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Résumé

Cette these a pour objet 'étude du comportement asymptotique des solutions des
équations des fluides de grades 2 et 3. Dans le premier chapitre, on étudie les profils
asymptotiques au premier ordre des solutions des équations des fluides de grade 2 sur
R3. On démontre que les solutions des équations des fluides de grade 2 convergent vers
des solutions particulieres et explicites des équations de la chaleur, lorsque le temps tend
vers l'infini. Ce résultat montre en particulier que les fluides de grade 2 se comportent
asymptotiquement comme les fluides newtoniens régis par les équations de Navier-Stokes.
Pour cette étude, on utilise les variables d’échelles (ou variables autosimilaires), et on
effectue des estimations d’énergies dans divers espaces fonctionnels, en particulier dans
des espaces de Sobolev a poids polynomiaux. La description des profils asymptotiques
est obtenue sous des conditions de petitesse sur les données initiales de 1’équation.

Le second chapitre de cette these traite des profils asymptotiques a l'ordre 1 des
solutions des équations des fluides de grade 3 dans R2. A linstar des résultats du premier
chapitre, on obtient ici aussi la convergence des solutions de ces équations vers des
solutions explicites des équations de la chaleur. Les outils utilisés pour cette étude sont
semblables & ceux utilisés pour les fluides de grade 2 dans R3, & savoir les variables
autosimilaires et des estimations d’énergies. Dans ce cas aussi, on conclut que les fluides
de grade 3 se comportent asymptotiquement comme les fluides newtoniens.

Dans le dernier chapitre, on étudie 'existence d’un attracteur pour les équations des
fluides de grade 3 en dimension 2 avec des conditions périodiques. On considere donc
les solutions faibles de ces équations a données initiales dans l'espace de Sobolev H!.
Ces solutions faibles définissent un semi-groupe généralisé. Ensuite, on montre que les
solutions & données initiales dans H? possedent un attracteur global pour la topologie
H'. Pour ce travail, on utilise un schéma de Galerkin, des estimations a priori et une
méthode de monotonie. Les principales difficultés que 1’on rencontre sont liées au peu de
régularité des données initiales et au fait que I’on ne sait par si les solutions des équations
des fluides de grade 3 a données H' sont uniques.

Mots-clés : mécanique des fluides, dynamique des équations aux dérivées partielles, fluides
de grade 2, fluides de grade 3, profils asymptotiques.



Abstract

This thesis is devoted to the study of the asymptotic behaviour of the solutions of the
second and third grades fluids equations. In the first chapter, we study the asymptotic
profiles to the first order of the solutions of the second grade fluids equations in R3.
We show that these solutions behave asymptotically (when the time goes to infinity)
like explicit solutions to the heat equations. This result shows in particular that the
asymptotic behaviour of the fluids of grade 2 is the same as the one of the Newtonian
fluids, modelized by the classical Navier-Stokes equations. For this study, we use scaled
variables (also called self-similar variables), and we perform energy estimates in several
functions spaces, including weighted Sobolev spaces. Notice that the first order asymp-
totic expansion that we obtain holds under smallness assumptions on the initial data.

In the second chapter of this thesis, we study the asymptotic profiles to the first order
of the solutions of the third grade fluids equations in R2. As in the previous chapter, we
establish the convergence of these solutions to explicit solutions to the heat equations.
The methods that we use are very similar to the ones used in the case of the second grade
fluids equations on R®, namely scaled variables and energy estimates. We also conclude
that the fluids of grade 3 behave asymptotically in time like Newtonian fluids.

The last chapter is devoted to the study of the existence of an attractor for the third
grade fluids equations in dimension 2 with periodic boundary conditions. We consider
the weak solutions of these equations with initial data in H!. These weak solutions define
a generalized semiflow on H'. Then, we show that the solutions with initial data in H?
admit a global attractor for the H'—topology. To this end, we use a Galerkin method,
a priori estimates and a monotonicity method. The main difficulties come from the lack
of regularity on the solutions and from the fact that these solutions are not known to be
unique.

Key words : fluid mechanics, dynamics of partial differential equations, second grade
fluids, third grade fluids, asymptotic profiles.
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Chapitre 1. Introduction

Chapitre 1

Introduction

L’objet de cette these est I’'étude des comportements asymptotiques des solutions
des équations des fluides de grades 2 et 3. Ces équations régissent une large classe de
fluides dits non-newtoniens, dont les comportements ne pourraient pas étre décrits par
les équations classiques de Navier-Stokes, adaptées aux fluides newtoniens. L’intérét de
I’étude des fluides non-newtoniens est lié au fait que I’on trouve tres souvent de tels fluides
dans la nature ou dans l'industrie et que de nombreuses applications en découlent. Par
exemple, certaines huiles utilisées dans I'industrie sont des fluides non-newtoniens, mais
il existe également des exemples plus évidents, tels que du sable mouillé ou du fromage
fondu. Dans ce premier chapitre, on introduit les équations de mouvement de ces fluides,
en rappelant rapidement leur modélisation. Ensuite, nous parlerons plus en détail du
comportement asymptotique des solutions de ces équations, sous deux aspects différents.
Dans le cadre d'un fluide de grade 2 ou 3 remplissant tout I’espace R? ou R3, on étudiera
la convergence vers des solutions particulieres appelées solutions autosimilaires. Dans
le cadre d’un fluide de grade 3 sur un domaine périodique de R?, on s’intéressera a la
convergence vers un domaine compact de ’espace dans lequel vivent les solutions de ces
équations.

1 Equations du mouvement

Nous commencons par rappeler succinctement la modélisation des équations bien
connues de Navier-Stokes, qui concernent les fluides newtoniens. Ces équations ont été
introduites il y a bien longtemps et sont I'objet d’une littérature mathématique tres
fournie.
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1.1 Fluides newtoniens et équations de Navier-Stokes

Soit Q un domaine fixe de R? ou R?, rempli par un fluide incompressible évoluant au
cours du temps t dans ce domaine. Afin de modéliser ce fluide, on définit les trajectoires
de chaque particule de fluide par la fonction

v: RTxRI — R
(tx) — (),

ou ¢ (t, z) représente la particule de fluide au temps ¢, qui était a la position = au temps
t = 0. On suppose que ¢ est contintiment différentiable en ¢ et z, et on définit le champ
de vitesse u(t, x) qui représente la vitesse de la particule 1 (t, ). Formellement, 1) satisfait
I’équation différentielle

3t¢ (t7 l’) =u <t7 ¢ (t7 JJ)) )
¥ (0,2) = .

Si I'on suppose que u est suffisamment régulier, le théoreme de Cauchy-Lipschitz permet
par cette égalité de reconstituer 1 en supposant simplement u connu. Ainsi, on peut
modéliser de fagon équivalente le mouvement du fluide par la position v de ses particules
ou par son champ de vitesses u. Dans cette these, nous privilégions la modélisation par
le champ de vecteurs vitesses (représentation eulérienne). Etant donné que le fluide que
I’on considere est incompressible, on a, pour tout ¢ > 0,

/ld:v:/ 1ldzx.
Q P(t,Q)

En effectuant formellement le changement de variable z = ¢ (¢,y), on obtient

/Qldx:/9|det (Jac (¢ (t,y)))| dy.

De plus, cette propriété se vérifie quel que soit le domaine 2. En prenant des domaines
de plus en plus petits, on peut donc conclure que

|det (Jac (¢ (¢, 9)))] = 1,

et par continuité en ¢ = 0, on en déduit que det (Jac (¢ (¢,y))) = 1. En dérivant cette
égalité en temps, on a donc

Oy (det (Jac (¥ (t,9)))) = 0.
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Or, un calcul simple montre que 0, (Jac (¢ (¢, 2))) = Vu(t,x)Jac (¢ (t,x)), out Vu est la
matrice définie par (Vu);, ; = Oju;. Par application du théoreme de Liouville, on obtient

0 = 0, (det (Jac (¢ (t,y)))) = det (Jac (¢ (¢, x))) Tr (Vu) = div u.
Le caractere incompressible du fluide se traduit donc par 1'égalité
divu = 0. (1.1)

On note p = p(t,z) la densité du fluide que l'on considere. L’équation de conservation
de la masse, ou équation de continuité, nous donne

Op +div (pu) = 0. (1.2)

Le fluide que I'on considere est supposé de densité uniforme en espace. Comme le fluide
est également supposé incompressible, la propriété (1.1) et 1’équation (1.2) impliquent
que O;p = 0, et la densité est donc constante a la fois en temps et en espace. On note,
v (t,(t, x)) Vaccélération de la particule (¢, z) au temps t. En particulier on a

v(t, ¢ (tx) =0 (u(t, ¢ (t,2))) = (Gu+uVu) (9 (1, 7)),

d
ou (u.Vu), = Zu]@jui.
j=1

L’équation de la conservation de quantité de mouvement (principe fondamental de la
dynamique) implique

pouu (t, ¢ (t,x)) = p (Opu + u.Vu) (t,¢ (t,z)) = F + div o, (1.3)

ot 0 € R? x R est le tenseur des contraintes et F' la somme des forces extérieures qui
agissent sur le fluide. Le fluide que 'on modélise dans cette section est newtonien, ce
qui veut dire que le tenseur des contraintes que 1’on considere est une fonction affine du
gradient du champ de vitesses u, on suppose donc

o= —Pld+ pA,

ou P est la pression du fluide, p est la viscosité dynamique du fluide et A est le tenseur
des déformations de u, donné par A* = Q;u; + d;u;. En revenant a I'équation (1.3)
que l'on divise par la constante p, on obtient le systeme bien connu des équations de
Navier-Stokes

Ou — vAu+u.Vu+ Vp = f, (1.4)

3
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ou v = — est la viscosité cinématique, p = — et f = —.
p p p

Le systeme d’équations (1.4) sert a modéliser des fluides tels que 'eau, 'air ou encore
de nombreux gaz. Il existe énormément de travaux traitant de ces équations, dont les
premiers résultats d’existence remontent aux années 1930 (voir par exemple [51] ou [32]).

