by
(1.8).

Theorem 1.1 describes the asymptotic behaviour of the solu-
tions of (1.6) in H2ð2Þ at the first order. Since the solutions of the
Navier–Stokes equations also converge to the Oseen vortex sheet,
we can say that the fluids of third grade behave asymptotically like
Newtonian fluids. Notice that the function space H2ð2Þ is suitable
for the first order asymptotics because it “pushes” the continuous
spectrum of L far enough to get 0 as an isolated eigenvalue. If we
had to describe the asymptotics of (1.6) at the second order, we
should work in a space where L has at least two isolated
eigenvalues. Due to the forms of sc and sd, the second order
asymptotics must be studied in functions space with polynomial
weight of degree at least 3, in order to get the two isolated
eigenvalues 0 and �1

2 .
Notice also that as the system (1.2) and our change of variables

preserve the total mass. We have, for all τZτ0 and tZ0

η¼
Z
R2
w0ðxÞ dx¼

Z
R2
wðt; xÞ dx¼

Z
R2
W0ðXÞ dX ¼

Z
R2
Wðτ;XÞ dX:

The plan of this paper is as follows. In Section 2, we recall classical
results concerning the Biot–Savart law and give several technical
lemmas. In Section 3, we introduce a regularized system, which is
close to (1.6) and depends on a small parameter ε40. Actually, we
add the regularizing term εΔ2W to the system (1.6) and show the
existence of unique regular solutions Wε to this new system. In
Section 4, using energy estimates in various functions' spaces, we
show that Wε satisfies the inequality (1.10) of Theorem 1.1, and thus
tends to the Oseen vortex sheet Gwhen τ goes to infinity. In Section 5,
we let ε go to 0 and show that Wε tends in a sense to a solution W of
(1.6). Additionally, this solution satisfies the inequality (1.10) of
Theorem 1.1 and consequently also tends to the Oseen vortex sheet.
Finally, we establish the uniqueness ofW, which enables us to say that

every solution of (1.6) satisfying the assumption (1.9) converges to the
Oseen Vortex sheet when τ goes to infinity.

2. Biot–Savart law and auxiliary lemmas

In this section, we state several technical lemmas which are
useful to prove Theorem 1.1. These lemmas concern the Biot–
Savart law and state several inequalities involving weighted
Lebesgue norms. In what follows, we use the notation

uk k ¼ ku L2 ;
��

and C denotes a positive constant which can depend on the fixed
constants α1 and β.

The first lemma will be useful in Section 4 to obtain estimates
in Sobolev spaces of negative order. We define, for sAR, the
operator ð�ΔÞs, given by

ð�ΔÞsu¼F ðjξj2sbuÞ;
where bu (also denoted F ðuÞ) is the Fourier transform of u, given by

buðξÞ ¼ Z
R2
uðxÞe� ix�ξ dx;

and F denotes the inverse Fourier transform

F ðvÞðxÞ ¼ 1
ð2πÞ2

Z
R2
vðξÞeix�ξ dξ:

Lemma 2.1. Let s be a positive real number such that 3
4 oso1, then

we have the following two inequalities:

1. Let gAL2ð1Þ. Then ð�ΔÞ� s∇gAL2ðR2Þ and there exists C40
independent of g and s such that

ð�ΔÞ� s∇g
�� ��r C

ð1�sÞ3=2
kg:L2ð1Þ: ð2:1Þ

2. Let gAL2ð2Þ such that
R
R2gðxÞ dx¼ 0. Then ð�ΔÞ� sgAL2ðR2Þ and

there exists C40 independent of g and s such that

:ð�ΔÞ� sg:L2 r
C

ð1�sÞ3=2
:g:L2ð2Þ: ð2:2Þ

Proof. We start by proving the inequality (2.1). For jAf1;2g, using
Fourier variables, one has

:ð�ΔÞ� s∂jg:
2
L2 rC

Z
jξjr1

1
jξj4s�2jbg j2 dξþ‖g‖2

L2

rC
Z
jξjr1

1
jξj2s dξ

� �ð2s�1Þ=s Z
jξjr1

jbg j2s=ð1� sÞ dξ
� �ð1� sÞ=s

þ‖g‖2
L2

r C
ð1�sÞ bg 2

L2s=ð1� sÞ þ‖g‖2
L2
:

������
We now use the continuous injection of H1ðR2Þ into L2s=ð1� sÞðR2Þ.
Looking at the computations of [8, pp. 723–724], one can see that
there exists a constant C40 such that

:u:Lp rCpku:H1 for all uAH1ðR2Þ and 2rpoþ1: ð2:3Þ

Notice that Cp is not the optimal constant in the previous inequal-
ity. Using the inequality (2.3), one has

:ð�ΔÞ� s∂jg:
2
L2 r

C

ð1�sÞ3
:bg:2H1 þ‖g‖2

L2
r C

ð1�sÞ3
‖g‖2

L2ð1Þ:

We now prove the inequality (2.2). Since
R
R2 f ðxÞ dx¼ 0, using

Fourier variables, we get

‖ð�ΔÞ� sg‖2
L2
¼ ð2πÞ2

Z
R2

1
jξj4sj

bgðξÞj2 dξ
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r ð2πÞ2
Z
jξjr1

1
jξj4sj

bgðξÞj2 dξþ‖g‖2
L2

r ð2πÞ2
Z
jξjr1

1
jξj4s

Z 1

0
ξ � ∇bgðsξÞds���� ����2dξþ‖g‖2

L2

rC
Z
jξjr1

1
jξj4s�2

Z 1

0
j∇bgðsξÞj ds���� ����2dξþ‖g‖2

L2
:

Cauchy–Schwarz inequality and Fubini's theorem give

‖ð�ΔÞ� sg‖2
L2
rC

Z 1

0

Z
jξjr1

1
jξj4s�2j∇bgðsξÞj2 dξ dsþ‖g‖2

L2
:

Using Hölder inequality, we get

‖ð�ΔÞ� sg‖2
L2
rC

Z 1

0

Z
jξjr1

1
jξj4�2=s dξ

� �s

Z
jξjr1

j∇bgðsξÞj2=ð1� sÞ dξ
� �1� s

dsþ‖g‖2
L2

rC
s

1�s

� �s Z 1

0

Z
jξjr1

j∇bgðsξÞj2=ð1� sÞ dξ
� �1� s

dsþ‖g‖2
L2
:

The change of variables ζ ¼ sξ yields

‖ð�ΔÞ� sg‖2
L2
rC

s
1�s

� �s Z 1

0

Z
jζjrs

1
s2j∇bgðζÞj2=ð1� sÞ dζ

� �1� s

dsþ‖g‖2
L2

rC
s

1�s

� �s 1
2s�1

� �
‖∇bg‖2

L2=ð1� sÞ þ‖g‖2
L2
:

Finally, we use again the inequality (2.3) and obtain

‖ð�ΔÞ� sg‖2
L2
rC

s
1�s

� �s 1
2s�1

� �
2

1�s

� �2

kbg 2
H2 þ‖g‖2

L2

���
r C

ð1�sÞ3
‖g‖2

L2ð2Þ;

which concludes the proof of this lemma. □

Lemma 2.2.

1. Let 1rpoþ1 and f ALpðR2Þ such that jxj2f ALpðR2Þ, then
jxj f ALpðR2Þ and the following inequality holds:
:jxj f:Lp r‖f‖1=2Lp ‖jxj2f ‖1=2Lp : ð2:4Þ

2. Let f AH2ð2Þ, there exists C40 such that
jxj2∇2f
�� ��rCðkf kþkjxj∇f kþkjxj2Δf kÞ: ð2:5Þ

3. Let f AH2ð2Þ, then jxj2∇f AL4ðR2Þ and there exists C40 such
that
jxj2∇f L4 rC

�� ��jxj2∇f 1=2
�� ��f 1=2þ

�� ��jxj∇f 1=2þ
�� ��jxj2Δf 1=2Þ:

����
ð2:6Þ

Proof. The inequality (2.4) comes directly from Hölder's inequal-
ity. To prove the inequality (2.5), we show by a simple calculation
that, for every j; kAf1;2g

jxj2∂j∂kf 2rC
�� ��f 2þ

�� ��jxj∇f 2þ
�� ��jxj2Δf 2Þ:

���� ð2:7Þ

Indeed, we notice that

jxj2∂j∂kf ¼ ∂j∂kðjxj2f Þ�2δj;kf �2xj∂kf �2xk∂jf ; ð2:8Þ

and furthermore

∂j∂kðjxj2f Þ 2rC
�� ��Δðjxj2f Þ 2rCð

�� ��f 2þ
�� ��jxj∇f 2þ

�� ��jxj2Δf 2Þ:
����

ð2:9Þ
Combining (2.8) and (2.9) we get the inequality (2.7).

To obtain (2.6), we use Gagliardo–Nirenberg's inequality as follows:

jxj2∇f L4 rC J jxj2∇f k1=2:∇ðjxj2∇f Þ 1=2
��������

rC jxj2∇f 1=2ð
�� ��jxj∇f 1=2þ

�� ��jxj2∇2f 1=2Þ;
����

and consequently inequality (2.5) implies (2.6). □

Biot–Savart law: Let w be a real function defined on R2. The
Biot–Savart law is a way to build a divergence free vector field u
such that curl u¼w. It is given by

uðxÞ ¼ 1
2π

Z
R2

ðx�yÞ?
jx�yj2 wðyÞ dy; ð2:10Þ

where ðx1; x2Þ? ¼ ð�x2; x1Þ.
The next two lemmas give estimates on the divergence free

vector field u obtained from w via the Biot–Savart law.

Lemma 2.3. Let u be the divergence free vector field given by (2.10).

1. Assume that 1opo2oqo1 and 1=q¼ 1=p�1=2. If wALpðR2Þ,
then uALqðR2Þ2 and there exists C40 such that
u Lq rC
�� ��w Lp :

���� ð2:11Þ

2. Assume that 1rpo2oqr1, and define αAð0;1Þ by the
relation 1=2¼ α=pþð1�αÞ=q. If wALpðR2Þ \ LqðR2Þ, then
uAL1ðR2Þ2 and there exists C40 such that
u L1 rC
�� ��w α

Lp
�� ��w 1�α

Lq :
���� ð2:12Þ

3. Assume that 1opo1. If wALpðR2Þ, then ∇uALpðR2Þ4 and there
exists C40 such that
∇u Lp rC
�� ��w Lp :

���� ð2:13Þ

In addition, div u¼ 0 and curl u¼w.

We refer to [18] for the proof of this lemma.

Lemma 2.4. Let u be the divergence free vector field given by (2.10).

1. If wAL2ð2Þ, then uAL4ðR2Þ2 and there exists C40 such that
:u:L4 rC:w:L2ð2Þ: ð2:14Þ

2. If wAL2ð2Þ \ H1ðR2Þ, then uAL1ðR2Þ2 and there exists C40 such
that
:u:L1 rCkw:1=2

H1 :w:1=2
L2ð2Þ: ð2:15Þ

3. Let sAR. If ð�ΔÞðs�1Þ=2wAL2ðR2Þ for sAR, then
ð�ΔÞs=2uAL2ðR2Þ2 and there exists C40 such that
:ð�ΔÞs=2u:rCkð�ΔÞðs�1Þ=2wk: ð2:16Þ

4. Let sAR. If wAHsðR2Þ, then ∇uAHsðR2Þ4 and there exists C40
such that
∇u Hs rC
�� ��w Hs :

���� ð2:17Þ

The proof of the two first inequalities is shown in [23]. The two
other inequalities are obvious when using Fourier variables. The
next lemma is useful to get energy estimates in weighted Sobolev
spaces for solutions of (1.6). For a vector field u, we set

j∇3uj2 ¼ ∑
2

i;j;k;l ¼ 1
ð∂j∂k∂luiÞ2:
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Lemma 2.5. Let wAL2ðR2Þ and u be the divergence free vector given
by (2.10).

1. If wAH1ð1Þ, then ∇2uAL2ð1Þ and there exists C40 such that
:∇2u:L2ð1ÞrCðkw H1 þ

�� ��jxj∇wkÞ: ð2:18Þ

2. If wAH2ð1Þ, then jxj∇2uAL4ðR2Þ and there exists C40 such that
:jxj∇2u L4 rCð:w:þ

�� ��jxj∇wkÞ1=2ð:∇wkþkjxjΔwkÞ1=2: ð2:19Þ

3. If wAH2ð2Þ, then uA jxj2∇3uAL2ðR2Þ and there exists C40 such
that
jxj2∇3u
�� ��rCðkwkþkjxj∇wkþkjxj2ΔwkÞ: ð2:20Þ

4. If wAL2ð1Þ and R
R2wðxÞ dx¼ 0, then uAH1ð1Þ and there exists a

positive constant C such that
uk kþkjxj∇ukrCkjxjwk: ð2:21Þ

5. If wAH1ð2Þ and R
R2wðxÞ dx¼ 0, then jxj2∇2uAL2ðR2Þ and there

exists a positive constant C such that
jxj2∇2u
�� ��rCkw:H1ð2Þ: ð2:22Þ

Proof. Let us show the inequality (2.18). Let w belong to H1ð1Þ and
u be the divergence free vector field obtained via the Biot–Savart
law. From the inequality (2.13) of Lemma 2.3, we obtain

∇2u L2 rC
�� ��∇w L2 :

���� ð2:23Þ

Since the divergence of u vanishes and since we are in dimension
2, it is enough to show the inequality

xi∂2j uk

��� ���rCðkwkþkjxj∇wkÞ; ð2:24Þ

where i; j; kAf1;2g.
We omit k that does not appear in the following calculations.

One has

:jxij∂2j u:
2 ¼ ð2πÞ2

Z
R2
j∂iðξ2j buÞj2 dξ

rC
Z
R2
jξjbuj2 dξþC

Z
R2
jξ2j ∂ibuj2 dξ

rC:∇u:2þC
Z
R2
jF ðΔðxiuÞÞj2 dξ

rC:∇u:2þC
���jxjΔu 2:

��
Using the inequality (2.13) of Lemma 2.3 with p¼2 and remarking
that ∂1w¼Δu2 and ∂2w¼Δu1, we obtain (2.24). Combining it
with the inequality (2.23), we get (2.18).