1.2 Equations des fluides de grade 2

Introduites bien apres les équations de Navier-Stokes, les équations des fluides de
grade 2 modélisent une classe de fluides plus générale que celle des fluides newtoniens.
La modélisation differe de celle des équations de Navier-Stokes par le choix du tenseur
des contraintes, qui n’est plus linéaire par rapport au gradient de la vitesse. Nous ne
donnons que peu de détails sur la modélisation de ces fluides, mais on peut trouver plus
de précisions et de justifications physiques dans l'article de J. Dunn et R. Fosdick [24] ou
encore dans [59] et [62]. Les fluides de grade 2 appartiennent a une classe particuliere de
fluides non-newtoniens, a savoir les fluides différentiels de Rivlin-Ericksen, décrits dans
[59]. Tl convient de préciser que tous les fluides non-newtoniens ne sont pas des fluides
différentiels, et que par conséquent on se restreint ici a une certaine classe de fluides non-
newtoniens. Selon ce modele, on définit les fluides de grade n pour lesquels le tenseur
des contraintes est de la forme

oc=—PId + Q (Ala AQ, An) s
ou () est un polynome de degré n et A, est le k€ tenseur de Rivlin-Ericksen, donné par
la relation de récurrence

Ay = Vu+ (Vu)',
A= 0 A_1 +u VA, + (VU)t A1+ A1 Vu.

Pour les fluides de grade 2, le tenseur des contraintes o de 'équation (1.3) s’écrit sous la
forme

o= —P[d+/LA1 + a1 As +052A%7

ou pu est la viscosité dynamique, a; et as sont deux réels et A; et A; sont les deux
premiers tenseurs de Rivlin-Ericksen. Dans cette these, on considérera les équations des
fluides de grade 2 telles qu’elles sont posées par J. Dunn et L. Fosdick. En particulier,
des considérations physiques venant de la thermodynamique permettent de supposer

a;+a=0 et pu>0.
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En revenant a l’équation (1.3) et en posant a = a1, on obtient le systéme d’équations
des fluides de grade 2

O (u — alAu) — vAu +rot (u — alAu) Au+ Vp = f, (1.5)
oll A est le produit vectoriel classique de R3.

En dimension 2, on fait la convention que u est un vecteur de R?® dont la troisieme
composante est nulle, u = (uy, ug,0). Ainsi, le rotationnel de u s’écrit

rotu =V Au=(0,0,01uy — douy),

ce qui permet de définir le systeme (1.5) en dimension 2.

1.3 Equations des fluides de grade 3

Une autre classe de fluides étudiée dans le cadre de cette these est la classe des fluides
de grade 3. Ces fluides font eux aussi partie de la classe des fluides différentiels. Dans
les résultats sur les fluides de grade 3 présentés dans cette these, on prendra en compte
le modele introduit en 1980 par R. Fosdick et K. Rajagopal dans [31]. Dans cet article,
une étude thermodynamique amene a considérer le tenseur

0 = —PId+ pA; + a1As + a A2 + 5 |A]* Ay,
ou u est la viscosité dynamique, aq, ag et [ sont des nombres réels et
d 1/2
Ar] = (Z <A§J)2> .
ij=1
De plus, des considérations physiques permettent de justifier le fait que

v>0, a1>0, >0 et |a+ as <2400. (1.6)

En revenant a ’équation (1.3), on obtient finalement 1’équation

O (u— agAu) — vAu +rot (u — a;Au) Au
— (a1 + an) (AAu+ 2div (V) Vu)) — pdiv (|A|2 A)+Vp=,
(1.7)

ou l'on a la convention u = (uy, u2,0) en dimension 2.
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2 Comportements asymptotiques

Les résultats obtenus dans cette these décrivent les comportements asymptotiques
en temps des solutions des équations des fluides de grades 2 et 3. On s’intéressera prin-
cipalement a deux aspects différents de I'étude de comportements en grand temps, a
savoir 1’étude des profils asymptotiques et I’étude de I'existence d’un attracteur pour les
systemes des fluides de grades 2 et 3.

2.1 Profils asymptotiques

Une partie significative des résultats exposés dans cette these traite des profils asymp-
totiques des équations des fluides de grades 2 et 3. On considere un fluide de grade 2 ou
3 remplissant tout I'espace R? et auquel aucune force extérieure n’est appliquée, ce qui
revient a prendre f = 0 dans les systemes (1.5) et (1.7). Dans les deux cas et comme
on s’y attend, lorsqu’on laisse le temps s’écouler a l'infini, les fluides reviennent au repos
et les solutions de ces équations tendent vers 0. Etudier les profils asymptotiques de
ces équations, c’est en quelque sorte étudier la facon dont les solutions de ces dernieres
tendent vers 0. Le but recherché dans cette démarche est de montrer que le systeme
d’équations que 'on considere se simplifie lorsque le temps devient grand, et est dominé
par un systeme linéaire dont les solutions sont bien connues. L’intérét de ce type de
travaux réside dans le fait que, lorsque le temps est suffisamment grand, il devient per-
tinent d’approcher les solutions du systeme de départ par celles d’'un systeme linéaire.
Considérons une solution u d’un systéeme d’équations aux dérivées partielles dont on ne
connait pas explicitement la solution. Au premier ordre, I'idée générale est de décomposer
u sous la forme

u(t,z) =nt)G(t, x) + R(t, x), (2.1)

ou GG est une fonction explicite, n est une fonction réelle dépendant du temps et de u et
R est un reste qui tend vers 0 plus rapidement que nG lorsque le temps tend vers 'infini.
Dans la décomposition (2.1), l'intérét semble limité par le fait que n dépende de u et
donc du systeme de départ. En vérité, dans les cas dont on parlera plus tard, on montrera
que 7 est solution d’une équation différentielle ordinaire dont la solution est explicite et
dépend seulement des données initiales de 1’équation. Les travaux présentés dans cette
these portent sur les profils asymptotiques au premier ordre, c’est a dire que I’'on obtient
la décomposition (2.1). Cependant, on peut aussi s’intéresser aux profils asymptotiques
a l'ordre supérieur, c’est-a-dire, pour n € N, décomposer la solution sous la forme

u(t,z) =Y mu(t)Gr(t,z) + Ry(t, x), (2.2)
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ou pour tout k, la fonction Gy est explicite, n, satisfait une équation différentielle or-

dinaire que l'on sait résoudre et R, tend vers 0 plus rapidement que an(t)Gk(t, ).
k=1

Pour tout k, le produit 7,Gy de la décomposition (2.2) est appelé profil asymptotique de

u a l'ordre k.

Afin d’illustrer I'idée générale des profils asymptotiques des solutions des fluides de grades
2 et 3, revenons au cas plus simple des fluides newtoniens en dimension 2. Ceci a été
étudié par T. Gallay et E. Wayne aux ordres 1 et 2 dans [36] et [39]. Le cas de la di-
mension 3 est traité dans [37]. On considere donc un fluide newtonien remplissant tout
I'espace R? et « un champ de vecteurs a divergence nulle de R?, solution de ’équation
(1.4). Dans les chapitres 3 et 4, on sera amené a considérer non pas directement les
équations de mouvement (1.5) et (1.7) mais les équations satisfaites par le tourbillon
w = rot u. En dimension 2, on utilise la convention

rot u = Ojug — Oy .

En prenant le rotationnel du systeme d’équations de Navier-Stokes (1.4), et en remar-
quant que

rot (u.Vu) = u.Vuw,

les équations du mouvement des fluides newtoniens en dimension 2 deviennent
Ow — Aw + u.Vw = 0, (2.3)
ou l'on a supposé v = 1.

Cette nouvelle équation, ot w est I'inconnue, est bien autonome. En effet, le champ de
vecteurs a divergence nulle u est reconstitué a partir de w par la loi de Biot-Savart, qui
est un outil assez classique en mécanique des fluides. En particulier, passer en tourbillon
dans les équations de Navier-Stokes permet de supposer que u n’est pas dans 'espace de
Lebesgue L2. Etant donné w une fonction de R, on définit u par la formule

\ J_
ou (zy1,x2)” = (—x2,x1).
Pour peu que w soit suffisamment réguliere (par exemple dans un espace LP avec p < 2),

7
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u est bien définie et 'on a bien rot u = w et divu = 0.

L’existence de solutions a I’équation (2.3) a été tres largement étudiée par le passé et il
existe notamment une classe de solutions particulieres dites autosimilaires, c¢’est-a-dire
de la forme

@@%1if(¢;7)

oll F' est une fonction réelle sur R? et T une constante positive.