The inequality (2.19) is a direct consequence of (2.18) and
Gagliardo–Nirenberg inequality. Indeed, one has

:xi∂2j u:L4 rCkxi∂2j u 1=2
�� ��∇ðxi∂2j uÞ 1=2

��
rC:xi∂2j u:

1=2ð:∂2j u:þ:xi∂2j ∇u:Þ1=2:

Furthermore, the inequalities (2.13) and (2.18) yield

:xi∂2j u:L4 rCðkwkþkjxj∇wkÞ1=2ðk∇wkþkxi∇2wkÞ1=2:

Making the same computations as the ones we made to establish
(2.18), we obtain

:xi∇2w:rCðk∇wkþkjxjΔwkÞ;

which gives

:xi∂2j u:L4 rCðkwkþkjxj∇wkÞ1=2ðk∇wkþkjxjΔwkÞ1=2;

and the inequality (2.19) comes when summing for iAf1;2g.

In order to get the inequality (2.20), it suffices to obtain it for
jxj2∂j∂2ku, where j; kAf1;2g. One has

:jxj2∂j∂2ku:
2 ¼ ð2πÞ2

Z
R2
jΔðξjξ2kbuÞj2 dξ

rC
Z
R2
jjξj2ðξjþξkÞΔbuj2 dξ�

þ
Z
R2
jðξjþξkÞbuj2 dξþZ

R2
jjξj2∇buj2 dξ�

rC :∇Δðjxj2uÞ:2þ:∇u:2þ ∑
2

i ¼ 1
:ΔðxiuÞ:2

 !
rC jxj2∇Δu 2þ

�� ��∇u 2þ
�� ��jxjΔu 2

�� 
���
rC jxj2∇2w 2þ

�� ��w 2þ
�� ��jxj∇w 2

�� 
:���
Applying the inequality (2.5), we get (2.20). The proof of the
inequality (2.21) is made in two steps. It is shown in [23] that

uk krCkjxjwk: ð2:25Þ
To finish the proof of the inequality (2.21), we notice that

:jxjw:2 ¼ kjxj∂1u2:
2þ:jxj∂2u1:

2�2
Z
R2
jxj2∂1u2∂2u1 dx: ð2:26Þ

Integrating by parts, one gets

�2
Z
R2
jxj2∂1u2∂2u1 dx¼

Z
R2
jxj2u2∂1∂2u1 dxþ2

Z
R2
x1u2∂2u1 dx

þ
Z
R2
jxj2∂1∂2u2u1 dxþ2

Z
R2
x2∂1u2u1 dx:

Using the divergence free property of u and integrating by parts,
we have

�2
Z
R2
jxj2∂1u2∂2u1 dx¼ kjxj∂1u1

2þ
�� ��jxj∂2u2:

2þ4
Z
R2
x2u2∂2u2 dx

þ4
Z
R2
x1∂1u1u1 dx:

Finally, integrating again by parts, we get

�2
Z
R2
jxj2∂1u2∂2u1 dx¼ kjxj∂1u1

2þ
�� ��jxj∂2u2

2�2
�� ��u 2:

��
Thus, going back to (2.26), one has

jxj∇u 2 ¼
�� ��jxjw 2þ2

�� ��u 2:
����

Combining this equality with (2.25), we get the inequality (2.21).
The inequality (2.22) is obtained in the same way. □

3. Approximate solutions

In this section, we introduce a “regularized” system of equa-
tions, whose solutions are more regular than the solutions of (1.2).
Actually, this new system is very close to (1.2), and is obtained by
adding the small term εΔ2w to (1.2). Here, the positive constant ε
is supposed to be small and is devoted to tend to 0. Adding this
term, we are able to prove the existence of solutions to the
regularized system via a semi-group method. The presence of
the term u �∇Δw would not let us obtain solutions to (1.2) by a
semi-group method because of the too high degree of derivatives
in this term compared to the linear term Δw. We introduce now
the following regularized system of equations:

∂tðwε�α1ΔwεÞþεΔ2wε�Δwεþuε∇ðwε�α1ΔwεÞ
�β divðjAεj2∇wεÞ�β divð∇ðjAεj2Þ4AεÞ

¼ 0;wεjt ¼ 0 ¼w0AH2ð2Þ; ð3:1Þ

where Aε ¼∇uεþð∇uεÞt .
The aim of this section is to prove the following theorem.
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Theorem 3.1. Let w0AH2ð2Þ. For all ε40, there exists tε40 and a
unique solution wε of the system (3.1) such that

wεAC1ðð0; tεÞ;H1ð2ÞÞ \ C0ð½0; tεÞ;H2ð2ÞÞ \ C0ðð0; tεÞ;H3ð2ÞÞ:

Proof. First of all, we introduce the change of variable ~x ¼ γx,
where γ is a positive constant that is close to 0 and will be made
more precise later. This is made in order to not have to consider
restrictions on the size of α1. We note vεðxÞ ¼wεðx=γÞ. The system
(3.1) provides a new system in vε that we will solve in H2ð2Þ.
∂tðvε�α1γ2ΔvεÞþεγ4Δ2vε�γ2Δvεþγuε � ∇ðvε�α1γ2ΔvεÞ

�βγ∇ðjAεj2Þ �∇vε�βγ2jAεj2Δvε�β divð∇ðjAεj2Þ4AεÞ ¼ 0;

vεjt ¼ 0 ¼w0ðx=γÞAH2ð2Þ: ð3:2Þ
Although there are terms involving uε in this system, it is actually
autonomous. In fact, one recover wε from vε and then recover uε
via the Biot–Savart law (2.10) applied to wε. We set

zεðxÞ ¼ qðxÞvεðxÞ;
where qðxÞ ¼ ð1þjxj2Þ.

To show the existence of a solution in H2ð2Þ to the system (3.2),
we are reduced to show that there exists a solution in H2ðR2Þ of
the system

∂tðzε�γ2α1Δzε�α1γ2qΔq�1zε�2γ2α1q∇q�1 �∇zεÞþεγ4Δ2zε ¼ FðzεÞ;

zεjt ¼ 0 ¼ qw0ðx=γÞAH2ðR2Þ; ð3:3Þ
where

FðzεÞ ¼ �εγ4qΔ2ðq�1zεÞþγ2qΔðq�1zεÞ
�γquε∇ðq�1zε�γ2α1Δðq�1zεÞÞ
þβγq∇ðjAεj2Þ � ∇ðq�1zεÞþβγ2qjAεj2Δðq�1zεÞ
þβq divð∇ðjAεj2Þ4AεÞ: ð3:4Þ

We define the two linear operators B : DðBÞ ¼H1ðR2Þ-H�1ðR2Þ
and D : DðDÞ ¼ L2ðR2Þ-H�1ðR2Þ as follows:

BðzÞ ¼ α1γ2Δzþα1γ2qΔq�1z;

DðzÞ ¼ 2α1γ2q∇q�1 � ∇z:
Via Lax–Milgram theorem, it is easy to show that A¼ ðI�B�DÞ is
invertible. We define the bilinear form on H1ðR2Þ
aðu; vÞ ¼ ðu; vÞL2 þα1γ2ð∇u;∇vÞL2 �α1γ2ðqΔq�1u; vÞL2

�2α1γ2ðq∇q�1 �∇u; vÞL2 :
We notice that a is obviously continuous on H1ðR2Þ � H1ðR2Þ.
Using the fact that qΔq�1 and q∇q�1 are bounded on R2, one
has, for all u; vAH1ðR2Þ
jaðu; vÞjrCðα1; γÞku H1

�� ��v H1 ;
��

where Cðα1; γÞ is a positive constant depending on α1 and γ.
We show now that a is coercive. Via an integration by parts, we

get

aðu;uÞ ¼ :u:2þα1γ2k∇u:2�α1γ2
Z
R2
qΔq�1juj2 dx

þα1γ2
Z
R2
divðq∇q�1Þjuj2 dx:

Due to the boundedness of qΔq�1 and divðq∇q�1Þ, there exists
C40 such that

aðu;uÞZ ð1�α1γ2CÞ u 2þα1γ2
�� ��∇u 2:

����
If we take γ sufficiently small, the bilinear form a is both
continuous and coercive on H1ðR2Þ. From the Lax–Milgram theo-
rem, we conclude that for all f AH�1ðR2Þ there exists uAH1ðR2Þ
such that

aðu; vÞ ¼ 〈f ; v〉H � 1�H1 for all vAH1ðR2Þ; ð3:5Þ

and consequently ðI�B�DÞ�1 is defined from H�1ðR2Þ to H1ðR2Þ.
We define A : DðAÞ ¼H3ðR2Þ-H1ðR2Þ the linear differential opera-
tor on H1ðR2Þ
A¼ εγ4ðI�B�DÞ�1Δ2

:

We rewrite the system (3.3) as follows:

∂tzεþAðzεÞ ¼ ~F ðzεÞ;
zεjt ¼ 0 ¼ qw0ðx=γÞAH2ðR2Þ; ð3:6Þ
where ~F ðzεÞ ¼ ðI�B�DÞ�1FðzεÞ.

To finish the proof of this theorem, we show that the operator A
is sectorial on H1ðR2Þ, which is equivalent to the fact that �A
generates an analytic semigroup on H1ðR2Þ. Then, we check that ~F
is locally Lipschitz from bounded sets of a Sobolev space HsðR2Þ to
H1ðR2Þ, where 1rso3. An easy computation leads to

A¼ εγ4ðI�BÞ�1Δ2�εγ4ðI�B�DÞ�1DðI�BÞ�1Δ2

¼ Iþεγ4ðI�BÞ�1Δ2� I�εγ4ðI�B�DÞ�1DðI�BÞ�1Δ2 ¼ JþR;

where

J ¼ Iþεγ4ðI�BÞ�1Δ2
;

R¼ � I�εγ4ðI�B�DÞ�1DðI�BÞ�1Δ2
:

Using the same method as the one used to invert ðI�B�DÞ, one
can invert ðI�BÞ and define ðI�BÞ�1 from H�1ðR2Þ to H1ðR2Þ.
Consequently, J is well defined from H3ðR2Þ to H1ðR2Þ. In the
remaining of this proof, we will show that � J generates an
analytic semi-group on H1ðR2Þ and then show that R satisfies the
conditions of [27, Theorem 2.1, p. 81]. According to this result, it
implies that �A generates an analytic semi-group on H1ðR2Þ. In
order to show that J is sectorial on H1ðR2Þ, we associate it with a
continuous and coercive bilinear form on H2ðR2Þ � H2ðR2Þ. To this
end, we define a H1-scalar product which is suitable to J. Let us
define, for u; vAH1ðR2Þ, the bilinear form on H1 given by

〈u; v〉H1 ¼ ðð1�α1γ2qΔq�1Þu; vÞL2 þα1γ2ð∇u;∇vÞL2 :
If γ is sufficiently small compared to α1, then 〈�; �〉H1 is a scalar
product on H1ðR2Þ. Furthermore, for uAH2ðR2Þ and vAH1ðR2Þ, one
has

〈u; v〉H1 ¼ ððI�BÞu; vÞL2 :
We define, using this scalar product, the bilinear form j on
H2ðR2Þ � H2ðR2Þ associated with J by the formula

jðu; vÞ ¼ 〈u; v〉H1 þεγ4ðΔu;ΔvÞL2 :
A short computation shows that, for uAH3ðR2Þ and vAH2ðR2Þ, one
has

jðu; vÞ ¼ 〈Ju; v〉H1 : ð3:7Þ
Furthermore, if γ is small enough, using the definition of 〈�; �〉H1 and
j, we see that there exists Cðα1; ε; γÞ40 such that, for all
u; vAH2ðR2Þ
jðu; vÞrCðα1; ε; γÞ u H2

�� ��v H2 :
����

Besides, it is simple to check that, if γ is mall enough, there exists
Cðα1; γ; εÞ40 such that, for all uAH2ðR2Þ

jðu;uÞZCðα1; γ; εÞ:u:2H2 :

The bilinear form j is thus continuous and coercive on H2ðR2Þ and
the operator J is consequently sectorial on H1ðR2Þ. Additionally, the
linear operator R is defined from H2ðR2Þ to H1ðR2Þ, and one can
check that there exists Cðα1; γ; εÞ40 such that, for all uAH3ðR2Þ
Ru H1 rCðα1; γ; εÞ
�� ��u H2 :

���� ð3:8Þ
Applying the equality (3.7) to uAH3ðR2Þ, we get

jðu;uÞ ¼ 〈Ju;u〉H1 for all uAH3ðR2Þ:
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Because j is coercive on H2, we obtain, via Cauchy–Schwartz
inequality

:u:2H2 rCðα1; γ; εÞ:Ju:H1:u:H1 for all uAH3ðR2Þ:
Going back to (3.8), the following property holds:

‖Ru‖2
H1 rCðα1; γ; εÞ:Ju:H1:u:H1 for all uAH3ðR2Þ:

In particular, the Young inequality yields, for all δ40

‖Ru‖2
H1 rδ‖Ju‖2

H1 þCðα1; γεÞ‖u‖2H1 for all uAH3ðR2Þ:

By a classical result that we can find in [22], �A is thus the
generator of an analytic semigroup on H1ðR2Þ.