Afin d’obtenir une décomposition de w sous la forme (2.1), on procede & un changement
de variable qui revient a écrire les solutions de (2.3) dans les coordonnées de la fonction

T
F. On pose X = et 7 =1In(1+¢) et on définit W comme suit :
P Jiti (1+19)

1 T
w(t,x) = 1—HW (111(1 + t)v \/1—4-25) ) (2.4)

W(r, X)=ew(e —1, eT/2X) :

Dans ce nouveau systeme de variables, appelées variables d’échelles ou variables autosi-
milaires, W satisfait 1’équation

W — L(W)+UNW =0, (2.5)
o L(W) =W + AW + £ VW.

L’idée est maintenant de décomposer W sur le spectre de L. Dans des espaces fonctionnels
bien choisis (en I'occurence des espaces de Lebesgue a poids), le spectre de cet opérateur
est entierement connu, de méme que les vecteurs propres associés aux valeurs propres
de ce dernier. Notamment, 0 est la plus grande valeur propre de £, de multiplicité 1. Le
vecteur qui lui est associé est appelé tourbillon d’Oseen et est donné par
1 _xg
G(X)=—e 4.
(X) =~
Ainsi, en supposant que W appartient a un espace bien choisi et en projetant W sur ’es-
pace propre associé a la valeur propre 0, on peut montrer que W satisfait la décomposition

W(r, X) =n(1)G(X) + R(r, X),
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ou n(r) = / ) W (r,xz)dx et R(t,X) tend vers 0 exponentiellement lorsque 7 tend vers
R

I'infini. En intégrant en espace I’équation (2.3), on constate que

a.n=0.

De ce fait, on a 1'égalité n(r) =n = / W (0, z)dz. Etant donné que le changement de
R2

variable (2.4) préserve la masse totale, on a

77:/ w(0, x)dx.
R2

En revenant dans les variables de départ, on obtient une décomposition de la forme (2.1),
dans notre cas

+r(t, ),

(00 =06 ()
w(t,r) =

e \Vire
ou r(t,z) tend vers 0 de fagon polynomiale lorsque ¢ tend vers l'infini, plus rapidement

que %HG ﬁ . Il existe également des résultats sur les profils d’ordre supérieur pour

ces équations, en décomposant W sur les espaces propres de L associés aux valeurs
propres suivantes (voir [36]). On verra plus tard que ’étude des profils asymptotiques
a l'ordre supérieur requiert des restrictions sur les espaces fonctionnels dans lesquels on
considere les solutions.

2.2 Attracteurs

Un autre aspect du comportement asymptotique de solutions d’équations aux dérivées
partielles est I’étude de I'existence d'un attracteur. Dans cette these, ce sujet est abordé
au chapitre 4 pour les équations des fluides de grade 3 sur un domaine borné périodique
de R?, ou la force f que I'on applique au systéme (1.7) est supposée constante au cours
du temps. On montre dans ce cas l'existence d’un attracteur pour une topologie plus
faible que celle dans laquelle les solutions sont définies. Pour cette étude, on associe
les solutions des équations des fluides de grade 3 & un systéeme dynamique S(t) sur un
espace fonctionnel X de dimension infinie. L’étude asymptotique de ces solutions se fait
alors par I'intermédiaire de 1’étude des propriétés du systeme dynamique. Le fait qu'un
systeme d’équations différentielles admette un attracteur global se traduit par le fait que
les solutions de ce systeme sont attirées vers un ensemble compact de X, invariant par
rapport au systeme dynamique S(¢). D’un point de vue plus concret, cela veut dire que

9
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lorsqu’on laisse le temps s’écouler avec une force constante agissant sur le systeme, le
comportement du fluide se stabilise autour de cet ensemble invariant de solutions.

Considérons (X, d) un espace métrique donné et S(¢) un systeme dynamique sur X.
Dans le cas d'un systeme dynamique associé aux solutions d’une équation d’évolution,
I’espace X est I'espace dans lequel sont les données initiales de ces solutions. Ainsi, étant
donné xy € X, S(t)zo est la solution de donnée initiale xg, prise a l'instant ¢. Pour
un espace métrique donné (X, d), on définit la semi-distance sur les sous-espaces de X
donnée par

dx(A, B) = sup inf d (a,b).
peB a€A

Cette semi-distance, qui n’est pas symétrique, va jouer un roéle important par la suite.
Elle mesure en quelque sorte ”a quel point I’ensemble A est inclus dans I’ensemble B”.
En particulier, si A C B, alors dx (A, B) = 0. Un attracteur global sur X pour le systéeme
dynamique S(t) est un ensemble compact A de X, invariant par S(t) et tel que, pour
tout borné B de X et tout € > 0, il existe un temps t. = t.(B) > 0 tel que, pour tout
t>1t.,o0na

5x (S(H)B, A) < <. (2.6)

Généralement, et comme ce sera le cas dans les résultats présentés dans cette these,
le systeme dynamique associé aux solutions d'une équation aux dérivées partielles agit
sur un espace métrique de dimension infinie, typiquement un espace de fonctions. Ce
type d’étude a été initié notamment par les travaux de J. Hale J. Lasalle et M. Slemrod
(voir [44] et [43]). L'intérét de montrer I’existence d'un attracteur pour les solutions d’un
systeme d’équations est lié a la nature de cet attracteur. La dynamique d’un systeme
au sein méme de 'attracteur est une question importante de ce type d’étude. Existe-t-il
des points d’équilibre ? Y en a t-il plusieurs ? Existe-t-il des solutions périodiques ? L’at-
tracteur est-il plus régulier que I'espace dans lequel les solutions sont définies ? Chacune
des réponses a ces questions donne des informations sur le comportement asymptotique
des solutions du systeme. Par exemple, pour les équations des fluides de grade 2 sur un
domaine borné ou périodique de R?, I'existence d’'un attracteur pour des données dans
les espaces de Sobolev W3?, avec 1 < p < +00 est connue pour une force f indépendante
du temps dans WP (voir [53], [57] ou [56]). De plus il a également été montré par M.
Paicu et G. Raugel que l'attracteur est de régularité W3PT™ ot m est une constante
strictement positive, si 'on suppose que f est constante en temps dans l'espace W1irtm
(voir [56]).
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Chapitre 2

Historique des résultats et
contributions de la these

Dans le cadre de cette these, on s’intéresse aux comportements asymptotiques des
solutions de deux systemes d’équations de fluides non-newtoniens, a savoir les équations
des fluides de grades 2 et 3. Dans ce chapitre, on donne un apercgu des résultats existants
pour ces différentes classes de fluides, et on détaille les contributions de cette these. Tout
d’abord, nous rappelons ce qui est connu pour les équations classiques de Navier-Stokes,
ce qui nous permettra ensuite de comparer avec les résultats obtenus pour les fluides de
grades 2 et 3.

1 Comportement asymptotique des fluides newto-
niens

Le cas des fluides newtoniens, régis par les équations de Navier-Stokes, a été tres
largement étudié (voir par exemple [13], [27], [29], [36], [37], [38], [39], [14], [42], [49]).
Dans cette section, on considere le probleme de Cauchy des équations de Navier-Stokes
en dimension d, ou d € {2,3}, donné par

ou — vAu+u.Vu+ Vp = f,
divu =0, (1.1)
Ult=0 = Up,

ou v > 0 est la viscosité cinématique introduite dans le chapitre 1, p est la pression et f
la force extérieure agissant sur le fluide.
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Les résultats d’existence les plus connus pour ce systeme sont ceux de J. Leray [51] et
H. Fujita et T. Kato [32]. Sur I'espace entier R? (ou sur un domaine borné de R? avec
conditions de Dirichlet), J. Leray a démontré I'existence de solutions faibles globales en
temps a valeurs dans L?(R%), dites solutions de Leray, pour une force f appartenant a
'espace L? (R*,H _1(Rd)). L’unicité de ces solutions est connue en dimension 2 mais
reste un probleme ouvert en dimension 3. Des éléments de réponse sont apportés en
dimension 3 par le théoreme de Fujita-Kato, qui montre 'existence de solutions fortes
dans les espaces de Sobolev homogenes. Pour s € R, on définit la semi-norme

lull e = |7 (€1 D] 12

ou u est la transformée de Fourier de u et F désigne la transformée de Fourier inverse.
On définit les espaces fonctionnels

V= {ueCRRY :divu =0}, et Vo =i

Dans [32], il est montré que si la donnée u, appartient a ’espace V%(RZ)’) et la force f a
'espace L? <R+, V_%(R3)>, il existe alors une constante positive 71" et une solution forte

u au systeme (1.1), telles que
ue o ([o,T] ,V%(RS)) nL? ([0, 1] ,V%(RS)) .

Cette solution est de plus unique et globale en temps si la donnée initiale et la force sont
suffisamment petites dans V2 (R3) et L2 (R*, V’%(R3)> respectivement. L’existence de

solutions globales dans V%(R?’) pour des données grandes est aujourd’hui encore un
probleme ouvert.

1.1 Profils asymptotiques

Il existe de nombreux travaux traitant du comportement asymptotique des solutions
des équations de Navier-Stokes, et nous considérons ici la description des profils asymp-
totiques des solutions de ces équations. Nous nous intéressons dans un premier temps au
cas de la dimension 2.
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Profils asymptotiques en dimension 2

On considere un fluide newtonien remplissant 1’espace R? tout entier et auquel on
n’applique pas de force extérieure. Pour étudier les profils asymptotiques des équations
de Navier-Stokes, on s’intéresse aux équations du tourbillon w = rot u = 01us — Osuy,
données par

ow — Aw + u.Vw =0,
divu = 0, (1.2)
W)jt=0 = Wo,

ou l'on a supposé v = 1 et le champ de vecteurs u est reconstruit a partir de w par la
loi de Biot-Savart bidimensionnelle, donnée par

uw) = o= [ ) W (1.3)

2w r—yf

Cette étude se fait pour des solutions du systeme (1.2) a valeurs dans des espaces de
Lebesgue a poids. On verra plus tard que ces espaces apparaissent naturellement lorsque
I’on considere les variables d’échelles dont on a parlé dans l'introduction de cette these.
Pour m € N, on définit

L2(m) = {u e LR : (1+|z) ue L?(R?)} ,

équipé de la norme
2\m/2
[l 2 my = H(1 +[2[7) u’

" (1.4)

I a été montré en 2002 par T. Gallay et E. Wayne dans [36] que si les données initiales
sont suffisamment petites dans L?(m), les solutions de (1.2) convergent, & une constante
dépendant des données initiales pres, vers une solution autosimilaire de I’équation de la
chaleur

Ou — Au = 0. (1.5)

Cette solution particuliere est définie par

(t, ) — 1itG (\/f—t) (1.6)

ou G est le tourbillon d’Oseen, donné par

G(r) = —e 1. (1.7)
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Ce résultat s’obtient en effectuant le changement de variables X = et 7 = In(1+¢)

x
V1+t

et en définissant W et U comme suit :

1 T
w(t,z) = 1—_11151/[/ (ln(l +1), \/1——1—t> : )
u(t,z) = \/1——|—sz (ln(1+t), e

Ces nouvelles variables s’appellent variables d’échelles ou variables autosimilaires, qui
ont été initialement introduites pour étudier les comportements asymptotiques de so-
lutions d’équations paraboliques, et en particulier leur convergence vers des solutions
autosimilaires (voir [25], [26], [33] ou [48]). Nous verrons que ces variables permettent
aussi de traiter le comportement asymptotique de solutions d’équations qui ne sont pas
paraboliques. En revenant a ’équation (1.2), on peut vérifier que W satisfait

W — LW + UNW =0, (1.9)

ot LW =W + AW + X.vw.

Une étude du spectre de £ sur L?(m) montre que celui-ci est la réunion du spectre discret
og={-%:ke{0,...,m—2}},
et du spectre continu

o.={AeC:Re(N) < -1},

2

En particulier, si m > 2, la valeur propre 0 est simple et isolée, et G en est un vecteur
propre. De plus, il est facile de vérifier que G est solution de (1.9). On décompose W
comme suit :

W =nG + R,
ol 71 est une constante dépendant de W. Une étude plus détaillée du supplémentaire
de l'espace propre associé a la valeur propre 0 montre que n = W(r, X)dX. En
R2

intégrant en espace I’égalité (1.9), on constate que 7 est constant au cours du temps et

donc n = / W (0, X)dX. De plus, cette quantité est conservée par le changement de
R2

variable (1.6), et on a donc n = / wo(z)dz.

R2
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En utilisant des arguments provenant de I’étude des systemes dynamiques, T. Gallay et
E. Wayne ont ensuite montré que R tend exponentiellement vers 0 lorsque le temps 7 tend
vers l'infini. Pour m > 2, les auteurs ont montré, en reprenant notamment les travaux
de X. Chen, J. Hale et B. Tan dans [16], 'existence d’'une sous-variété W, localement
invariante par le flot associé a (1.9) sur L?(m). Leurs résultats montrent de plus que le
comportement des solutions de (1.9) sur cette variété est déterminé par leurs projections
sur les espaces propres associés aux valeurs propres isolées de L. Ensuite, toujours en
s’appuyant sur des résultats de [16], ils ont montré que, si les données initiales sont
suffisamment petites dans L?(m), les solutions de (1.9) tendent vers cette sous-variété
lorsque le temps tend vers l'infini. En particulier, si m = 2, ils ont montré qu’il existe
une constante positive 7y telle que les solutions de (1.9) tendent vers

Wlee = {AG t AR A Gl o) < TO} ’

qui est en fait la restriction de W, a un voisinage de l'origine. Ce résultat est énoncé
dans le théoreme suivant, que 'on retrouve dans [36].

Théoreme 1.1 Soit 0 < pu < % une constante fixée. Il existe r > 0 telle que, pour

toute donnée initiale Wy € L?*(2) avec [Wollp2@y < 1, il existe une unique solution
W e CY(R*, L*(2)) de (1.9) avec W(0) = Wy et une constante positive C' telles que,
pour tout T > 0,

IW(T) = 1Gl 12y < Ce, (1.10)

oun= [ Wo(X)dX = [ wy(z)dx.

RQ ]RQ
Dans les variables de départ, on obtient le théoréeme suivant, qui est un corollaire du
théoreme 1.1.

Théoreme 1.2 Soit 0 < pu < % une constante fixée. Il existe r > 0 telle que, pour

toute donnée initiale wy € L*(2) avec [woll 2@y < 7, il existe une unique solution w €
CY(R*,L?(2)) de (1.2). De plus, pour tout 1 < p < 2, il existe une constante positive C,,
telle que, pour toutt > 0,

Cy

< (1.11)
Ip (1 + t)1+l¢,% )

- e (7773)

oun = / wo(x)dx. Si u est le champ de vitesses obtenu a partir de w par la loi de
2

R
Biot-Savart, alors, pour tout 1 < q < o0, il existe une constante positive C, telle que,
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pour tout t > 0,

&

<—
o (14677

Hu(t) — (1.12)

A (i)

ou 'V est le champ de vecteur obtenu a partir de G par la loi de Biot-Savart.

La restriction pu < % vient du fait que la seconde valeur propre isolée de L est —%. Pour
obtenir un meilleur taux de convergence, il est nécessaire de faire une étude des profils
a l'ordre deux, ce qui revient a décomposer W sur les espaces propres associés aux deux
premieres valeurs propres de £. Pour une étude a 'ordre 2, il faut de plus considérer un
espace a poids polynomial de degré supérieur a 2, afin d’obtenir deux valeurs propres
isolées dans le spectre de L. Les profils asymptotiques a l'ordre 2 du systeme (1.2) sont
également détaillés dans [36]. En 2005, T. Gallay et E. Wayne ont montré dans [38] que
La condition de petitesse des théoremes 1.1 et 1.2 sur les données initiales n’est pas
nécessaire. De plus, il est montré que le taux optimal % est atteint pour toute donnée
dans L%*(m), o m > 2. Dans un cadre fonctionnel différent, on peut aussi trouver des
résultats similaires dans 'article plus ancien de Y. Giga et T. Kambe [42].

Profils asymptotiques en dimension 3

Considérons a présent un fluide newtonien remplissant tout I'espace R3. En posant
w =rot u =V Awu, les équations du tourbillon en dimension 3 sont données par

ow — Aw +u.Vw —w.Vu =0,
divu = divw =0, (1.13)
Wjt=0 = Wo,

ou l'on a supposé v = 1 et ou u est obtenu en appliquant la loi de Biot-Savart tridimen-
sionnelle a w, donnée par

u(z) = — ! / @=y A w(y)dy. (1.14)

L

Contrairement au cas de la dimension 2, w est un vecteur de R?® & divergence nulle. Ici
encore, on travaille dans des espaces de Lebesgue a poids. Les solutions de (1.13) étant
des vecteurs a divergence nulle, il est naturel de définir, pour m € N,

L2(m) = {u € L*(m)? : divu = 0},
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olt L*(m) est donné par (1.4), en remplagant R? par R3.

T. Gallay et E. Wayne ont montré en 2002 dans [37] que, pour peu que les données
initiales soient petites dans un espace L?(m) bien choisi, les solutions de (1.13) convergent
vers des champs de vecteurs de R? dont chaque composante est une solution particuliere
des équations de la chaleur (1.5). Afin de préciser la nature de ces solutions limites, on
pose

1 0 T3 1 — T2
pi(r) = 5 —x3 |, par) = B 0 , pa(x) = B 1 5
T3 —X 0

et on définit la fonction gaussienne
I e?
_— 4

Si w est une solution de (1.13) de donnée wy suffisamment petite dans L?*(m), elle
converge alors lorsque le temps tend vers I'infini vers

H%§;1+ﬁﬁ(¢77) (1)

fi(z) = pi(z)J(z), (1.16)

@:Afmmm@y

A T'instar du cas de la dimension 2, ce résultat est obtenu via le changement de variables
(1.8). En dimension 3, un rapide calcul montre que le champ de vecteur W défini par
(1.8) satisfait I’égalité

ou

et

O.W — LW + UNW — W.VU =0, (1.17)
ot LW =W + AW + X£.vw.