Lastly, it is easy to check that ~F is Lipschitzian from the
bounded sets of H2ðR2Þ into H1ðR2Þ. Combining several results
from [22, Chapter 3] and [27, Section 6.3], we conclude that there
exists tε40 and a unique solution zεAC1ðð0; tεÞ;H1ðR2ÞÞ \
C0ð½0; tεÞ;H2ðR2ÞÞ \ C0ðð0; tεÞ;H3ðR2ÞÞ of the system (3.3). Thus,
there exists a unique solution wεAC1ðð0; tεÞ;H1ð2ÞÞ \ C0ð½0; tεÞ;
H2ð2ÞÞ \ C0ðð0; tεÞ;H3ð2ÞÞ to the system (3.1). □

4. Energy estimates

In this section, we perform energy estimates on the regularized
solutions of the third grade fluids' equations in the weighted space
H2ð2Þ. These estimates are independent of ε and allows us, in Section
5, to pass to the limit when ε tends to 0. Thus, we consider the
solution wεðt; xÞ of (3.1). Let T, TZ1 be a fixed positive constant and
τ0 ¼ log ðTÞ. We define Wεðτ;XÞ, obtained from wε by the change of
variables (1.4) and (1.5). A short computation shows that Wε satisfies
the system

∂τðWε�α1e�τΔWεÞþεe�τΔ2Wε�LðWεÞ
þUε �∇ðWε�α1e� τΔWεÞþα1e�τΔWε

þα1e�τX
2
� ∇ΔWε�βe�2τ divðjAεj2∇WεÞ

�βe�2τ divð∇ðjAεj2Þ4AεÞ ¼ 0;
div Uε ¼ 0;
Wεjτ ¼ τ0 ¼W0; ð4:1Þ

where τ0 ¼ log ðTÞ, Uε is obtained from Wε via the Biot–Savart law
(2.10), Aε ¼∇Uεþð∇UεÞt and we recall that

LðWεÞ ¼ΔWεþWεþ
X
2
� ∇Wε:

By Theorem 3.1, it is clear that there exists τε4τ0 such that

WεAC1ððτ0; τεÞ;H1ð2ÞÞ \ C0ððτ0; τεÞ;H3ð2ÞÞ:
We also assume that the initial datum W0AH2ð2Þ satisfies the
assumption (1.9) of Theorem 1.1, for some γ40. Let
η¼ R

R2W0ðXÞ dX, we write the following decompositions:

Wε ¼ ηGþ f ε;
Uε ¼ ηVþKε; ð4:2Þ
where G is the Oseen vortex sheet defined by (1.3) and V is the
divergence free vector field obtained from G via the Biot–Savart law
(2.10). Using the fact that LðGÞ ¼ 0, one has the equality

∂τðf ε�α1e� τΔf εÞþεe�τΔ2f ε�Lðf εÞþKε � ∇ðf ε�α1e�τΔf εÞ
þηV � ∇ðf ε�α1e�τΔf εÞþηKε � ∇ðG�α1e� τΔGÞþα1e�τΔf ε

þα1e� τX
2
�∇Δf εþηα1e� τΔGþηα1e�τX

2
� ∇ΔGþηεe�τΔ2G

�βe�2τ divðjAεj2∇f εþηjAεj2∇GÞ�βe�2τ divð∇ðjAεj2Þ4AεÞ ¼ 0:

ð4:3Þ
Let M¼Mðα1;βÞ42 be a positive constant which will be made more
precise later. Let τnεAðτ0; τε� be the largest time (depending on M)

such that, for all τA ½τ0; τnεÞ, the following inequality holds:

‖WεðτÞ‖2H1 þα1e� τ‖ΔWεðτÞ‖2L2 þ‖jXj2WεðτÞ‖2L2
þα2

1e
�2τ‖jXj2ΔWεðτÞ‖2L2 rMγð1�θÞ6: ð4:4Þ

To simplify the notations in the following computations, we assume
that 0oγr1 and we take T sufficiently large so that α1=T ¼
α1e�τ0 r1.

Since WεAC0ð½τ0; τεÞ;H2ð2ÞÞ and the condition (1.9) holds, τnε is
well defined. Furthermore, there exists a positive constant C
independent of W0 such that, for all τA ½τ0; τnεÞ

η2þ f ε
2
H1 þα1e� τ
��� ���Δf ε

2
L2
þ

��� ���jXj2f ε 2
L2

������
þα2

1e
�2τ jXj2Δf ε

2
L2
rCMγð1�θÞ6:

������ ð4:5Þ

Indeed, using the Cauchy–Schwartz inequality, we get

η¼
Z
R2
W0ðXÞ dX ¼

Z
R2

1þjXj2
1þjXj2W0ðXÞ dX

r
Z
R2

1
ð1þjXj2Þ2

dX

 !1=2 Z
R2
ð1þjXj2Þ2jW0ðXÞj2 dX

� �1=2

rC W0 L2ð2Þ:
������

Considering the decomposition (4.2) and the smoothness of G, we
obtain the inequality (4.5).

To simplify the notations, in this section we write f instead of f ε,
W instead of Wε, U instead of Uε and K instead of Kε.

The aim of this section is to show that the inequality (1.10) of
Theorem 1.1 holds for the regularized solutions of the system (4.1),
provided that the condition (1.9) is satisfied by W0. To this end, we
consider a fixed constant θ such that 0oθo1 which is twice the rate
of convergence of W to ηG in H2ð2Þ. In fact, we will show that, under
the assumption (1.9), the decaying of f to 0 in H2ð2Þ is equivalent to
e�θτ=2. As it is explained in Section 1 of this paper, the spectrum of L
in L2ðmÞ does not allow the rate of convergence to be better than
e� τ=2.

In order to get the inequality (1.10), we construct in this section
an energy functional E¼ EðτÞ such that, for every τA ½τ0; τnεÞ
EðτÞ � ‖f ðτÞ‖2

H2ð2Þ;

and there exists a positive constant C ¼ Cðα1;β;θÞ such that, for all
τA ½τ0; τnεÞ
∂τEðτÞþθEðτÞrCγe�τ : ð4:6Þ
This inequality will enable us to show that τnε ¼ þ1 and obtain, by
the application of Gronwall lemma

EðτÞrCγe�θτ for all τA ½τ0; þ1Þ:
This functional is built as the sum of several intermediate energy
functionals in various functions' spaces, for which we perform
convenient estimates.

4.1. Estimates in _H
�ð1þθÞ=2

We start by performing an estimate of the solution of (4.3) in the
homogeneous Sobolev space _H

�ð1þθÞ=2ðR2Þ. Combined with the other
estimates, it will give us an estimate in the classical Sobolev space
H�ð1þθÞ=2ðR2Þ. The motivation to do this comes from the fact that the
H1-estimate that we will perform later (see Lemma 4.3) makes the
term ‖u‖2

L2
appear on the right hand side of our H1-energy inequality.

In order to absorb this term, we look for an estimate in a Sobolev
space of negative order. To this end, due to Lemma 2.1 and the fact
that

R
R2 f ðXÞ dX ¼ 0, for 3

4 rso1, one can apply the operator ð�ΔÞ� s

to the equality (4.3) and take the inner L2-product of it with ð�ΔÞ� sf .
Through the computations that we will perform below, one can see
that, in order to get the estimate (4.6), we have to choose at least
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s¼ ð1þθÞ=2. Actually, since we have to absorb terms coming from the
non-linear part of (4.3), it is more convenient to take ð1þθÞ=2oso1,
for instance s¼ ð3þθÞ=4. In [23], the considered operator was
ð�ΔÞ�3=4, which implied the restriction 0oθo1

2 .
The next lemma summarizes the computations needed when

applying ð�ΔÞ� s to (4.3) and taking the L2-scalar product of it
with ð�ΔÞ� sf .

Lemma 4.1. Let f AH3ð2Þ such that
R
R2 f ðXÞ dX ¼ 0, then, for all

1
2 rso1 the three following equalities hold:

ð�ΔÞ� s X
2
� ∇f

� �
; ð�ΔÞ� sf

� �
L2
¼ � sþ1

2

� �
‖ð�ΔÞ� sf ‖2

L2
;

ðð�ΔÞ� sðLðf ÞÞ; ð�ΔÞ� sf ÞL2

¼ �‖ð�ΔÞ1=2� sf ‖2
L2
� s�1

2

� �
‖ð�ΔÞ� sf ‖2

L2
;

� ð�ΔÞ� s X
2
�∇Δf

� �
; ð�ΔÞ� sf

� �
L2
¼ ðsþ1Þ‖ð�ΔÞ1=2� sf ‖2

L2
:

ð4:7Þ

Proof. Using Fourier variables, it is easy to see thatdX
2
�∇f ¼ �bf �ξ

2
� ∇bf and

dX
2
�∇Δf ¼ 2jξj2bf þξjξj2

2
∇bf :

The proof of this lemma is then obtained through the Plancherel
formula and direct computations. □

In order to obtain a priori estimates of f in _H
�ð1þθÞ=2ðR2Þ, we

define the functional

E1ðτÞ ¼ 1
2 ð:ð�ΔÞ�ð3þθÞ=4f:2þα1e� τkð�ΔÞ�ð1þθÞ=4f 2Þ:

��
The estimate in _H

�ð1þθÞ=2
of f under the condition (4.4) is given in

the next lemma.

Lemma 4.2. Let WAC1ððτ0; τεÞ;H1ð2ÞÞ \ C0ððτ0; τεÞ;H3ð2ÞÞ be the
solution of (4.1) satisfying the inequality (4.4) for some γ40. There
exist γ040 and T0Z1 such that if TZT0 and γrγ0, then, for all
τA ½τ0; τnεÞ, E1 satisfies the inequality

∂τE1þθE1þ 1þ1�θ
4

α1e�τ
� �

:ð�ΔÞ� ð1þθÞ=4f :2rCM3γð1�θÞ2e�2τ

þCMγð1�θÞ2ð‖f‖2
L2ð2Þ þ:∇f:2þα2

1e
�2τ‖Δf‖2

L2ð1ÞÞ; ð4:8Þ

where θ, 0oθo1 is the fixed constant introduced at the beginning
of Section 4.

Proof. Since
R
R2 f ðXÞ dX ¼ 0, according to Lemma 2.1,

ð�ΔÞ�ð3þθÞ=4f is well defined. Thus, we apply ð�ΔÞ� ð3þθÞ=4 to
the equality (4.3) and we get

∂τ ð�ΔÞ� ð3þθÞ=4f þα1e� τð�ΔÞð1�θÞ=4f
� �

þεe� τð�ΔÞð5�θÞ=4f

�ð�ΔÞ�ð3þθÞ=4ðLðf ÞÞ �α1e� τð�ΔÞð1�θÞ=4f

þα1e� τð�ΔÞ�ð3þθÞ=4 X
2
�∇Δf

� �
¼Hðτ;G; f ;WÞ; ð4:9Þ

where

Hðτ;G; f ;WÞ ¼ ð�ΔÞ� ð3þθÞ=4ð�K � ∇ðf �α1e�τΔf Þ�ηV � ∇ðf �α1e�τΔf Þ

�ηK � ∇ðG�α1e�τΔGÞ�ηα1e� τΔG�ηα1e�τX
2
� ∇ΔG

�ηεe� τΔ2Gþβe�2τ curl divðjAj2AÞÞ:
Taking the L2-scalar product of (4.9) with ð�ΔÞ�ð3þθÞ=4 and taking
into account the equalities

ð�ð�ΔÞ�ð3þθÞ=4ðLðf ÞÞ; ð�ΔÞ� ð3þθÞ=4f ÞL2

¼ :ð�ΔÞ� ð1þθÞ=4f:2þ 1þθ
4

� �
:ð�ΔÞ�ð3þθÞ=4f:2;

and

α1e� τð�ΔÞ�ð3þθÞ=4 X
2
�∇Δf

� �
; ð�ΔÞ�ð3þθÞ=4f

� �
L2

¼ 7þθ
4

� �
α1e�τ:ð�ΔÞ� ð1þθÞ=4f:2;

given by Lemma 4.1, we obtain

1
2
∂τð:ð�ΔÞ�ð3þθÞ=4f:2þα1e� τkð�ΔÞ�ð1þθÞ=4f 2Þ

��
þεe� τ:ð�ΔÞ� ð1�θÞ=4f:2 þ 1þθ

4

� �
:ð�ΔÞ�ð3þθÞ=4f:2

þ 1þ 1þθ
4

� �
α1e� τ

� �
:ð�ΔÞ� ð1þθÞ=4f:2

¼ ðHðτ;G; f Þ; ð�ΔÞ�ð3þθÞ=4f ÞL2 : ð4:10Þ
Now, it remains to estimate the right hand side of (4.10), that we
write as

ðHðτ;G; f Þ; ð�ΔÞ� ð3þθÞ=4f ÞL2 ¼ I1þ I2þ I3þ I4þ I5;

where

I1 ¼ ðð�ΔÞ� ð3þθÞ=4ð�K � ∇ðf �α1e�τΔf ÞÞ; ð�ΔÞ� ð3þθÞ=4f ÞL2 ;
I2 ¼ ðð�ΔÞ� ð3þθÞ=4ð�ηV � ∇ðf �α1e� τΔf ÞÞ; ð�ΔÞ�ð3þθÞ=4f ÞL2 ;
I3 ¼ ðð�ΔÞ� ð3þθÞ=4ð�ηK �∇ðG�α1e� τΔGÞÞ; ð�ΔÞ� ð3þθÞ=4f ÞL2 ;
I4 ¼ ð�ΔÞ� ð3þθÞ=4 �ηα1e� τΔG

� 

; ð�ΔÞ� ð3þθÞ=4f ÞL2

�
þ ð�ΔÞ� ð3þθÞ=4ð�ηα1e� τX

2
�∇ΔGÞ; ð�ΔÞ� ð3þθÞ=4f ÞL2

�
þ ð�ΔÞ� ð3þθÞ=4ð�ηee�τΔ2GÞ; ð�ΔÞ� ð3þθÞ=4f ÞL2
�
¼ ð�ΔÞ� ð3þθÞ=4J; ð�ΔÞ� ð3þθÞ=4f ÞL2 ;
�

I5 ¼ ð�ΔÞ� ð3þθÞ=4ðβe�2τcurl divðjAj2AÞÞ; ð�ΔÞ� ð3þθÞ=4f ÞL2 :
�

The remaining of the proof of this lemma is devoted to the
estimate of these terms. We recall that curl K ¼ f , curl V ¼ G and
curl U ¼W . Since the divergence of K vanishes, we obtain

I1 ¼ ðð�ΔÞ� ð3þθÞ=4ð�divðKðf �α1e� τΔf ÞÞÞ; ð�ΔÞ� ð3þθÞ=4f ÞL2
r:ð�ΔÞ�ð3þθÞ=4∇ðKðf �α1e� τΔf ÞÞ::ð�ΔÞ� ð3þθÞ=4f::

Using the inequalities (2.1) of Lemma 2.1 and (2.15) of Lemma 2.4,
together with the Young and Hölder inequalities and the property
(4.5), we get

I1r
C

ð1�θÞ3=2
:Kðf �α1e� τΔf Þ:L2ð1Þ:ð�ΔÞ�ð3þθÞ=4f:

r C

ð1�θÞ3=2
:K:L1:f �α1e� τΔf:L2ð1Þ:ð�ΔÞ�ð3þθÞ=4f:

rμ:ð�ΔÞ�ð3þθÞ=4f:2þ C

μð1�θÞ3
:f:L2ð2Þ:f:H1‖f �α1e� τΔf ‖2

L2ð1Þ

rμ:ð�ΔÞ�ð3þθÞ=4f:2þCMγð1�θÞ3
μ

ð‖f‖2
L2ð1Þ þα2

1e
�2τ‖Δf ‖2

L2ð1ÞÞ;

ð4:11Þ
where μ is a positive constant which is made more precise later.

Similar computations and the inequality (4.5) give similar
estimates for I2. One has

I2rμ:ð�ΔÞ� ð3þθÞ=4f:2þCMγð1�θÞ3
μ

ð‖f‖2
L2ð1Þ þα2

1e
�2τ‖Δf ‖2

L2ð1ÞÞ:

ð4:12Þ
Likewise, we estimate the term I3. Indeed, the same computations
and the smoothness of G yield

I3rμ:ð�ΔÞ� ð3þθÞ=4f:2þ Cη2

μð1�θÞ3
:f:L2ð2Þ:f:H1‖G�α1e�τΔG‖2

L2ð1Þ
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rμ:ð�ΔÞ� ð3þθÞ=4f:2þCMγð1�θÞ3
μ

ð‖f ‖2
L2ð2Þ þ‖f‖2

H1 Þð1þα1e� τÞ:

Taking T0 sufficiently large so that α1e�τr1, we get

I3rμ:ð�ΔÞ� ð3þθÞ=4f:2þCMγð1�θÞ3
μ

ð‖f ‖2
L2ð2Þ þ:∇f:2Þ: ð4:13Þ

Estimating I4 is simple, because of the smoothness of G. We
remark that

R
R2 JðXÞ dX ¼ 0. Thus we can apply the inequality

(2.2) of Lemma 2.1 to obtain

:ð�ΔÞ�ð3þθÞ=4J:r
Cjηje� τ:G:H4ð3Þ

ð1�θÞ3=2
:

Using the above inequality and the smoothness of G, we can write

I4r
Cηe� τ

ð1�θÞ3=2
:ð�ΔÞ�ð3þθÞ=4f:

rμ:ð�ΔÞ� ð3þθÞ=4f:2þCMγð1�θÞ3e�2τ

μ
: ð4:14Þ

It remains to estimate the term I5. The inequality (2.1) of Lemma
2.1 implies

I5r
Cβe�2τ

ð1�θÞ3=2
:∇ðjAj2AÞ:L2ð1Þ:ð�ΔÞ�ð3þθÞ=4f:

rμ:ð�ΔÞ� ð3þθÞ=4f:2þCβ2e�4τ

μð1�θÞ3
‖∇ðjAj2AÞ‖2

L2ð1Þ:

A short computation leads to

‖∇ðjAj2AÞ‖2
L2ð1ÞrC‖j∇Uj2∇2U‖2

L2ð1Þ:

Using Hölder inequalities, the inequality (2.15) of Lemma 2.4 and
the inequality (2.18) of Lemma 2.5, we get

‖∇ðjAj2AÞ‖2
L2ð1ÞrC‖∇U‖4L1‖∇

2U‖2
L2ð1Þ

r‖W‖2
L2ð2Þ‖W‖2

H1 ð‖W‖2
L2
þ‖∇W‖2

L2ð1ÞÞ:

Finally, taking into account the inequality (4.4), we get

I5rμ:ð�ΔÞ� ð3þθÞ=4f:2þCM3β2γ3ð1�θÞ18e�4τ

μ
1þ eτ

α1

� �
rμ:ð�ΔÞ� ð3þθÞ=4f:2þCM3γ3ð1�θÞ18e�3τ

μ
: ð4:15Þ

The equality (4.10) and the inequalities (4.11)–(4.15) imply that

1
2
∂τð:ð�ΔÞ� ð3þθÞ=4f:2þα1e� τ:ð�ΔÞ� ð1þθÞ=4f:2Þ

þ 1�20μþθ
4

� �
:ð�ΔÞ� ð3þθÞ=4f:2

þ 1þ 1þθ
4

� �
α1e�τ

� �
:ð�ΔÞ� ð1þθÞ=4f:2

rCM3γð1�θÞ3e�2τ

μ
þCMγð1�θÞ3

μ

�ð‖f ‖2
L2ð2Þ þ:∇f:2þα2

1e
�2τ‖Δf ‖2

L2ð1ÞÞ: ð4:16Þ

Setting μ¼ ð1�θÞ=20, we finally get

∂τE1þθE1þ 1þ1�θ
4

α1e� τ
� �

:ð�ΔÞ� ð1þθÞ=4f:2rCM3γð1�θÞ2e�2τ

þCMγð1�θÞ2ð‖f‖2
L2ð2Þ þ:∇f:2þα2

1e
�2τ‖Δf‖2

L2ð1ÞÞ: □

ð4:17Þ

4.2. Estimates in H1ðR2Þ

We next establish the H1-estimate of f. As explained earlier, we get
it by performing the L2-scalar product of (4.3) with f. In this section, we
will see how useful Lemma 4.2 is for absorbing bad terms which

appear in the computations made below. One defines the functional

E2ðτÞ ¼ 1
2 ð f 2þα1e�τ�� ��∇f 2Þ:

����
The H1-estimate of f is given by the following lemma.

Lemma 4.3. Let WAC1ððτ0; τεÞ;H1ð2ÞÞ \ C0ððτ0; τεÞ;H3ð2ÞÞ be the
solution of (4.1) satisfying the inequality (4.4) for some γ40. There
exist γ040 and T0Z1 such that if TZT0 and γrγ0, then, for all
τA ½τ0; τnεÞ, E2 satisfies the inequality

∂τE2þE2þ
1
2
:∇f:2þβ

2
e�2τ:jAj∇f:2

r:f:2þCMγð1�θÞ6ð:f:2þ:jXj2f:2ÞþCM2γð1�θÞ6e� τ ;

ð4:18Þ
where θ, 0oθo1, is the fixed constant introduced at the beginning
of Section 4.

Proof. Taking the L2-inner product of (4.3) with f, performing
several integrations by parts and taking into account the equalities

ð�Lðf Þ; f ÞL2 ¼ ∇f 2�1
2

�� ��f 2;
����

and

α1e�τ X
2
�∇Δf ; f

� �
L2
¼ α1e� τ ∇f 2;

����
we obtain the equality

∂τE2þE2þεe� τ Δf 2þð1�α1e� τÞ
�� ��∇f 2þβe�2τ�� ��jAj∇f 2

����
¼ f 2þ I1þ I2þ I3þ I4þ I5;

���� ð4:19Þ

where

I1 ¼ �ðK � ∇ðf �α1e� τΔf Þ; f ÞL2 ;
I2 ¼ �ηðK �∇ðG�α1e� τΔGÞ; f ÞL2 ;
I3 ¼ �ηðV � ∇ðf �α1e� τΔf Þ; f ÞL2 ;

I4 ¼ �ηα1e�τ ε
α1
Δ2GþΔGþX

2
�∇ΔG; f

� �
L2

þηβe�2τðdivðjAj2∇GÞ; f ÞL2 ;
I5 ¼ ðβe�2τ divð∇ðjAj2Þ4AÞ; f ÞL2 :

We notice that, since K is divergence free, ðK � ∇f ; f ÞL2 ¼ 0. Inte-
grating by parts and using the inequality (2.15) of Lemma 2.4 and
the inequality (4.5), we obtain

I1 ¼ �α1e�τðKΔf ;∇f ÞL2
rCα1e�τ K L1

�� ��Δf k
�� ��∇f��

rCα1e�τ‖f‖1=2
H1 ‖f‖1=2

L2ð2Þ Δf
�� ��:∇f:

rC
ffiffiffiffiffiffi
α1

p
Mγð1�θÞ6e� τ=2 ∇f

�� ��
rμ:∇f:2þCM2γ2ð1�θÞ12

μ
e�τ ; ð4:20Þ

where μ40 will be made more precise later.
By the same method, using the inequality (2.14) of Lemma 2.4

and the smoothness of G, one has

I2 ¼ ηðKðG�α1e�τΔGÞ;∇f ÞL2
r jηj:K:L4:G�α1e�τΔG:L4:∇f:

rCð1þα1e�τÞjηj:f:L2ð2Þ:∇f:

rμ:∇f:2þCMγð1�θÞ6
μ

ð:f:2þ:jXj2f 2Þ:
�� ð4:21Þ

The same method gives

I3 ¼ �α1e�τηðVΔf ;∇f ÞL2
rα1e� τjηj

��V L1
�� ��Δf kk∇f k

rC
ffiffiffiffiffiffi
α1

p
Mγð1�θÞ6e� τ=2 ∇f

�� ��

O. Coulaud / International Journal of Non-Linear Mechanics 65 (2014) 69–8778

Author's Personal Copy



rμ:∇f:2þCM2γ2ð1�θÞ12
μ

e� τ : ð4:22Þ

Because of the regularity of G, the estimate of I4 is simple. Indeed,
an integration by parts and Hölder inequalities yield

I4rCjηjðεþα1Þe�τkf k�ηβe�2τðjAj2∇G;∇f ÞL2
rCjηjðεþα1Þe�τ��f kþCjηjβe�2τk∇G:L1‖∇U‖2L3k∇f L3

��
Then, by the inequality (2.13), the continuous injection of H1ðR2Þ
into L3ðR2Þ and the inequalities (4.4) and (4.5), one obtains

I4rCjηjðεþα1Þe�τkf kþCjηjβe�2τ‖W‖2
L3
k∇f L3

��
rCðεþα1ÞMγð1�θÞ6e� τþCjηjβe�2τ‖W‖2

H1 ð:∇f
���þkΔf kÞ

rCðεþα1ÞMγð1�θÞ6e� τþCM3=2γ3=2ð1�θÞ9e�3τ=2

rCM3=2γð1�θÞ6e�τ : ð4:23Þ
Finally, using the same arguments, due to the inequality (2.13) and
the continuous injection of H1ðR2Þ into L4ðR2Þ, one has

I5 ¼ �βe�2τð∇ðjAj2Þ4A;∇f ÞL2
rCβe�2τ ∇U L4

�� ��∇2U L4
�� ��jAj∇f k��

rCβe�2τ W H1

�� ��W H2

�� ��jAj∇f k��
rCβMγð1�θÞ6e�2τ e

τ=2ffiffiffiffiffiffi
α1

p jAj∇f
�� ��

rβ
2
e�2τ:jAj∇f:2þCM2γ2ð1�θÞ12e� τ : ð4:24Þ

Taking into account the inequalities (4.20)–(4.24) and assuming
that γr1, we deduce from (4.19) that

∂τE2þE2þð1�3μ�α1e�τÞ:∇f:2þβ
2
e�2τ:jAj∇f:2

r:f:2þCMγð1�θÞ6
μ

ð:f:2þ:jXj2f:2ÞþCM2γð1�θÞ6e� τ :

ð4:25Þ
If we choose for instance μ¼ 1

12 and T0 large enough to have
α1e� τr1

4 , we get

∂τE2þE2þ
1
2
:∇f:2þβ

2
e�2τ:jAj∇f:2

r:f:2þCMγð1�θÞ6ð:f:2þ:jXj2f:2ÞþCM2γð1�θÞ6e� τ : □
ð4:26Þ

To achieve the H1-estimate of f, we have to combine the
inequalities (4.8) and (4.18). We can interpolate :f:2 between
:ð�ΔÞ�ð1þθÞ=4f:2 and :∇f:2. Indeed, via Hölder and Young
inequalities, we get

:f:2 ¼ ð2πÞ2
Z
R2

1
jξj2ð1þθÞ=ð3þθÞjξj

2ð1þθÞ=ð3þθÞjbf j2ð1þθÞ=ð3þθÞjbf j4=ð3þθÞ dξ

rð2πÞ2
Z
R2

1
jξj1þθ

jbf j2 dξ !2=ð3þθÞ Z
R2
jξj2jbf j2dξ� �ð1þθÞ=ð3þθÞ

r:ð�ΔÞ� ð1þθÞ=4f:4=ð3þθÞ:∇f:ð2þ2θÞ=ð3þθÞ

r 1þθ
3þθ

� �
3
8
:∇f:2þ 2

3þθ

� �
8
3

� �ð1þθÞ=2
:ð�ΔÞ� ð1þθÞ=4f:2:

Since, 0oθo1, we obtain

f 2r1
4

�� ��∇f 2þ5
�� ��ð�ΔÞ� ð1þθÞ=4f 2:

����� ð4:27Þ

Thus, we have

∂τE2þE2þ
1
4
:∇f:2þβ

2
e�2τ:jAj∇f:2

r5:ð�ΔÞ� ð1þθÞ=4f:2þCMγð1�θÞ6

�ð:f:2þ:jXj2f:2ÞþCM2γð1�θÞ6e�τ : ð4:28Þ
We define E3 ¼ 6E1þE2. The inequalities (4.8) and (4.28) give

∂τE3þθE3þð1þ3
2 ð1�θÞα1e� τÞ:ð�ΔÞ�ð1þθÞ=4f:2

þ1
4 :∇f:

2rCM3γð1�θÞ2e� τþCMγð1�θÞ2ð:f:2þ:∇f:2

þα2
1e

�2τ:Δf:2þ:jXj2f:2þα2
1e

�2τ:jXj2Δf:2Þ: ð4:29Þ
Interpolating again :f:2 between :∇f:2 and :ð�ΔÞ� ð1þθÞ=4f:2 and
taking γ sufficiently small, we obtain

∂τE3þθE3þ1
2 :ð�ΔÞ� ð1þθÞ=4f:2þ1

8 :∇f:
2rCM3γð1�θÞ2e�τ

þCMγð1�θÞ2ðα2
1e

�2τ:Δf:2þ:jXj2f:2þα2
1e

�2τ:jXj2Δf:2Þ:
ð4:30Þ

4.3. Estimates in H2ðR2Þ

We now perform the H2-estimate of f. This is done with the
same method as for the H1-estimate in the previous section.
Indeed, we perform the L2-product between (4.3) and �Δf and,
after some computations, we see that the inequality (4.4) enables
us to absorb all the terms involving the H2-norm of f. Combined
with (4.30), we get an estimate in H2, where only terms with
weighted norms remain. More precisely, we introduce the follow-
ing functional:

E4ðτÞ ¼ 1
2 ð:∇f:

2þα1e� τ:Δf:2Þ:
The H2-estimate of f is given by the lemma below.

Lemma 4.4. Let WAC1ððτ0; τεÞ;H1ð2ÞÞ \ C0ððτ0; τεÞ;H3ð2ÞÞ be the
solution of (4.1) satisfying the inequality (4.4) for some γ40. There
exist γ040 and T0Z1 such that if TZT0 and γrγ0, then for all
τA ½τ0; τnεÞ, E4 satisfies the inequality

∂τE4þE4þ
1
2
:Δf:2þβ

2
e�2τ:jAjΔf:2r3

2
:∇f:2þCM2γð1�θÞ6e�2τ

þCM2γð1�θÞ6ð:f:2þ:∇f:2þ:jXj2f:2Þ; ð4:31Þ
where θ, 0oθo1 is the fixed constant introduced at the beginning
of Section 4.