Une étude détaillée du spectre de £ sur 1.?(m), que 1'on peut trouver dans [37], montre
que celui-ci est la réunion du spectre discret

@:{—%%+1ykeN%, (1.18)

17



Chapitre 2. Historique des résultats et contributions de la these

et du spectre continu
1
UC:{)\EC:Re(A)gz—%}. (1.19)

On constate que plus m est grand, et plus le spectre continu est décalé sur la gauche. Si
m est assez grand, —1 est une valeur propre isolée de £, de multiplicité 3, et la famille
de vecteurs { f1, fo, f3} est une base de I'espace propre associé. On décompose ensuite W
sur le spectre de L, c’est-a-dire comme suit :

3

W(r)=>_Bi(7)f; + R(r),

=1

ou f; € R et R(T) est un reste dans le supplémentaire VW de I'espace propre associé a
la valeur propre —1. Dans [37], il est montré, par une description de W et un calcul sur

les solutions de (1.17), que f;(1) = e_T/ pi(X).W (0,X)dX. Dans [37], il est montré
R2

le théoreme suivant.

Théoréme 1.3 Soit 1 < p < % une constante fizée et m > 2u + % Il existe r > 0 telle
que, pour toute donnée initiale Wy € L*(m) avec HWOHLQ(m) < r, il existe une unique
solution W € C° (R™,L?(m)) de (1.13) de donnée initiale Wy et une constante positive
C, telles que, pour tout 7 > 0,

< Ce " [l 2 (1.20)
L%(m)

3
HW(t) =Y ehf;

i=1

R3
En revenant dans les variables de départ, on obtient le théoreme suivant.

Théoreme 1.4 Soit 1 < pu < % une constante fixée et m > 2u + % Il existe r > 0 telle
que, pour toute donnée initiale wy € L%(m) avec [wollp2(my < 7, il existe une unique
solution w € C° (RT,1L2(m)) de (1.18). De plus, pour tout 2 < p < oo, il eriste une
constante positive C,, telle que, pour tout t > 0,

-3 et ()

N D &
< Cp (L)% [[wol gy » (1.21)

Lr

18



Chapitre 2. Historique des résultats et contributions de la these

ou b; = / pi.wodx. Siu est le champ de vecteurs obtenu en appliquant la loi de Biot-
3

R
Savart a w, alors, pour tout 2 < q < 0o, il existe une constante positive Cy telle que,
pour tout t > 0,

<Cy(141)72 lwoll L2y » (1.22)

-3 ()|

ot v; est obtenu en appliquant la loi de Biot-Savart (1.14) a f;.

Comme pour le cas de la dimension 2, le taux optimal que 'on peut considérer pour une
décomposition au premier ordre est lié a la seconde valeur propre du spectre discret de
L. Pour décrire les profils asymptotiques des solutions de (1.13) a un ordre supérieur, il
est nécessaire de travailler dans des espaces a poids pour lesquels le spectre de £ admet
au moins deux valeurs propres isolées. On constate d’apres (1.19), que prendre un poids
polynomial grand permet de repousser la partie réelle du spectre continu de £ sur la
gauche, et d’obtenir ainsi des valeurs propres isolées. Le développement asymptotique
des solutions de (1.13) est décrit jusqu’a l'ordre 2 dans [37], en travaillant dans un espace
L*(m), pour m > 1.

1.2 Attracteurs

Dans le cas de nombreuses équations d’évolution autonomes, on peut définir un
systeme dynamique ou semiflot S(¢) qui, a la donnée initiale wug, associe la solution
u(t) = S(t)ug de I'équation considérée.

Définition 1.1 Un systeme dynamique S(t) (ou semi-groupe continu) sur un espace
métrique X est une famille d’opérateurs continus {S(t) : X — X,t € R*} satisfaisant
les propriétés suivantes :

(H1) S(0) = Id et S(t) o S(s) = S(t + s), pour tout t,s > 0.

(H2) Pour tout t € RY, S(t) est un opérateur continu sur X.

(H3) L’application t € RT — S(t)u est continue a valeurs dans X .

St les propriétés ci-dessus sont vérifiées pour t € R, on parle de groupe continu.

Selon cette définition, si les solutions d'un systeme d’équations aux dérivées partielles
sont associées a un systeme dynamique S(t) sur un espace métrique X, S(t)z est la
solution de donnée initiale x prise au temps t. Afin de définir précisément ce qu’est un
attracteur pour un systeme dynamique S(t), nous définissons la semi-distance sur les
sous-ensembles d’un espace métrique (X, d) comme suit :
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dx(A, B) = sup inf d(a,b).

beB a€EA

Nous avons également besoin de la définition suivante.

Définition 1.2 Soit (X, d) un espace métrique et S(t) un systeme dynamique sur X.
1. On dit que l’ensemble A attire l’ensemble B si tlir+n dx(S(t)B,A) =0.
—+00

2. On dit que A est invariant par S(t) si S(t)A = A, pour tout t > 0.

3. On dit que A est un attracteur global de S, si A est compact, invariant par S et attire
tous les bornés de X.

Sur un ouvert borné 2 de R? avec conditions de Dirichlet, O. Ladyzhenskaya a montré que
les solutions des équations de Navier-Stokes dans H = {u € L*(Q)? : divu = 0, ujpn = O}
permettent de définir un systeme dynamique S(t) sur H ; quand les données initiales sont
petites (voir [49]). De plus, elle a montré que le systeme dynamique S(t) régularise en
temps fini, c’est & dire que pour tout ¢ > 0, S(t) envoie H dans H N H'(Q)? et que, dans
le cas de données petites, il admet un attracteur local sur H. Ce résultat a ensuite été
amélioré (voir [2] ou [50]) en un résultat d’existence d’attracteur global sur H, au sens de
la, définition 1.2. Il est montré de plus dans [50] que la régularité de 'attracteur A n’est
limitée que par la régularité de la force extérieure f et que S(t) est un groupe continu
sur A. On a le théoreme d’existence d’un attracteur global suivant.

Théoréme 1.5 Soit f € H et v > 0. La famille d’opérateurs {S(t) : H — H} qui a une
donnée ugy associent u(t) la solution de (1.1) de donnée uy au temps t est un semi-groupe
continu sur H. De plus, S(t) admet un attracteur global compact donné par

A= {ﬂ S(t)B : B borné de H}.
>0
En dimension 3, si la force f est petite, on peut montrer I’existence d’un attracteur local
(voir par exemple [17]). Citons aussi les travaux de C. Foias et R. Temam, qui ont montré
Iexistence d’un attracteur dans un sens faible sur un domaine périodique T? de R?, pour
des solutions a valeurs dans L?*(T?) (voir [28] et [30]). Ce résultat montre 'existence d’un
attracteur pour la topologie faible de L? (voir aussi [60]).

2 Fluides de grade 2

Cette section traite du comportement asymptotique des solutions des équations des
fluides de grade 2. On commence par rappeler quelques résultats connus sur ’existence de
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solutions a ce systeme, puis rappellera ce que I'on sait sur le comportement asymptotique
de ces solutions. Dans le cadre de cette these, deux résultats sont exposés en lien avec ce
sujet. Les travaux exposés dans le chapitre 3 donnent une description au premier ordre
des profils asymptotiques des solutions des équations des fluides de grade 2 en dimension
3. Le chapitre 4, bien que consacré a 1’étude des fluides de grade 3, apporte quelques
précisions sur le comportement des fluides de grade 2 en dimension 2. On considere donc,
pour un champ de vecteur u € R, ot d = 1, 2, le probleme de Cauchy suivant

O (u— aAu) — vAu +rot (u — aAu) ANu+ Vp = f,
divu = 0, (2.1)

Ult=0 = Uo,

ou v > 0 est la viscosité, a > 0, p est la pression et f est la force extérieure appliquée
au fluide. Si la dimension de 'espace est 2, on fait la convention u = (u,us,0) et
rot u = (0,0, Oyuy — Oouy).

2.1 Résultats d’existence

Le premier résultat d’existence est celui obtenu par D. Cioranescu et O. El Hacéne
sur un ouvert borné  de R? ou R?, en considérant des conditions de Dirichlet sur le
bord de €2, c’est-a-dire ujpo = 0. (voir [19]). Pour cette étude, ils ont considéré les espaces
fonctionnels

V={ueH(Q)":divu=0,upq =0}, (2.2)
et, pour s > 1,
V=V nH Q)" (2.3)

Dans cet article, les auteurs ont construit des solutions faibles dans I'espace fonctionnel
V3 en considérant une force f & valeurs dans V!. En dimension 2, le résultat qu’ils
obtiennent est global en temps, alors que dans le cas de la dimension 3, I'existence n’est
que locale en temps. Dans les deux cas, les solutions sont uniques. En dimension 2, on a
le théoreme suivant.