Proof. We take the L2-product of (4.3) with �Δf . Doing several
integrations by parts, it is easy to see that

ð�Lðf Þ; �Δf ÞL2 ¼ :Δf:2�:∇f:2;

and

� α1e�τX
2
� ∇Δf ;Δf

� �
L2
¼ 1
2
α1e� τ:Δf:2:

Furthermore, one also has

βe�2τðdivðjAj2∇f Þ;Δf Þ

¼ βe�2τ:jAjΔf:2þβe�2τ ∑
2

j ¼ 1

Z
R2
A : ∂jA∂jfΔf dX:

Using Hölder inequalities, the inequality (2.13) of Lemma 2.3, the
continuous injections of H1ðR2Þ into L4ðR2Þ and the inequality
(4.4), we get

βe�2τ ∑
2

j ¼ 1

Z
R2
A : ∂jA∂jfΔf dXrCβe�2τ:jAjΔf kk∇A∇f k

rCβe�2τ jAjΔf
�� ����∇2U L4

�� ��∇f L4
��

rCβe�2τ jAjΔf
�� ����∇W H1

�� ��∇f H1

��
rμ1βe

�2τ jAjΔf 2
����

þCβ
μ1

e�2τ‖W‖2
H2 ð ∇f 2þ

�� ��Δf 2Þ
����
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rμ1βe
�2τ jAjΔf 2

����
þCMγð1�θÞ6

μ1
e�τð ∇f 2þ

�� ��Δf 2Þ;
����

where μ140 will be chosen later.
Consequently, we get

∂τE4þεe�τ:∇Δf:2þ 1�α1

2
e� τ

� �
:Δf:2þβð1�μ1Þe�2τ:jAjΔf:2

r:∇f:2þCMγð1�θÞ6
μ1

e� τð:∇f:2þ:Δf 2Þþ I1þ I2þ I3þ I4þ I5;
��

ð4:32Þ
where

I1 ¼ ðU � ∇ðf �α1e� tΔf Þ;Δf ÞL2 ;
I2 ¼ ηðK � ∇ðG�α1e� tΔGÞ;Δf ÞL2 ;

I3 ¼ ηα1e� t ε
α1
Δ2GþΔGþX

2
�∇ΔG;Δf

� �
L2

þηβe�2tðdivðjAj2∇GÞ;Δf ÞL2 ;
I4 ¼ βe�2tðdivð∇ðjAj2Þ4AÞ;Δf ÞL2 :

Integrating by parts and using the divergence free property of K,
one can show that

I1 ¼ � ∑
2

j;k ¼ 1

Z
R2
∂kUj∂jf ∂kf dX:

Due to the Gagliardo–Nirenberg inequality and the inequalities
(2.13) and (4.4), it comes

I1rC ∇Uk k:∇f:2L4
rC ∇Uk kk∇f kkΔf k

rμ2:Δf:2þCMγð1�θÞ6
μ2

:∇f:2; ð4:33Þ

where μ240 will be chosen later.
We now estimate I2 with the help of the inequality (2.15) of

Lemma 2.4, the inequality (4.5) and the smoothness of G

I2r jηjkK L1
�� ��G�α1e� τΔGkkΔf k

rCjηjð1þα1e�τÞ‖f‖1=2
H1 ‖f‖1=2

L2ð2Þ:Δf:

rμ2:Δf:2þCMγð1�θÞ6
μ2

ð:f:2þ:∇f:2þ:jXj2f:2Þ: ð4:34Þ

We rewrite

I3 ¼ I13þ I23;

where

I13 ¼ ηα1e�τ ε
α1
Δ2GþΔGþX

2
�∇ΔG;Δf

� �
L2
;

I23 ¼ ηβe�2τðdivðjAj2∇GÞ;Δf ÞL2 :

Using the good regularity of G and the inequality (4.5), one can
show that

I13rCM1=2γ1=2ð1�θÞ3e�τ Δf
�� ��

rμ2:Δf:2þCMγð1�θÞ6
μ2

e�2τ :

The estimate of I23 is slightly more complicated. Actually, we can
bound I23 by two kinds of terms that we estimate separately. In fact,
it is easy to see that

I23rCjηjβe�2τ
Z
R2
j∇AjjAjj∇GjjΔf j dXþCjηjβe�2τ

Z
R2
jAj2j∇2GjjΔf j dX:

ð4:35Þ
Each term of the right hand side of (4.35) can be estimated
in a convenient way. We use again the inequality (2.13) of the

Lemma 2.3, the inequality (4.4), the Hölder inequalities and the
inequality (4.4). We get

Cjηjβe�2τ
Z
R2
j∇AjjAjj∇GjjΔf j dXrCjηjβe�2τk∇2Ukk∇G L1

�� ��jAjΔf k

rμ1βe
�2τ:jAjΔf:2þCjηj2β

μ1
e�2τ:∇W 2

��
rμ1βe

�2τ:jAjΔf:2þCM2γ2ð1�θÞ12
μ1

e�2τ:

By the same way, we have

Cjηjβe�2τ
Z
R2
jAj2j∇2GjjΔf j dxrμ1βe

�2τkjAjΔf:2þCM2γ2ð1�θÞ12
μ1

e�2τ ;

and thus we have shown

I23r2μ1βe
�2τ:jAjΔf:2þCM2γ2ð1�θÞ12

μ1
e�2τ :

Finally, assuming γr1, one has

I3rμ2:Δf 2þ2μ1βe
�2τ�� ��jAjΔf:2þCM2γð1�θÞ6

minðμ1;μ2Þ
e�2τ : ð4:36Þ

It remains to estimate I4. Recalling that U ¼ ηVþK , one has

I4rCjηjβe�2τ
Z
R2
j∇AjjAjj∇2V jjΔf j dXþCjηjβe�2τ

Z
R2
jAj2j∇3V jjΔf j dX

þCβe�2τ
Z
R2
j∇AjjAjj∇2KjjΔf j dXþCβe�2τ

Z
R2
jAj2j∇3KjjΔf j dX: ð4:37Þ

We have to estimate each term of the right hand side of the
inequality (4.37). The first two ones can be estimated exactly like
we did for I23 . The inequality (2.13) of Lemma 2.3 and Gagliardo–
Nirenberg inequality yield

Cβe�2τ
Z
R2
j∇AjjAjj∇2KjjΔf j dXrμ1βe

�2τ:jAjΔf 2
��

þCβe�2τ

μ1
‖∇2U‖2

L4
:∇2K:2L4

rμ1βe
�2τ jAjΔf 2

����
þCβe�2τ

μ1
‖∇W‖2

L4
:∇f 2

L4

���
rμ1βe

�2τ jAjΔf 2
����

þCβe�2τ

μ1
:∇W::ΔW::∇f::Δf::

Due to the inequality (4.4), we get

Cβe�2τ
Z
R2
j∇AjjAjj∇2KjjΔf j dXrμ1βe

�2τkjAjΔf 2
��

þCMγð1�θÞ6e�3τ=2

μ1
ð ∇f 2þ

�� ��Δf 2Þ:
����

By the same method, we obtain

Cβe�2τ
Z
R2
jAj2j∇3KjjΔf j dXrμ1βe

�2τkjAjΔf:2þCβe�2τ

μ1
‖∇U‖2L1:∇

3K 2
��

rμ1βe
�2τ jAjΔf 2

����
þCβe�2τ

μ1
:∇W:H1:∇W:L2ð2Þ:Δf:2

rμ1βe
�2τ jAjΔf 2

����
þCMγð1�θÞ6e� τ

μ1
Δf 2:
����

Finally, we have shown that

I4r4μ1βe
�2τ:jAjΔf:2þCM2γð1�θÞ6e� τ

μ1
ðk∇f 2þ

�� ��Δf 2Þ:
�� ð4:38Þ
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Going back to (4.32) and taking into account the inequalities
(4.33), (4.34), (4.36) and (4.38), we get

∂τE4þ 1�3μ2�
α1

2
e�τ

� �
kΔf 2þð1�7μ1Þβe�2τ�� ��jAjΔf 2r

�� ��∇f 2
��

þCM2γð1�θÞ6
minðμ1;μ2Þ

ð f 2þ
�� ��∇f 2þ

�� ��Δf 2
����

þ:jXj2f:2ÞþCM2γð1�θÞ6
minðμ1;μ2Þ

e�2τ :

Taking for instance μ1 ¼ 1
14 , μ2 ¼ 1

12 , γ small enough and T ¼ eτ0

large enough, we finally have

∂τE4þE4þ
1
2
:Δf:2þβ

2
e�2τ:jAjΔf:2r3

2
:∇f:2þCM2γð1�θÞ6e�2τ

þCM2γð1�θÞ6ð f 2þ
�� ��∇f 2þ

�� ��jXj2f 2Þ: □
���� ð4:39Þ

In order to finish the H2-estimate of f we define a new
functional E5 as a linear combination of E3 and E4 given by

E5 ¼ 16E3þE4:

From the inequalities (4.30) and (4.31), it is clear that one has

∂τE5þθE5þ8:ð�ΔÞ�ð1þθÞ=4f:2

þ1
2 :∇f:

2þ1
2 :Δf:2rCM3γð1�θÞ2e� τ

þCM2γð1�θÞ2ð:f:2þ:∇f:2þα2
1e

�2τ:Δf:2

þ:jXj2f:2þα2
1e

�2τ:jXj2Δf:2Þ: ð4:40Þ
Using the interpolation inequality (4.27) and taking γ small
enough and τ0 ¼ log ðTÞ large enough, we finally obtain

∂τE5þθE5þ7:ð�ΔÞ�ð1þθÞ=4f:2þ1
4 :∇f:

2

þ1
4 :Δf:2rCM3γð1�θÞ2e� τ

þCM2γð1�θÞ2ð jXj2f 2þα2
1e

�2τ�� ��jXj2Δf 2Þ:
���� ð4:41Þ

4.4. Estimates in H2ð2Þ

In order to achieve the estimate of f in H2ð2Þ, it remains to
perform estimates in weighted spaces. Combined with the
inequality (4.41), it will give us an estimate in H2ð2Þ. To do this,
we make the L2-scalar product of (4.3) with jXj4ðf �α1e�τΔf Þ. We
define the functional

E6ðτÞ ¼ 1
2 jXj2ðf �α1e�τΔf Þ 2:

����
Before stating the lemma which contains the estimate of E6, we
state a technical lemma, which gives the terms provided by the L2-
product of the linear terms of (4.3) with jXj4ðf �α1e� τΔf Þ.

Lemma 4.5. Let f AC1ððτ0; τεÞ;H1ð2ÞÞ \ C0ððτ0; τεÞ;H3ð2ÞÞ and
HðX; τ; f Þ ¼ jXj4ðf �α1e�τΔf Þ. For all τAðτ0; τεÞ, the next equalities
hold:

1: ð� f ;HðX; τ; f ÞÞL2 ¼ � jXj2f 2
����

þ8α1e� τ jXjf 2�α1e�τ�� ��jXj2∇f 2:
����

2: ð�Δf ;HðX; τ; f ÞÞL2 ¼ α1e�τ jXj2Δf 2
����

�8 jXjf 2þ
�� ��jXj2∇f 2:

����
3: �X

2
� ∇f ;HðX; τ; f Þ

� �
L2
¼ 3
2

jXj2f 2�24α1e�τ�� ��jXjf 2
����

þ3α1e� τ jXj2∇f 2
����

�α1

2
e� τðX � ∇Δf ; jXj4f ÞL2 :

4: ð�Lðf Þ;HðX; τ; f ÞÞL2 ¼
1
2

jXj2f 2þð1þ2α1e�τÞ
�� ��jXj2∇f 2

����
þα1e� τ jXj2Δf 2

����

�ð8þ16α1e�τÞ jXjf 2
����

�α1

2
e�τðX �∇Δf ; jXj4f ÞL2 :

5: α1e�τX
2
� ∇Δf ;HðX; τ; f Þ

� �
L2
¼ α1

2
e� τðX � ∇Δf ; jXj4f ÞL2

þ3α2
1

2
e�2τ jXj2Δf 2:

����
6: εe�τðΔ2f ;HðX; τ; f ÞÞL2 ¼ εα1e�2τð jXj2∇Δf 2�8

�� ��jXjΔf 2Þ
����

þεe� τð jXj2Δf 2�8
�� ��jXj∇f 2

����
þ32 f 2�16

�� ��X � ∇f 2Þ:
����

Proof. All these equalities are obtained via integrations by parts.
We only show the first four ones, the others are obtained with the
same method. Let us show the equality 1. Two integrations by
parts imply

ð� f ; jXj4ðf �α1e� τΔf ÞÞL2

¼ �:jXj2f:2�α1e� τ:jXj2∇f:2�4α1e� τ ∑
2

j ¼ 1

Z
R2
XjjXj2f ∂jf dX

¼ �:jXj2f:2�α1e� τ:jXj2∇f:2�2α1e� τ ∑
2

j ¼ 1

Z
R2
XjjXj2∂jðf 2Þ dX

¼ �:jXj2f:2�α1e� τ:jXj2∇f:2þ8α1e� τ
���jXjf 2:

��
The equality (2) is obtained through the same computations. We
show now the third equality of this lemma. Integrating by parts,
we obtain

�X
2
:∇f ; jXj4ðf �α1e� τΔf Þ

� �
L2
¼ � ∑

2

j ¼ 1

Z
R2

XjjXj4
4

∂jðjf j2Þ dX

þα1e� τ ∑
2

j ¼ 1

Z
R2

XjjXj4
2

∂jfΔf dX

¼ 3
2
:jXj2f:2þα1e�τ ∑

2

j ¼ 1

Z
R2

XjjXj4
2

∂jfΔf dX:

Besides, integrating several times by parts, we get

α1e�τ ∑
2

j ¼ 1

Z
R2

XjjXj4
2

∂jfΔf dX ¼ �α1e� τ ∑
2

j ¼ 1

Z
R2
f ∂j

XjjXj4
2

Δf

 !
dX

¼ �3α1e� τ
Z
R2
jXj4fΔf dX

�α1

2
e�τðX � ∇Δf ; jXj4f ÞL2

¼ �24α1e� τ jXjf 2þ3α1e� τ�� ��jXj2∇f 2
����

�α1

2
e�τðX � ∇Δf ; jXj4f ÞL2 ;

and consequently

�X
2
� ∇f ; jXj4ðf �α1e�τΔf Þ

� �
L2
¼ 3
2

jXj2f 2�24α1e�τ�� ��jXjf 2
����

þ3α1e� τ jXj2∇f 2�α1

2
e� τðX � ∇Δf ; jXj4f ÞL2 :

������
The fourth equality of this lemma is obtained by summing the first
three ones. By the same method, we obtain easily the equalities
(5) and (6) of this lemma. □

The H2ð2Þ-estimate of f is given in the following lemma.

Lemma 4.6. Let WAC1ððτ0; τεÞ;H1ð2ÞÞ \ C0ððτ0; τεÞ;H3ð2ÞÞ be the
solution of (4.1) satisfying the inequality (4.4) for some γ40. There
exist γ040 and T0Z1 such that if TZT0 and γrγ0, then for all
τA ½τ0; τnεÞ, E6 satisfies the inequality

∂τE6þθE6þ
1�θ
8

:jXj2f:2þ1
4
:jXj2∇f:2þα1

4
e�τ:jXj2Δf:2

rCM2γð1�θÞ6e�τþ1024
1�θ

:f:2þCM2γ1=2ð1�θÞ3
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�ð f 2þ
�� ��∇f 2þ

�� ��Δf 2Þ;
���� ð4:42Þ

where θ, 0oθo1, is the fixed constant introduced at the beginning
of Section 4.

Proof. To show this lemma, we perform the L2-product of the
equality (4.3) with jXj4ðf �α1e� τΔf Þ. Applying Lemma 4.5, we
obtain

∂τE6þ
1
2

jXj2f 2þð1þα1e�τÞ
�� ��jXj2∇f 2

����
þ α1e� τþα2

1
2
e�2τ

� �
:jXj2Δf:2þ J

¼ Cεe� τ:jXj∇f 2þCεα1e�2τ�� ��jXjΔf 2þð8þ8α1e�τÞ
�� ��jXjf 2

��
þ I1þ I2þ I3þ I4þ I5; ð4:43Þ

where

J ¼ �βe�2τðdivðjAj2∇f Þ; jXj4ðf �α1e� τΔf ÞÞL2 ;
I1 ¼ ðK � ∇ðf �α1e� τΔf Þ; jXj4ðf �α1e� τΔf ÞÞL2 ;
I2 ¼ ηðK � ∇ðG�α1e�τΔGÞ; jXj4ðf �α1e� τΔf ÞÞL2 ;
I3 ¼ ηðV � ∇ðf �α1e� τΔf Þ; jXj4ðf �α1e�τΔf ÞÞL2 ;
I4 ¼ �ηεe� τðΔ2G; jXj2ðf �α1e� τΔf ÞÞL2

þηα1e�τ ΔGþX
2
� ∇ΔG; jXj4ðf �α1e� τΔf Þ

� �
L2

�ηβe�2τðdivðjAj2∇GÞ; jXj4ðf �α1e� τΔf ÞÞL2 ;
I5 ¼ �βe�2τðdivð∇ðjAj2Þ4AÞ; jXj4ðf �α1e� τΔf ÞÞL2 :
We now estimate J. One has

J ¼ J1þ J2; ð4:44Þ
where

J1 ¼ �βe�2τðdivðjAj2∇f Þ; jXj4f ÞL2 ;
J2 ¼ βα1e�3τðdivðjAj2∇f Þ; jXj4Δf ÞÞL2 :
We estimate J1 and J2 separately. Integrating by parts, we obtain

J1 ¼ βe�2τ:jXj2jAj∇f:2þ4βe�2τ∑2
j ¼ 1

Z
R2
XjjXj2jAj2∂jff dX:

Using Hölder and Young inequalities, we obtain

4βe�2τ ∑
2

j ¼ 1

Z
R2
XjjXj2jAj2∂jff dX

�����
�����rβ

2
e�2τ:jXj2jAj∇f 2

��
þCβe�2τ jXjf 2

�� ��∇U 2
L1 :
����

Then, using the inequality (2.15) of Lemma 2.4, the inequality (2.4)
of Lemma 2.2 and the conditions (4.4) and (4.5), we get

4βe�2τ ∑
2

j ¼ 1

Z
R2
XjjXj2jAj2∂jff dX

�����
�����rβ

2
e�2τ:jXj2jAj∇f:2

þCβe�2τ:jXj2f::f::∇W:H1:∇W:L2ð2Þ

rβ
2
e�2τ:jXj2jAj∇f:2þCM2γ2ð1�θÞ12e� τ ;

and we conclude that

J1Z
β
2
e�2τ:jXj2jAj∇f:2�CM2γ2ð1�θÞ12e�τ : ð4:45Þ

By the same way, we estimate J2. A short computation shows that

J2 ¼ βα1e�3τ:jXj2jAjΔf:2þ2βα1e�3τ ∑
2

j ¼ 1

Z
R2
jXj4∂jA : A∂jfΔf dX:

We define

I¼ 2βα1e�3τ ∑
2

j ¼ 1

Z
R2
jXj4∂jA : A∂jfΔf dX

�����
�����

Applying Hölder inequalities and the continuous injection of

H1ðR2Þ into L4ðR2Þ, we obtain

IrCβα1e�3τ:jXj2jAjΔf::jXj2∇f:L4k∇2U L4
��

rCβα1e�3τ jXj2jAjΔf
�� ����jXj2∇f L4

�� ��∇2U H1 :
��

Using the inequality (2.6) of Lemma 2.2 and the inequality (2.17) of
Lemma 2.4, we get

IrCβα1e�3τ jXj2jAjΔf
�� ��kjXj2∇f 1=2

��
�ð f 1=2þ

�� ��jXj∇f 1=2þ
�� ��jXj2Δf 1=2Þ

�� ��W H2 :
����

Due to the Young inequality and the condition (4.4), we obtain

Irβ
2
α1e�3τ jXj2jAjΔf 2

����
þCβα1e�3τ‖W‖2

H2 ð f 2þ
�� ��∇f 2þ

�� ��jXj2∇f 2þ
�� ��jXj2Δf 2Þ

����
rβ

2
α1e�3τ jXj2jAjΔf 2

����
þCMγð1�θÞ6e�2τð f 2þ

�� ��∇f 2þ
�� ��jXj2∇f 2þ

�� ��jXj2Δf 2Þ:
����

Thus, we can conclude that

J2Z
β
2
α1e�3τ jXj2jAjΔf 2

����
�CMγð1�θÞ6e�2τð f 2þ

�� ��∇f 2þ
�� ��jXj2∇f 2þ

�� ��jXj2Δf 2Þ:
����

ð4:46Þ
Combining the inequalities (4.45) and (4.46) and going back to
(4.44), we have shown that

JZ
β
2
e�2τð:jXj2jAj∇f 2þα1e�τ�� ��jXj2jAjΔf:2Þ�CM2γ2ð1�θÞ12e�τ

�CMγð1�θÞ6e�2τð f 2þ
�� ��∇f 2þ:jXj2∇f 2þ

�� ��jXj2Δf 2Þ:
������

ð4:47Þ
Taking into account the inequality (4.47), the equality (4.43)
becomes

∂τE6þ
1
2

jXj2f 2þð1þα1e�τÞ
�� ��jXj2∇f 2

����
þ α1e�τþα2

1
2
e�2τ

� �
:jXj2Δf:2

þβ
2
e�2τð:jXj2jAj∇f:2þα1e�τ:jXj2jAjΔf:2Þ

rCεe�τ:jXj∇f:2þCεα1e�2τ:jXjΔf:2þð8þ8α1e� τÞ:jXjf 2
��

þCMγð1�θÞ6e�2τð f 2þ
�� ��∇f 2þ

�� ��jXj2∇f 2þ
�� ��jXj2Δf 2Þ

����
þCM2γ2ð1�θÞ12e�τþ I1þ I2þ I3þ I4þ I5: ð4:48Þ

It remains to estimate every Ii, i¼ 1;…;5. Using the divergence
free property of K, integrating by parts and using Hölder inequal-
ities, we get

I1 ¼ �2 ∑
2

j ¼ 1

Z
R2
XjjXj2Kjjf �α1e� τΔf j2 dX

rC K L1
�� ��jXj2ðf �α1e� τΔf Þk

�� ��jXjðf �α1e� τΔf Þ
��:

The inequalities (2.15) of Lemma 2.3 and (2.4) of Lemma 2.2, the
Young inequality abr3

4 a
4=3þ1

4 b
4 and the inequality (4.5) yield

I1rC‖f ‖1=2
H1 ‖f ‖1=2

L2ð2Þ jXj2ðf �α1e�τΔf Þ 3=2
�� ��f �α1e�τΔf 1=2

����
rCM1=2γ1=2ð1�θÞ3ð jXj2ðf �α1e�τΔf Þ 2þ

�� ��f �α1e� τΔf 2Þ
����

rCM1=2γ1=2ð1�θÞ3ð jXj2f 2þα2
1e

�2τ�� ��jXj2Δf 2
����

þ f 2þα2
1e

�2τ�� ��Δf 2Þ:
���� ð4:49Þ

Using the inequality (2.14) of Lemma 2.4, one can bound I2 in a
convenient way. Indeed, one has

I2rCjηjkK L4
�� ��jXj2∇ðG�α1e�τΔGÞ L4

�� ��jXj2ðf �α1e� tΔf Þk
rCjηj:f:L2ð2Þð:jXj2f:þα1e�τ:jXj2Δf:Þ
rCM1=2γ1=2ð1�θÞ3ð:jXj2f:2þα2

1e
�2τ:jXj2Δf:2þ:f:2Þ: ð4:50Þ
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Via an integration by parts, due to the facts that VðXÞ � X ¼ 0 and
div V ¼ 0, we show that I3 vanishes. Indeed

I3 ¼
η
2

∑
2

j ¼ 1

Z
R2
jXj4Vj∂jðjf �α1e� τΔf j2Þ dX

¼ �2η ∑
2

j ¼ 1

Z
R2
jXjXjVjjf �α1e� τΔf j2 dX ¼ 0:

We rewrite I4 ¼ I14þ I24, where

I14 ¼ �ηα1e� τ ε
α1
Δ2GþΔGþX

2
� ∇ΔG; jXj2ðf �α1e�τΔf Þ

� �
L2
;

I24 ¼ �ηβe�2τðdivðjAj2∇GÞ; jXj4ðf �α1e�τΔf ÞÞL2 :
It is easy, using the smoothness of G and the inequality (4.5), to see
that

I14rCjηje�τkG:H3ð3Þ

�
:f kþα1e� τkΔf k

�
rCMγð1�θÞ6e� τ :

The term I34 is not really harder to estimate. Due to the inequality
(2.13) of Lemma 2.3, the inequality (4.5), the continuous injection
of H1ðR2Þ into L4ðR2Þ and the inequality (4.4), we get

I24r jηjβe�2τ
�
‖∇U‖2

L4
kjXj4ΔG L1 þ

�� ��∇U L4
�� ��∇2U L4

�� ��jXj4∇G L1
����

�
�

f
�� ��þα1e� τ

���Δf k
�

rCjηjβe�2τ
�
‖W‖2

L4
þ:W:L4:∇W:L4

��
:f:þα1e�τ:Δf:

�
rCjηje�2τ

�
‖W‖2

H1 þ:W:H1:W:H2

�����f kþα1e� τkΔf k
�

rCM2γ2ð1�θÞ12e�3τ=2:

Thus, assuming γr1, the following inequality holds:

I4rCM2γð1�θÞ6e�τ : ð4:51Þ
It remains to estimate I5, which is the term that does not appear in
the second grade fluids' equations. We rewrite

I5 ¼ I15þ I25;

where

I15 ¼ �βe�2τðdivð∇ðjAj2Þ4AÞ; jXj4f ÞL2 ;
I25 ¼ βα1e�3τðdivð∇ðjAj2Þ4AÞ; jXj4Δf ÞL2 :
We begin by estimating I15. After some computations, we notice
that we have to estimate two kinds of terms. In fact, one has

I15r I1;15 þ I1;25 ;

where

I1;15 ¼ Cβe�2τ
Z
R2
jXj4j∇2Uj2j∇Ujjf j dX;

I1;25 ¼ Cβe�2τ
Z
R2
jXj4j∇3Ujj∇Uj2jf j dX:

In order to simplify the notations, we set

δ¼Mγð1�θÞ6:
Applying the inequality (2.6) of Lemma 2.2 and the continuous
injection of H2ðR2Þ into L1ðR2Þ, we obtain

I1;15 rβe�2τ:jXj∇2U:2L4:∇U L1
�� ��jXj2f k

rCβe�2τ
�
:W

���þkjXj∇Wk
��

k∇WkþkjXjΔWk
�
k∇U H2

�� ��jXj2f k:
Then, using the inequalities (2.4) of Lemma 2.2 and (2.17) of
Lemma 2.4 and the conditions (4.4) and (4.5), we get

I1;15 rCβe�2τ
�

Wk kþk∇W 1=2
�� ��jXj2∇W 1=2

����
�ð ∇Wk kþ

��ΔW 1=2
�� ��jXj2ΔW 1=2Þ

�� ��W H2

�� ��jXj2f k
rCδe�3τ=2

�
δ1=2þδ1=4:jXj2∇W:1=2

��
δ1=2þδ1=4eτ=4:jXj2ΔW:1=2

�
:

Then, we recall that W ¼ ηGþ f . Due to the fact that jηjrδ1=2 and
the smoothness of G, we obtain

I1;15 rCδe�3τ=2 δ1=2þδ1=4:jXj2∇f:1=2
� �

δ1=2þδ1=4eτ=4:jXj2Δf:1=2
� �

rCδ2e�3τ=2þCδ7=4e�3τ=2:jXj2∇f:1=2þCδ7=4e�5τ=4:jXj2Δf:1=2

þCδ3=2e�5τ=4:jXj2∇f:1=2:jXj2Δf:1=2:

Using the Young inequalities abr1
4 a

4þ3
4 b

4=3 and abr1
3 a

3þ2
3 b

3=2,
the inequality (4.5) and assuming γr1, we finally obtain

I1;15 rCδ2e�3τ=2þCδ2 :jXj2∇f:2þ
� ���jXj2Δf 2

�� 

þCδ5=3ðe�2τþe�5τ=3

�
þCδ4=3e�5τ=3kjXj2∇f 2=3

��
rCδ2e�3τ=2þCδ2

�
jXj2∇f 2þ

�� ��jXj2Δf 2
�������

þCδ5=3ðe�2τþe�5τ=3ÞþCδe�5τ=2þCδ2 jXj2∇f 2
����

rCM2γð1�θÞ6e�3τ=2þCM2γ2ð1�θÞ12
�

jXj2∇f 2þ
�� ��jXj2Δf 2

�
:

������
ð4:52Þ

In order to estimate I1;25 , we use the Hölder inequalities and
obtain

I1;25 rCβe�2τ jXj2∇3U
�� ��kjXj2f:L4‖∇U‖2L8 :

Then, using the Gagliardo–Nirenberg inequality, we notice that

jXj2f L4 r
�� ��jXj2f 1=2

�� ��∇ðjXj2f Þ 1=2
����

rC jXj2f 1=2
�

jXjf
�� ��þ��� ���jXj2∇f k�1=2:����

The inequalities (2.13) of Lemma 2.3, (2.20) of Lemma 2.5 and the
continuous injection of H1ðR2Þ into L8ðR2Þ imply