Théoréme 2.1 Soit Q un ouvert borné de R? dont le bord est régqulier. Soit T une
constante positive donnée, f € L*((0,T),V) et uy € V3 donnés, il existe une unique
solution faible u au systeme (2.1) telle que

we L ((0,T),V?3) et ue L ((O,T) , (v3>’) ,
ot (V3) est Uespace dual de V3.
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En dimension 3, I’énoncé est le méme, mais la solution n’existe que sur un intervalle
[0,7%], ou T* < T. Ce théoreme est obtenu par une méthode de Galerkin, c¢’est-a-dire la
construction d’une suite u,, de solutions approchées a valeurs dans des espaces fonction-
nels de dimensions finies. Dans ce cas, u,, est a valeurs dans ’espace vectoriel engendré
par les n fonctions propres du produit scalaire associé a l'opérateur rot (Id — aA). En
passant a la limite lorsque n tend vers I'infini, on montre ensuite que u,, converge vers
un certain u, qui est I'unique solution faible de (2.1). En particulier, on peut voir que
le théoreme ci-dessus est vrai pour une force f € V ne dépendant pas du temps. En
dimension 2, ce résultat a été amélioré par I. Moise, R. Rosa et X. Wang dans [53],
qui ont montré que les solutions données par ce théoreme sont continues en temps. En
dimension 2 ou 3, G. Galdi, M. Grobbelaar Van Dalsen et N. Sauer on montré I’existence
de solutions fortes dans I'espace V™, avec m > 5, qui sont de plus globales si les données
initiales sont supposées petites dans V™ (voir [35]). Finalement, D. Cioranescu et V.
Girault ont montré dans [18] le théoréme suivant.

Théoréme 2.2 Soit Q un ouvert borné de R® dont le bord est régulier et m > 3. Soit
f e L>RY,Vm2) et ug € V™ donnés, il existe T* € [0,+00| et une unique solution
faible u au systeme (2.1) telle que

u € L™ ((O, T*) , Vm) et atu c L>® ((O, T*> , Vm_z) ,

De plus, il existe R > 0 tel que, si ||ug|| gz < R, alors T* = 4+00. Sim > 4, alors u est
une solution classique de (2.1).

En dimension 3, une extension de ces deux théoreme est donnée par D. Bresch et J.
Lemoine dans [8]. En effet, pour une force f & valeurs dans L"(Q)® avec r > 3, les
auteurs ont montré I'existence de solutions locales dans l'espace V! N W27 (Q)3. Plus
précisément, ils ont démontré le théoreme d’existence suivant.

Théoréme 2.3 Soit Q un owvert borné de R?, a > 0 et f € L ([0,T] x Q)*, avec r > 3.
Il existe T*, 0 < T* < T et une unique solution au systéme (2.1) tels que

we CO0, T, VEn W2 (Q)PF) et due Lo (0,77, VI AW (Q)3).

Si de plus f € L™ (RY,L"(2)3), il existe trois constantes positives ry = r1(r,Q), ry =
ro(a, v, 1m,8) et rg = r3(a, v, r,Q) telles que si

aETb

I Wl oo (e L () < T2
luo — Augl| - <73,
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alors T* = 400 et l'on a
u € C’I? (R, vVin WQ’T(Q)?’) et O e L™ (R, vVin W“(Q)3).

Le démonstration de ce théoreme repose sur un théoreme de point fixe de Schauder. On
peut trouver d’autres résultats d’existence pour les équations des fluides de grade 2 dans
51, [7]. [18], [20], [21], [34], [52] ou [54].

2.2 Dynamique des fluides de grade 2

On rappelle dans cette section quelques résultats sur le comportement asymptotique
des solutions des équations des fluides de grade 2. Pour ces équations, il existe des
résultats qui concernent l’existence d’un attracteur (voir [53], [57] ou [56]) et un article
traitant des profils asymptotiques des solutions de ces équations (voir [47]).

Profils asymptotiques

Les profils asymptotiques des solutions des équations des fluides de grade 2 ont été
étudiés en dimension 2 par B. Jaffal-Mourtada dans [47] pour un fluide de grade 2 rem-
plissant tout I'espace R?. Comme pour le cas des équations de Navier-Stokes, le systéme
auquel on s’intéresse ici est celui satisfait par le tourbillon w = rot u. En dimension 2,
ces équations sont données par

O (w — aAw) — Aw + u.V (w — aAw) =0,

Wjt=0 = Wo,

(2.4)

ol u est reconstitué par la loi de Biot-Savart (1.3).

Dans [47], il est montré que les profils asymptotiques des solutions des équations des
fluides de grade 2 sont les mémes que ceux décrits par T. Gallay et E. Wayne (voir [36]).
En effet, les solutions des équations des fluides de grade 2 convergent elles aussi vers les
solutions autosimilaires des équations de la chaleur données par (1.6). Pour cette étude,
I’auteur a été amenée a considérer des espaces de Sobolev d’ordre 2 a poids, définis, pour
m € N, par

H?*(m) = {u € L*(m) : 0"u € L*(m),n € N? |n| < 2}.

Comme pour le cas des équations de Navier-Stokes, ce résultat s’obtient en considérant
des variables autosimilaires comparables a celles définies par (1.8), mais en prenant X =
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x
et 7 = In(t +T), pour une constante positive T" fixée. Cette constante T est
Vi+T ( )

introduite pour pouvoir traiter le probleme indépendamment de la taille de o. En posant

1

| V“;T) 7 (2.5)
uho) = 7= Vit T)

un calcul simple montre que W satisfait le systeme d’équations

Or (W —ae TAW) — LIW) + UV (W — ae TAW)
+ae TAW + aeT7S VAW =0, (2.6)

U (m(t +T),

VV|T:1n(T) = WO s

ot Wo(X) = Ty (\/Tx) et LOW) =W + AW + X VIV,

Le systeme (2.6) est initialisé au temps 7 = In(7), qui est arbitraire puisque 7" l'est. En
prenant T suffisamment grand, on peut donc considérer ce™" aussi petit que I'on veut.
Comme pour le cas des fluides newtoniens, on considere la décomposition

W(r) =nG + R,

oun= / Wy(X)dX = / wo(x)dx et G est le tourbillon d’Oseen donné par (1.7), qui
R? R?

est un vecteur propre de L associé a la valeur propre 0.

En effectuant des estimations d’énergies sur R dans divers espaces fonctionnels, dont des
espaces de Sobolev a poids, B. Jaffal-Mourtada a montré le théoreme suivant.

Théoreme 2.4 [l existe trois constantes positives T', 0, 0 < 0 < % et v = ~(T) telles
que, pour tout Wy € H?(2) avec [Woll g2y < 7, il existe une unique solution W €
CY (In(T), +00), H*(2)) au systéeme (2.6) telle que,

4

[(1 = ae™A) (W(r) =G < Ce 77, (2.7)

[

M 2oy

ol n = / Wo(X)dX = | wo(z)dz, C est une constante positive et G est le tourbillon
R2 R?
d’Oseen, donné par (1.7).

En revenant dans les variables de départ, on obtient le théoréeme suivant, qui est un
corollaire du théoreme 2.4.
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Théoreme 2.5 [ existe trois constantes positives T, 0, 0 < 0 < % et v = y(T)

telles que, pour tout wy € H?(2) avec [woll oy < 7, il existe une unique solution
w e CY(RT, H*(2)) au systéeme (2.4) telle que, pour tout 1 < p < 2,

3=

<C,(t+T) (2.8)
Lp

Hﬂ—aAMMﬂ—thG<¢#:T>

ou C), est une constante positive, n = / wo(z)dr et G est donné par (1.7). Siu est le
R2
champ de vitesses obtenu en appliquant la loi de Biot-Savart (1.3) a w, alors, pour tout

1<q¢g<2

<C,(t+T) 7 2%, (2.9)
La

Ha_awu@—thv(ﬁiT)

ou C, est une constante positive et V' est le champ de vitesses obtenu en appliquant la
loi de Biot-Savart (1.3) a G.

Il est a noter que le taux de convergence n’est ici pas optimal, et est nécessairement plus
petit que }L. Pour les raisons spectrales expliquées précédemment, le taux optimal est %
Dans le chapitre 4, qui porte sur les fluides de grade 3, on donnera une amélioration de
ce résultat, en montrant que ’on peut prendre un taux de convergence aussi proche du
taux optimal que souhaité, pourvu que les données initiales soient suffisamment petites
dans H?(2). D'un point de vue concret, en comparant ce résultat avec les théorémes 1.1
et 1.2, ce résultat montre que les fluides de grade 2 se comportent asymptotiquement
comme les fluides newtoniens.

Attracteurs en dimension 2

Sur un domaine borné de R?, l'existence d’'un attracteur global pour les équations
des fluides de grade 2 (2.1) est connue dans l'espace fonctionnel V3. Les résultats que
'on présente ici sont vrais également pour un domaine périodique T? = [, 7r]2 de R?,
en définissant

Hyer = {u S L2(’H‘2)2 divu =0, f'ﬂ? udr = O} :
et en remplacant V'* par
Ve = Hpe, N H®(T?)2.

per
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Sur un domaine borné ou périodique de R?, le théoréeme 2.1 assure I'existence de solu-
tions globales dans V' au systéme (2.1) pour une force f € V indépendante du temps.
Le théoreme suivant, démontré par I. Moise, R. Rosa et X. Wang dans [53], montre
I'existence d'un attracteur pour les équations des fluides de grade 2 sur V3.

Théoréme 2.6 Soit O € R?* un ouvert borné, simplement connexe de bord connexe
réqulier, et soient v > 0, a > 0 et f € H*(Q)?. Si S(t)ug = u(t) est l'unique solution
de (2.1) de donnée initiale ug, alors S(t) est un groupe continu sur V3. De plus, S(t)
posséde un attracteur global dans V3.