I1;25 rCβe�2τ jXj2∇3U
�� ��kjXj2f:L4‖∇U‖2L8

rCβe�2τ� Wk kþ
��jXj∇WkþkjXj2ΔWk


� jXj2f 1=2� jXjf
�� ��þ�� ��jXj2∇f k
1=2‖W‖2

H1 :
���

Finally, using the conditions (4.4) and (4.5) and the Young
inequality abr1

4 a
4þ3

4 b
4=3, we obtain

I1;25 rCδ7=4e�3τ=4 jXj2f 1=2
����

rCδ2e�τþCδ jXj2f 2
����

rCM2γ2ð1�θÞ12e�τþCMγð1�θÞ6 jXj2f 2:
���� ð4:53Þ

Thus, combining the inequalities (4.52) and (4.53), we obtain

I15rCM2γð1�θÞ6e�τþCM2γð1�θÞ6
�

jXj2f 2
����

þ jXj2∇f 2þ
�� ��jXj2Δf 2

�
:

������ ð4:54Þ

It remains to estimate I25. Like in the case of I15, we have to consider
two kinds of terms. Indeed, one can show that

I25r I2;15 þ I2;25 ;

where

I2;15 ¼ Cα1βe�3τ
Z
R2
jXj4j∇2Uj2j∇UjjΔf j dX;

I2;25 ¼ Cα1βe�3τ
Z
R2
jXj4j∇3Ujj∇Uj2jΔf j dX:

With the same tools as the ones used to estimate I15, one can bound
I2;15 . Due to Hölder inequalities and the continuous injection of
H2ðR3Þ into L1ðR2Þ, one has

I2;15 rCα1βe�3τ:jXj2Δf::jXj∇2U:2L4:∇U:L1

rCα1βe�3τ:jXj2Δf::jXj∇2U:2L4:∇U:H2 :

Then, using the inequality (2.6) of Lemma 2.2 and the inequality
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(2.17) of Lemma 2.4, we obtain

I2;15 rCα1βe�3τ jXj2Δf
�� ��ðkWkþkjXj∇WkÞðk∇WkþkjXjΔWkÞkW H2

��
Finally, the condition (4.4) and the Young inequality imply

I2;15 rCδ3=2e� τ jXj2Δf
�� ��

rCM2γ2ð1�θÞ12e�2τþCMγð1�θÞ6 jXj2Δf 2:
���� ð4:55Þ

Likewise, using the inequality (2.20) of Lemma 2.5 and the
continuous injection of H

3
2ðR2Þ into L1ðR2Þ, we get

I2;25 rCβα1e�3τ jXj2Δf
�� ��kjXj2∇3Uk‖∇U‖2L1

rCβα1e�3τ jXj2Δf
�� ������WkþkjXj∇WkþkjXj2ΔWk

�
‖W‖2

H3=2

rCδ1=2e�2τ jXj2Δf
�� ��‖W‖2

H3=2 :

Using the well-known interpolation inequality

v H3=2 rC
�� ��v 1=2

H1

��� ���v 1=2
H2 for every vAH2ðR2Þ;
������

we obtain, using again the condition (4.4) and the Young inequal-
ity

I2;25 rCδ1=2e�2τ jXj2Δf
�� ��kW H1

�� ��W H2

��
rCδ3=2e�3τ=2 jXj2Δf

�� ��
rCM2γ2ð1�θÞ12e�3τþCMγð1�θÞ6 jXj2Δf 2:

���� ð4:56Þ

Finally, the inequalities (4.55) and (4.56) imply

I25rCM2γ2ð1�θÞ12e�3τþCMγð1�θÞ6 jXj2Δf 2:
���� ð4:57Þ

Thus, combining the inequalities (4.54) and (4.57), we get

I5rCM2γð1�θÞ6e�τþCM2γð1�θÞ6
�

jXj2f 2
����

þ jXj2∇f 2þ
�� ��jXj2Δf 2

�
:

������ ð4:58Þ

Taking into account the inequalities (4.49)–(4.51) and (4.58) and
going back to (4.48), one has

∂τE6þ
1
2

jXj2f 2þð1þα1e�τÞ
�� ��jXj2∇f 2

����
þ α1e� τþα2

1

2
e�2τ

� �
:jXj2Δf 2�ð8þ8α1e� τÞ

�� ��jXjf 2
��

rCεe� τ:jXj∇f 2þCεα1e�2τ�� ��jXjΔf:2þCM2γð1�θÞ6e�τ

þCM2γ1=2ð1�θÞ3
�

f 2þ
�� ��∇f 2þ

�� ��Δf 2
�������

þCM2γ1=2ð1�θÞ3
�

jXj2f 2þ
�� ��jXj2∇f 2þ

�� ��jXj2Δf 2
�
:

������ ð4:59Þ

Via the Young inequality and the condition (4.5), it is easy to check
that

Cεe�τ:jXj∇f 2þCεα1e�2τ�� ��jXjΔf 2rε2
�� ��jXj2∇f:2þCe�2τk∇f 2

��
þε2 jXj2Δf 2þCα2

1e
�4τ�� ��Δf 2rε2

�� ��jXj2∇f 2þε2
�� ��jXj2Δf 2

����
þCMð1�θÞ6e�2τ :

We assume that ε2rminð12 ;α1e�τ0=2Þ. The inequality (4.59)
becomes

∂τE6þ
1
2
:jXj2f:2þ 1

2
þα1e�τ

� �
:jXj2∇f:2

þ α1

2
e� τþα2

1
2
e�2τ

� �
:jXj2Δf:2�8α1e�τ:jXjf 2r

��
CM2γð1�θÞ6e�τþ8 jXjf 2

����
þC1M

2γ1=2ð1�θÞ3
�

f 2þ
�� ��∇f 2þ

�� ��Δf 2
�������

þC1M
2γ1=2ð1�θÞ3

�
jXj2f 2þ

�� ��jXj2∇f 2þ
�� ��jXj2Δf 2

�
;

������
ð4:60Þ

where C1 is a positive constant dependent on α1 and β.

We take now γ sufficiently small so that C1M
2γ1=2 ð1�θÞ3r

ð1�θÞ=4. We obtain

∂τE6þ
θ
2
þ1�θ

4

� �
:jXj2f:2þ 1

4
þα1e� τ

� �
:jXj2∇f 2

��
þ α1

4
e� τþα2

1
2
e�2τ

� �
:jXj2Δf:2�8α1e� τ:jXjf 2

��
rCM2γð1�θÞ6e�τþ8 jXjf 2

����
þC1M

2γ1=2ð1�θÞ3
�

f 2þ
�� ��∇f 2þ

�� ��Δf 2
�
:

������ ð4:61Þ

Using the inequality (2.4) of Lemma 2.2, one has

8:jXjf:2rh:jXj2f:2þ64
h
:f:2 for all h40:

Thus, we set h¼ ð1�θÞ=8 and obtain

∂τE6þ
θ
2
þ1�θ

8

� �
:jXj2f:2þ 1

4
þα1e� τ

� �
:jXj2∇f:2

þ α1

4
e� τþα2

1
2
e�2τ

� �
:jXj2Δf:2�8α1e� τ:jXjf:2

rCM2γð1�θÞ6e�τþ1024
1�θ

f 2
����

þC1M
2γ1=2ð1�θÞ3

�
f 2þ
�� ��∇f 2þ

�� ��Δf 2
�
:

������ ð4:62Þ

Integrating several times by parts, we notice that

E6 ¼
1
2
:jXj2f:2þα1e� τ:jXj2∇f:2þα2

1
2
e�2τ:jXj2Δf:2

�8α1e�τ:jXjf:2:
Consequently, the inequality (4.62) can be written

∂τE6þθE6þ
1�θ
8

:jXj2f:2þ1
4
:jXj2∇f:2þα1

4
e� τ:jXj2Δf:2

rCM2γð1�θÞ6e�τþ1024
1�θ

f 2
����

þCM2γ1=2ð1�θÞ3 � ð f 2þ
�� ��∇f 2þ

�� ��Δf 2Þ: □
���� ð4:63Þ

5. Proof of Theorem 1.1

In this section, we consider the solution Wε of (4.1) with initial
data W0 satisfying the condition (1.9) for some γ40 and we take
advantage of the energy estimates obtained in Section 4 to show
that Wε satisfies the inequality (1.10). Then, we pass to the limit
when ε tends to 0 and show that Wε converges, up to a
subsequence, to a weak solution of (1.6) which also satisfies the
inequality (1.10). We recall that

Wε ¼ ηGþ f ε;

where G is the Oseen vortex sheet given by (1.3), η¼ R
R2W0ðXÞ dX

and f ε satisfies the equality (4.3). We define the functional

E7 ¼
K

1�θ
E5þE6;

where K is a large positive constant that will be made more precise
later and E5 and E6 are the energy functionals defined in Section 4.

If K is large enough, this energy is suitable to estimate the H2ð2Þ
norm of f ε, as it is shown by the next lemma.

Lemma 5.1. Let f εAC1ððτ0; τεÞ;H1ð2ÞÞ \ C0ððτ0; τεÞ;H3ð2ÞÞ. If K is
large enough, there exist two positive constants C1 and C2 such that,
for all τA ðτ0; τεÞ

E7r
C1

1�θ

�
:f ε:

2
H1 þα1e� τ:Δf ε

2þ
�� ��jXj2f ε 2þα2

1e
�2τ�� ��jXj2Δf ε:

2
�
;
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C2

�
:f ε:

2
H1 þα1e� τ:Δf ε:

2þ:jXj2f ε 2þα2
1e

�2τ�� ��jXj2Δf ε:
2
�
rE7:

Proof. The first inequality of this lemma comes directly from the
definition of E7. To prove the second one, we notice that

E7Z
CK
1�θ

�
:f ε:

2
H1 þα1e�τ:Δf ε:

2
�
þ1
2
:jXj2ðf ε�α1e� τΔf εÞ:2:

Furthermore, we have already shown that

:jXj2ðf ε�α1e� τΔf εÞ:
2 ¼ :jXj2f ε:

2þ2α1e� τ:jXj2∇f ε:
2

þα2
1e

�2τ:jXj2Δf ε:
2�16:jXjf ε:

2
:

Via the Hölder and Young inequalities, we get

:jXj2ðf ε�α1e� τΔf εÞ:2Z:jXj2f ε:2þ2α1e� τ:jXj2∇f ε:2

þα2
1e

�2τ:jXj2Δf ε:
2�1

2 :jXj2f ε:
2�128:f ε:

2
:

Consequently, one has

E7Z
CK
1�θ

�
:f ε:

2
H1 þα1e�τ:Δf ε:

2
�
þ1
4
:jXj2f ε:2þα1e�τ:jXj2∇f ε:2

þα2
1
2
e�2τ:jXj2Δf:2�64:f ε:

2
:

Thus, if K is big enough, we get the second inequality of this
lemma. □

Lemma 5.2. Let WεAC0ð½τ0; τεÞ;H3ð2ÞÞ be a solution of (4.1) satisfy-
ing the inequality (4.4) for some γ40. There exist T040 and γ040
such that if T ¼ eτ0 ZT0 and γrγ0, then, for all τA ½τ0; τnεÞ, E7
satisfies the inequality

∂τE7þθE7rCM3γð1�θÞe� τ : ð5:1Þ

Proof. We take γ0 and T0 respectively as small and large as
necessary to satisfy the conditions of the Lemmas 4.2–4.6. Accord-
ing to the inequalities (4.41) and (4.42), one has

∂τE7þθE7þ
K

1�θ
7:ð�ΔÞ� ð1þθÞ=4f ε:

2þ1
4
:∇f ε:

2þ1
4
:Δf ε:

2
��

þ1�θ
8

:jXj2f ε:2þ
α1

4
e�τ:jXj2Δf ε:

2

rCM3γð1�θÞe� τþ1024
1�θ

:f ε:
2

þCM2ð1�θÞγ1=2Kð:jXj2f ε:
2þα2

1e
�2τ:jXj2Δf ε:

2Þ
þCM2ð1�θÞγ1=2ð:f ε:

2þ:∇f ε
2þ
�� ��Δf ε

2Þ:
��

Using the interpolation inequality (4.27) of f ε
2
���� between

ð�ΔÞ� ð1þθÞ=4f ε
2
����� and ∇f ε 2

���� and taking K large enough and γ
small enough, we get

∂τE7þθE7rCM3γð1�θÞe� τ : □ ð5:2Þ

Remark 5.1. We can see in the proofs of Lemmas 4.2–5.2 that γ0
does not depend on θ, but only on α1, β and M.

5.1. Regularized problem

Before proving Theorem 1.1, we show an intermediate theorem.
This one gives the same result as Theorem 1.1, but for the solutions
of the regularized system (4.1).

Theorem 5.1. Let θ be a constant such that 0oθr1. There exist
ε0 ¼ ε0ðα1;βÞ40, γ0 ¼ γ0ðα1;βÞ40 and T0 ¼ T0ðα1;βÞZ0 such
that, for all εrε0, T ¼ eτ0 ZT0 and W0AH2ð2Þ satisfying the condi-
tion (1.9) with γrγ0, there exist a unique global solution
WεAC1ððτ0; þ1Þ;H1ð2ÞÞ \ C0ððτ0; þ1Þ;H3ð2ÞÞ of (4.1) and a

positive constant C ¼ Cðα1;β;θÞ40 such that, for all τZτ0

ð1�α1e� τΔÞðWεðτÞ�ηGÞ:2L2ð2ÞrCγe�θτ ;
��� ð5:3Þ

where η¼ R
R2W0ðxÞ dx and the parameters α1 and β are fixed and

given in (1.1).