La méthode utilisée pour obtenir ce résultat s’appuie sur des égalités d’énergies satisfaites
par les solutions de (2.1). Une partie des résultats du chapitre 4 s’appuie sur cette
méthode. Dans le cas des conditions périodiques, il est de plus montré dans [57] que si la
force est a valeurs dans V., N H™(T?)?, olt m est une constante positive, alors il existe
une constante positive ¢ tel que l'attracteur A appartient & I'espace V2, N H**0(T?)2.
Sur un domaine périodique, M. Paicu, G. Raugel ont étendu ce résultat a l'espace de
Sobolev W3P(T?)2, avec 1 < p < oo, out W*4 désigne I'espace de Sobolev d’ordre s associé
a la norme L7 (voir [56]). La méthode utilisée dans ce cas est différente de celle de [53],
et repose entre autres sur un changement de variables en coordonnées lagrangiennes.

2.3 Contributions de la these

Dans le cadre de cette these, une description des profils asymptotiques a ’ordre 1 pour
les équations des fluides de grade 2 sur R? est donnée dans le chapitre 3. En reprenant
la méthode utilisée par B. Jaffal-Mourtada pour montrer les théoremes 2.4 et 2.5, on
obtient un résultat similaire en dimension 3, qui montre que les solutions des équations
des fluides de grade 3 convergent vers les solutions autosimilaires des équations de la
chaleur données par (1.15). La conclusion que 'on peut en faire est qu’en dimension 3,
le comportement asymptotique des fluides de grade 2 est comparable a celui des fluides
newtoniens. Le systéeme que l'on considere pour ce travail est celui satisfait pour le
tourbillon w = rot u. En dimension 3, ce systeme est donné par

O (w — aAw) — Aw + u.V (w — aAw) — (w — aAw) .Vu = 0,
divw =divu =0, (2.10)
w|t=0 = Wo,

ol u est reconstitué par la loi de Biot-Savart tridimensionnelle (1.14).
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Afin d’énoncer le théoreme démontré dans le chapitre 3, on définit I’espace de fonctions
dans lequel les solutions sont définies. Pour m € N, on pose

H?(m) = {u € L*(m) : 9%u € L*(m), |a| < 2}.

Le résultat que l'on obtient se montre de la méme facon que le théoreme 2.4. En

considérant le changement de variables X = et 7= In(t +7) et en définissant
: VirT )

W par la relation (2.5), on obtient le systeme

Or (W —ae TAW) = LW)+UNV (W —ae TAW) — (W — ae TAW) VU
+ae TAW + oze_T%.VAW =0,
divW =divU =0,
VV\T:ln(T) = WO>
(2.11)
ott Wo(X) = Two(VTX) et LIW) =W + AW + 2.V,

Encore une fois, on décompose W sur le spectre de £. En dimension 3, la premiere valeur
propre de L est —1, et une base de 'espace propre associé est {fi, fo, f3}, donnée par
(1.16). On décompose W comme suit :

3
Wi(r)=eT" Z bifi + R(7),

ol p; :/Rspi(X).W(T,X)dX = [ pi(X).Wo(X)dX.

RS

En effectuant notamment des estimations d’énergies dans divers espaces fonctionnels, on
montrera dans le chapitre 3 le théoreme suivant.

Théoréme 2.7 Soit 6, 0 < 0 < 2 une constante positive fizée et Wy € H?(4). Il existe
Yo = Yo(a) > 0 et Ty = To(a) > 1 tels que, si T > Ty et s’il existe v < 7o tel que
Wy € H?(4) satisfait l'inégalité

o —om 2 3 2
Wl + IVl + ac™ [AWa 2 + a%e > | 1x1* AWallf, < (5 - 0) . 212)

ou 1o = log(T),
alors il existe une unique solution W € C ([rg, +00) ,H%(4)) au systéme (2.11) et une
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constante positive C = C(0, 7, Ty) tels que
3
(Id — ae™"A) (W(T) —e 7 Z bifi)
i=1

R3

< Ce™', (2.13)
L2(4)

L’espace H?(4) dans lequel on travaille est choisi pour pouvoir considérer un taux de
convergence aussi proche que souhaité du taux optimal. Comme expliqué plus tot, le
taux de convergence que I’'on obtient est lié a la seconde valeur propre discrete du spectre
de L sur l'espace L%(m). Dans notre cas, cette valeur propre est —% et on choisi donc m
suffisamment grand pour que la partie réelle du spectre continu soit repoussée au dela
de —%. D’apres (1.18), le m minimal que 'on doit prendre est donc % Pour des raisons
pratiques, on préfere travailler dans IL.2(4). Dans les variables de départ, le théoréme 2.7
donne le résultat suivant.

Théoréme 2.8 Soit 0, 0 < 6 < 2 une constante positive fizée et wo € H*(4). Il existe
Y = Yola) > 0 et Ty = To(a) > 1 tels que, pour tout T > Ty, 0 < v < 7o et wy

satisfaisant la condition
2
T2 wollze + 7777 [l wo [ o + T2 | Vel ) ,  (214)
+aT3/? ||Aw0||iQ + 2T 3/2 H|x|4 AwOHL2 <7 (% — 6) ,

il existe une unique solution w € C° ([0, +00),H?*(4)) au systeme (2.10) et, pour tout
1 < p <2, linégalité suivante est satisfaite :
3

bz‘ .
(Id — aA) (w(t) - ; i T>2fi ( — T))

ou C = C(0,a,7,Ty, p) est une constante positive.

<C@H+T) "%, (2.15)

Lr

De plus, il existe une constante positive C = C(0, a7y, Ty) telle que
3

4 b; )
|z|” (Id — aA) <w(t)_2(t+T)2fi( ’—t+T>>

1
ou b; = T pi(z).wo(x)dx et f; est donné par (1.15).
R3
En particulier, en comparant avec le théoreme 1.4, on constate que I'on obtient le méme
taux de convergence dans les espaces de Lebesgue classiques que celui obtenu pour les

équations de Navier-Stokes.

<C@+T)7", (2.16)

L2
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3 Fluides de grade 3

Une partie significative de cette these traite du comportement asymptotique des
solutions des équations des fluides de grade 3. La littérature mathématique consacrée
a cette classe de fluides est plus restreinte que celle consacrée aux fluides de grade 2,
et sans comparaison par rapport a celle consacrée aux équations de Navier-Stokes. S’il
existe plusieurs théoremes d’existence de solutions, I’asymptotique n’est que tres peu
étudiée. Dans cette section, on considere le systeme d’équations des fluides de grade 3,
donné par

O (u— agAu) — vAu +rot (u— agAu) Au— (oq + ag) (AAu + 2div (L'L))
—Adiv (JA? A) + Vp = f,
divu =0,
U‘t:() = Ug-
(3.1)
ol u € R, v > 0 est la viscosité a; > 0, ap € R, B > 0, p est la pression du fluide et f
la force extérieure appliquée au fluide.

3.1 Résultats d’existence

Sur un ouvert borné régulier Q de R? ou R3, C. Amrouche et D. Cioranescu ont
montré en 1997 lexistence locale de solutions pour des données dans 1'espace V3, défini
par (2.3). Pour une donnée uy € V3 et une force f € L?([0,7T],V?'), ils ont montré qu’il
existe un temps positif 7%, 0 < T* < T et une solution u au systéme (3.1) tels que

we L™ ([0,T%],V3) et e L*([0,T*],V?!).

Pour ce travail, qui s’appuie sur un schéma de Galerkin, les auteurs on supposé la condi-
tion suivante, justifiée par des considérations physiques :

|041 + 042| S \ 241/6 (32)

Les solutions obtenues sont de plus uniques (voir [1]). En dimension 3, une classe plus
générale de solutions a été introduite par D. Bresch et J. Lemoine dans [9], & savoir des
solutions dont les données initiales appartiennent a lespace V' N W?2(Q)3, ot r > 3,
pour une force extérieure a valeurs dans W' (Q)3. En utilisant le théoréme de point
fixe de Schauder, les auteurs ont montré dans ce cas l'existence de solutions locales aux
équations des fluides de grade 3 dans l'espace C°([0,T], V! N W?2"(Q)3). De plus, les
solutions obtenues sont uniques et les auteurs ne considérent pas la restriction (3.2).
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Il est également montré dans [9] que les solutions sont globales sous des conditions de
petitesse sur les données initiales et la force extérieure. Il existe aussi d’autres résultats
d’existence sur un ouvert borné (voir [6], [11] ou [61]).

Dans le cas d'un fluide de grade 3 remplissant tout 'espace R? ou R3, V. Busuioc et
D. Iftimie ont montré dans [10] en 2004 'existence de solutions faibles globales dans
Pespace de Sobolev H%(R?), pour une force f € Lj2 (RT, L*(R%)?). Plus précisément, ils
ont démontré le théoreme suivant.

Théoréme 3.1 Considérons l’équation (3.1) sur R, d = 2,3, avec
f e Ly (RY, L2A(RY)Y), ug € H* (R, divug = 0. Il existe une solution globale u telle

que u € CY (R*, HQ(Rd)d) N o (R*,HS(Rd)d), pour tout 0 < s < 2. De plus, si d = 2,
cette solution est unique.