Proof. Let W0AH2ð2Þ satisfying the condition (1.9) with 0rγrγ0
and 0rT0rT , where γ0 and T0 will be made more precise later.
By Theorem 3.1, there exist τε4τ0 ¼ log ðTÞ and a solution Wε to
the system (4.1) which belongs to C1ððτ0; τεÞ;H1ð2ÞÞ \ C0ðð
τ0; τεÞ;H3ð2ÞÞ. Let η¼ R

R2W0ðXÞ dX, and f ε defined by the equality

Wε ¼ ηGþ f ε: ð5:4Þ
Let M42 be a positive constant that will be set later and
τnεA ½τ0; τεÞ be the highest positive time such that the inequality
(4.4) holds. As shown at the beginning of Section 4, the inequality
(4.5) holds on ½τ0; τnεÞ. We take T0 sufficiently large and γ0 and ε
sufficiently small so that the results of Lemmas 4.2–5.2 occur.
Consequently, there exists C ¼ Cðα1;βÞ40 such that, for all
τA ½τ0; τnεÞ
∂τðE7eθτÞrCM3γð1�θÞe�ð1�θÞτ : ð5:5Þ
Integrating this inequality in time between τ0 and τA ½τ0; τnεÞ, we
obtain

E7ðτÞrE7ðτ0Þe�θðτ� τ0Þ þCM3γðe�ð1�θÞτ0e�θτ�e� τÞ: ð5:6Þ
Due to the decomposition (5.4) and Lemma 5.1, for every
τA ½τ0; τnεÞ, one has

:WεðτÞ:2H1 þ:jXj2WεðτÞ:2þα1e� τ:ΔWεðτÞ:2

þα2
1e

�2τ:jXj2ΔWεðτÞ:2 rCη2þCE7ðτÞ:
Since f ε satisfies the inequality (4.5), one has η2rCγð1�θÞ6.
Taking into account the inequality (5.6), it comes

:WεðτÞ:2H1 þ:jXj2WεðτÞ:2þα1e� τ:ΔWεðτÞ:2

þα2
1e

�2τ:jXj2ΔWεðτÞ:2

rCγð1�θÞ6þE7ðτ0Þe�θðτ�τ0Þ þCM3γe�τ0 : ð5:7Þ
Using again Lemma 5.1 and arguing like for the establishment of
the inequality (4.5), we can show that

E7ðτ0Þr
C

1�θ

�
:f εðτ0Þ:

2
H1 þα1e� τ0:Δf εðτ0Þ:

2

þ:jXj2f εðτ0Þ:2þα2
1e

�2τ0:jXj2Δf εðτ0Þ:2
�
rCγð1�θÞ5:

Consequently, the inequality (5.7) becomes

:WεðτÞ:2H1 þ:jXj2WεðτÞ:2þα1e� τ:ΔWεðτÞ:2

þα2
1e

�2τ:jXj2ΔWεðτÞ:2

rC1γð1�θÞ5þC2M
3γe�τ0 ; ð5:8Þ

where C1 and C2 are two positive constants independent of W0 and
θ.
We set M¼ 4C1=ð1�θÞ, and we get

:WεðτÞ:2H1 þ:jXj2WεðτÞ:2þα1e� τ:ΔWεðτÞ:2

þα2
1e

�2τ:jXj2ΔWεðτÞ:2

rMγð1�θÞ6
4

þC2M
3γe� τ0 : ð5:9Þ

Finally, taking T0 sufficiently large so that C2M
3γe� τ0 r

Mγð1�θÞ6=4, we obtain, for all τA ½τ0; τnεÞ

:WεðτÞ:2H1 þ:jXj2WεðτÞ:2þα1e� τ:ΔWεðτÞ:2

þα2
1e

�2τ:jXj2ΔWεðτÞ:2r
Mγð1�θÞ6

2
: ð5:10Þ

This inequality shows in particular that τnε ¼ τε and thus (5.10)
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holds for all τA ½τ0; τεÞ. From the inequality (5.10), we also deduce
that τε ¼ þ1. Indeed, if τεoþ1, the boundedness of Wε in H2ð2Þ
on ½τ0; τεÞ given by (5.10) is a contradiction to the finiteness of τε.

In particular, the inequality (5.6) occurs on ½τ0; þ1Þ.
Applying Lemma 5.1 in the inequality (5.6), we finally obtain the
inequality (5.3). □

5.2. Existence of weak solutions in H2ð2Þ

Now, we show that under the hypotheses of Theorem 5.1, there
exists a global weak solution W of (1.6) which belongs to
C0ð½τ0; þ1Þ;H2ð2ÞÞ, and that this solution converges to the Oseen
vortex sheet G when τ goes to infinity. To this end, we pass to the
limit in the system (4.1) when ε tends to 0 and show that, up to a
subsequence, Wε converges in some sense to a solution of the
system (1.6) which satisfies the inequality (5.3). Let ðεnÞnAN be a
sequence of positive numbers tending to 0. We consider the
solution Wεn AC1ððτ0; þ1Þ;H1ð2ÞÞ \ C0ððτ0; þ1Þ;H3ð2ÞÞ of (4.1)
which satisfies the conditions of Theorem 5.1. Due to technical
reasons linked to the compactness properties of Sobolev spaces, it
is more convenient to establish the convergence of Wεn to W in
every bounded regular domain of R2. Let Ω be a bounded regular
domain of R2 and τ1 be a fixed positive time such that
τ0oτ1oþ1. In what follows, HsðΩÞ, sZ0, denotes the restric-
tions to Ω of the functions of the Sobolev space HsðR2Þ. From
Theorem 5.1, we know that Wεn is bounded in L1ð½τ0; þ1Þ;H2ð2ÞÞ
uniformly with respect to n. Consequently, there exists
WAL1ð½τ0; τ1�;H2ð2ÞÞ such that

Wεn ,W weakly in Lpð½τ0; τ1�;H2ðΩÞÞ for all pZ2:

Looking at the system (4.1), we can see that ∂τWεn is bounded in
L1ð½τ0; τ1�;H1ðΩÞÞ uniformly with respect to n. This implies that
Wεn is equicontinuous in H1ðΩÞ. Indeed, for s1;s2A ½τ0; τ1�,
s2Zs1, we have

:Wεn ðs2Þ�Wεn ðs1Þ:H1ðΩÞ ¼ k
Z s2

s1

∂τWεn ðsÞds:H1ðΩÞ

r ðs2�s1Þ:∂τWεn ðsÞ:L1ð½τ0 ;τ1 �;H1ðΩÞÞ:

Furthermore, for every τA ½τ0; τ1�, the set ⋃nANf ϵn ðτÞ is bounded in
H2ðΩÞ and thus compact in H1ðΩÞ. Using the Arzela–Ascoli
theorem, we get

Wεn-W ; strongly in C0ð½τ0; τ1�;H1ðΩÞÞ:
By interpolation, we can show that

Wεn-W in C0ð½τ0; τ1�;HsðΩÞÞ for all so2: ð5:11Þ
This is enough to pass to the limit in the system (4.1) in the sense
of the distributions on ½τ0; τ1� �Ω and to show that W is a weak
solution of the system (1.6). Since most of the terms of Eq. (4.1)
have already been studied in [23], we will just show that the
convergence holds for the term �div curlðjAεn j2Aεn Þ which does
not appear in the second grade fluids' equations.

We consider φAC1
0 ð½τ0; τ1� �ΩÞ. For all τA ½τ0; τ1�, we want to

show thatZ τ

τ0

Z
Ω
jAεn ðτ;XÞj2Aεn ðτ;XÞ⋄∇2φðτ;XÞ dX dτ

⟶

Z τ

τ0

Z
Ω
jAðτ;XÞj2Aðτ;XÞ⋄∇2φðτ;XÞ dX dτ; ð5:12Þ

when n tends to infinity, where, for A;BAM2ðRÞ, we use the
notation

A⋄B¼ ∑
2

j ¼ 1
ðA1;jB2;j�A2;jB1;jÞ:

The term of the right hand side of (5.12) appears naturally via two
integrations by parts, when performing the L2-scalar product of
�div curlðjAj2AÞ with φ. The strong convergence of Wεn to W in
C0ð½τ0; τ1�;H1ðΩÞÞ implies directly the identity (5.12). Indeed, due
to the continuous injection of H1ðΩÞ into L3ðΩÞ, Wεn converges to
W in C0ð½τ0; τ1�; L3ðΩÞÞ. Furthermore, the inequality (2.13) implies

:Aεn �A L3 r
�� ��Wεn �W L3 ;

��
and consequently Aεn converges to A strongly in C0ð½τ0; τ1�; L3ðΩÞÞ.
This fact suffices to show that the identity (5.12) occurs. Thus W is
a global weak solution of (1.6) which belongs to C0ð½τ0; þ1Þ;
H2ð2ÞÞ.

The fact that W satisfies the inequality (1.10) is a direct
consequence of the weak convergence of Wεn to W. Indeed, for
all τA ½τ0; þ1Þ, Wεn ðτÞ is bounded in H2ð2Þ uniformly with respect
to n and consequently we have

Wεn ðτÞ W
,

ðτÞ; weakly in H2ð2Þ for all τA ½τ0; þ1Þ:
Since Wεn satisfies the inequality (1.10), it implies that W also
satisfies (1.10).

5.3. Uniqueness

The aim of this part is to prove that the solution w of the
system (1.2) obtained in Section 5.2 is unique in L2ð2Þ. Let w1 and
w2 be two solutions of (1.2) with the same initial data w0AH2ð2Þ.
Let u1 and u2 be the divergence free vector fields obtained via the
Biot–Savart law respectively from w1 and w2. We also define
Ai ¼∇uiþð∇uiÞt . Applying the Biot–Savart law to the system (1.1),
we can see that, for i¼1,2, the divergence free vector field ui
satisfies the system

∂tðui�α1ΔuiÞ�Δuiþcurlðui�α1ΔuiÞ4ui�β divðjAij2AiÞþ∇pi ¼ 0;

div ui ¼ 0;
uijt ¼ 0 ¼ u0; ð5:13Þ

where u0 is obtained from w0 via the Biot–Savart law.
Notice that since wi belongs to L1locðRþ ;H2ð2ÞÞ and ∂twi belongs

to L1locðRþ ;H1ðR2ÞÞ, the inequalities (2.11) and (2.13) imply in
particular

uiAL1locðRþ ; LpðR2Þ2Þ for all p42;

∇uiAL1locðRþ ;H2ðR2Þ4Þ;
∂tuiAL1locðRþ ; LpðR2Þ2Þ for all p42;

∂tΔuiAL1locðRþ ; L2ðR2Þ2Þ:
Consequently, the system (5.13) has a meaning in the sense of
distributions.

We note w¼w1�w2, u¼ u1�u2, L¼ L1�L2 and A¼ A1�A2. A
short computation shows that u satisfies the system

∂tðu�α1ΔuÞ�Δuþcurlðu�α1ΔuÞ4u1þcurlðu2�α1Δu2Þ4u

þβ divðjA2j2A2Þ�β divðjA1j2A1Þþ∇q¼ 0;

div u¼ 0;
ujt ¼ 0 ¼ 0: ð5:14Þ

Notice that, although u1 and u2 do not belong to L2ðR2Þ, the
divergence free vector field u does. Indeed, since w1 and w2 have
the same initial data, for all tZ0, we haveZ
R2
wðt; xÞ dx¼ 0:

By the application of Lemma 2.5, this fact implies that u belongs to
L2ðR2Þ. Let t040 be a fixed positive time. We notice that both w1
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and w2 are bounded in L1ð½0; t0�;H2ð2ÞÞ. More precisely, one has

sup
tA ½0;t0 �

�
:w1ðtÞ:H2ð2Þ þ:w2ðtÞ:H2ð2Þ

�
rC:

Applying Lemma 2.3, it implies in particular

sup
tA ½0;t0 �

�
uiðtÞ L4 þ

�� ��∇uiðtÞ L1þk kΔuiðtÞ L4

�
rC for i¼ 1;2:

������
In order to show that u� 0, we now perform estimates on the H1-
norm of u. The uniqueness of the solutions of (5.13) has been
shown in [4] for solutions with initial data in H2ðR2Þ. In our case,
the proof is slightly simpler, because the vector field u belongs to
H3ðR2Þ2. We consider the L2-inner product of (5.14) with u. First of
all, integrating by parts, we notice that

βðdivðjA2j2A2�jA1j2A1Þ;uÞL2 ¼
β
2
ðjA1j2A1�jA2j2A2;AÞL2

¼ β
4

Z
R2
ðjA1j2þjA2j2ÞjAj2 dx

þβ
4

Z
R2
ðjA1j2�jA2j2ÞðA1þA2Þ : A dx

¼ β
4

Z
R2
ðjA1j2þjA2j2ÞjAj2 dx

þβ
4

Z
R2
ðjA1j2�jA2j2Þ2 dx:

Thus, using integrations by parts and the divergence free property
of u, we have

1
2
∂tð:u:2þα:∇u:2Þþ:∇u:2þβ

4

Z
R2
ðjA1j2þjA2j2ÞjAj dx

þβ
4

Z
R2
ðjA1j2�jA2j2Þ2 dx¼ I1þ I2; ð5:15Þ

where

I1 ¼ ðcurlðu2�α1Δu2Þ4u;uÞL2 ;
I2 ¼ ðcurl u4u1;uÞL2 ;
I3 ¼ �α1ðcurlΔu4u1;uÞL2 :
A short computation shows that I1 vanishes. Indeed, we set
ω¼ u2�α1Δu2 and we recall the notation u¼ ðu1;u2;0Þ and
curl ω¼ ð0;0; ∂1ω2�∂2ω1Þ. We have

I1 ¼ ðcurl ω4u;uÞL2
¼ �ðð∂1ω2�∂2ω1Þu2;u1ÞL2 þðð∂1ω2�∂2ω1Þu1;u2ÞL2 ¼ 0:

Due to the boundedness of u1 in L4ðR2Þ, applying Hölder inequal-
ities we obtain

I2r u1 L4
�� ��∇uk�� ��uk

rC
�
α1

�

u 2þα1
�� ��∇u 2

�
:

������
Using [26, Lemma A.1], we check that

I3rCα1

Z
R2
jΔu1jj∇ujjuj dxþCα1

Z
R2
j∇u1jj∇uj2 dx:

Using Hölder inequalities, the Gagliardo–Nirenberg inequality and
the Young inequality abr1

4 a
4þ3

4 b
4=3, we obtain

I3rCα1 u L4
�� ��Δu2 L4

�� ��∇ukþCα1
�� ��∇u1 L1

�� ��∇u 2
��

rCα1 ∇u 3=2
�� ��u 1=2þCα1

�� ��∇u 2
����

rCðα1Þð u 2þα1
�� ��∇u 2Þ:

����
Going back to (5.15), we get

1
2 ∂t
�

u 2þα
�� ��∇u 2

�
rCðα

����� ���u 2þα
�� ��∇u 2

�
:

������ ð5:16Þ

Integrating in time this inequality between 0 and tA ½0; t0� and
applying the Gronwall lemma, we finally obtain

uðtÞ 2þα
�� ��∇uðtÞ 2 ¼ 0 for all tA ½0; t0�:

����

Since t0 is arbitrary, we conclude that u� 0 on Rþ . Consequently u
is unique and so is w. Thus, the system (1.2) has a unique global
solution in the space C0ðRþ ;H2ð2ÞÞ.
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