Ce théoreme s’obtient par un schéma de Friedrich et des estimations a priori dans H?(R?).
Le méme théoréme peut étre démontré sur un tore de R? ou R3. En 2008, une nouvelle
classe plus générale de solutions a été introduite par M. Paicu dans [55]. En reprenant une
partie des résultats de [10] et en considérant des restrictions sur la taille des parametres
a; et ao, il a démontré I'existence de solutions faibles globales dans I'espace H!(R?),
lorsque la force f est a valeurs dans H—* + W15, oit W15 est le dual de I'espace de
Sobolev W14, De plus, ces solutions satisfont une égalité d’énergie dont on se servira
dans le chapitre 4. Le théoreme obtenu par M. Paicu est le suivant.

Théoréme 3.2 Soit ug € H'(RY)? tel que divug =0 et f = f1 + fo,
ou fi € LS, (RY, HH(RY)) et fo € L (R*, W’l’%(Rd)d) Si les paramétres oy, o, v

et B satisfont les conditions suivantes :
~d=2:v>0,8>0 et |a] <8V,
~d=3:v>0,8>0,3a%+4 (a1 +ay)’ < 24v4,

alors il existe une solution faible globale u au systéme (3.1), telle que

ue C”(RT, HY(RY)Y) n L, (RT, WHH(R?)4) |
Dans le théoreme ci-dessus, I'unicité n’est pas connue en général, et on verra plus tard que
cela jouera un role important pour montrer I’existence d’un attracteur pour les solutions
H'. En effet, on ne pourra pas associer les solutions des équations des fluides de grade 3
données dans ce théoreme a un systeme dynamique au sens classique.
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3.2 Contributions de la these

Dans le cadre de cette these, deux résultats nouveaux sur les équations des fluides de
grade 3 sont démontrés. Le premier concerne les profils asymptotiques des solutions de
ces équations, pour un fluide remplissant tout I’espace R?. Le second montre ’existence
d’un attracteur dans la topologie H' pour un fluide défini sur un tore de R?, pour des
solutions plus régulieres que H'.

Profils asymptotiques sur R?

Dans le chapitre 4, on donne une description des profils asymptotiques au premier
ordre des solutions des équations des fluides de grade 3 considérés sur l'espace entier
R3. On montre, & instar des fluides newtoniens et de grade 2, que les solutions des
équations des fluides de grade 3 convergent lorsque le temps tend vers l'infini vers les
solutions autosimilaires des équations de la chaleur données par (1.6). Ce résultat est
obtenu sous une condition de petitesse sur les données initiales, que 1’on retrouve aussi
pour le cas des fluides de grade 2 mais pas pour les équations de Navier-Stokes. Les
équations que ’on considere pour ce travail sont les équations satisfaites par le tourbillon
w = rot u = dyuy — Osuq, données par

O (w — aAw) — Aw 4+ u.V (w — aAw) — Prot div (|A|2 A) =0,
w|t=0 = Wo,

(3.3)

ol u est reconstitué par la loi de Biot-Savart bidimensionnelle (1.3).

Remarquons que la constante as n’apparait plus dans ce systeme d’équations. En effet,
en dimension 2, on peut montrer que le terme avec la constante multiplicative ay, du
systeme (3.1) est un terme gradient qui par conséquent n’intervient pas dans le com-
portement des solutions. Ce phénomene est tres spécifique a la dimension 2 et n’existe
pas en dimension 3. On peut d’ailleurs constater que les conditions sur les parametres
du théoreme 3.2 en dimension 2 ne portent pas sur as. Par conséquent, pour l’étude
des profils asymptotiques, la différence entre les équations des fluides de grade 3 et les
équations des fluides de grade 2 vient du terme cubique Adiv (|A|2 A).

Comme pour le cas des fluides newtoniens ou de grade 2, pour étudier les profils asymp-

totiques des solutions de (3.3), on consideére les variables d’échelles. Pour T' fixé, on
définit W par le changement de variables (2.5) et, par un calcul simple, on montre que
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W satisfait le systeme d’équations

Or (W —ae TAW) — L(W) + UV (W — ae TAW)
+aeTAW + ae”" 5 VAW — Be*rot div (|A\2 A) =0,
W) = W,
(3.4)
ott Wo(X) = Two(VTX) et LIW) =W + AW + X.VW.

De la méme maniere que pour les fluides de grade 2, en décomposant W sur le spectre
de L et en effectuant des estimations d’énergies dans divers espaces fonctionnels, on
montrera le théoreme suivant.

1
Théoreme 3.3 Soit 0, 0 < 6 < — une constante positive. Il existe deux constantes

positives o = Yo(a1, B) et Ty = To(an, B) > 1 telles que, pour tout T > Tp, 0 < v < 7
et Wo € H*(2) satisfaisant la condition

1 6
IWal s JAWGlE + X ol + e LXP AWl < (5 -0) © (39)

ot 7o = In(T),

il existe une unique solution W € C° ([1y, +00) , H*(2)) au systéme (2.6) et une constante
positive C' = C(ay, (3,0,7) telles que, pour tout T > T,

(1 = aie™A) (W(r) = 1G)|] oy < Ce™, (3.6)

oun = Wo(X)dX.

R2
Dans ce théoreme, remarquons que 1'on peut choisir le taux de convergence aussi proche
du taux optimal —% que souhaité, a condition de considérer des données suffisamment
petites dans H?(2). Etant donné que les fluides de grade 2 sont un cas particulier des
fluides de grade 3, le théoreme 3.3 apporte donc une amélioration au théoreme 2.4, ou le

taux de convergence considéré était au mieux }L. Dans les variables de départ, le théoreme
3.3 donne le résultat suivant.

N |—

Théoreme 3.4 Soit 6, 0 < 0 < 5 wune constante positive. Il existe deux constantes
positives o = Yo(aq, B) et Ty = To(a, B) > 1 telles que, pour tout T > Ty, 0 < v < v
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et wy € H?(2) satisfaisant la condition

1 2 1 6
T ool 7 [V ol vl [l S el Sl < 3 (5 0)

2
(3.7)
il existe une unique solution w € C° ([0, +00), H*(2)) de (3.3) telle que, pour tout 1 <
p<2ettoutt >0,

o= (w00~ 2226 (757

ou C'=C(p,a1,5,0,7) est une constante positive,

<C@t+T) "0,

r

et il existe une constante positive C' = C(ay, 3,0,7) telle que, pour tout t > 0,

<C@t+T)",
LQ

- o 276 ()

oun = / wo(x)dx et G est le vortex d’Oseen, donné par (1.7).
R2

Comme pour le cas des fluides de grade 2, on peut la aussi conclure que les fluides de
grade 3 se comportent asymptotiquement comme les fluides newtoniens régis par les
équations de Navier-Stokes, du moins au premier ordre.

Attracteur

Il n’existe pas aujourd’hui de résultat traitant de I’existence d’un attracteur pour les
équations des fluides de grade 3. Dans le chapitre 4, on montre I'existence d’un attracteur
dans un sens plus faible que celui de la définition 1.2, pour un fluide sur le tore T? et une
force f € L*(T?)? indépendante du temps. Pour ce travail, on s’appuie notamment sur
les travaux de M. Paicu sur les solutions faibles de (3.1) dans V!. Une des difficultés vient
du fait que, dans ce cas, les solutions ne sont a priori pas uniques, et on ne peut donc
pas définir les solutions de (3.1) par 'intermédiaire d'un systeme dynamique classique,
tel que celui donné par la définition 1.1, la propriété (H2) n’étant pas vérifiée. Pour
contourner ce probléeme, on considere une version affaiblie des systemes dynamiques, a
savoir les semi-groupes généralisés, introduits pas J. Ball (voir par exemple [3] et [4]).

Définition 3.1 Un semi-groupe généralisé G sur un espace métrique (X, d) est une fa-
mille de fonctions ¢ : RT — X satisfaisant les hypothéses

33



Chapitre 2. Historique des résultats et contributions de la these

(H1) Pour tout z € X, il existe au moins une fonction ¢ € G telle que p(0) = z.
(H2) Si ¢ € G, alors, pour tout 7 >0, ¢ € G, ou ¢™(t) = p(t + 7).
(H3) Si p, € G et s’il existe T > 0 tel que 1(0) = ¢(7), alors la fonction 6 définie par

o(t) = o(t), pourtout 0<t<T,
| w(t—=7), pourtout t>T,

appartient a G.

(H4) Sip; € G et p;(0) = z, il existe une sous-suite p, de ; et ¢ € G avec p(0) = z
tels que @, (t) = (t), pour tout t > 0.

Cette définition ne prend notamment pas en compte le caractere unique des solutions
que l'on considere, et s’adapte donc bien au cadre des équations des fluides de grade 3 sur
V;}er, dans lequel 'unicité des solutions n’est pas connue. Pour un semi-groupe généralisé
G, on peut définir une famille d’applications 7'(t), ¢ > 0 sur les ensembles de X. Cette
famille d’applications est celle de la définition 1.1 pour un systeme dynamique classique,

et est donnée par

T(t)x ={e(t) : ¢ € G,9(0) =z},
ou z est un élément de X, et par

T(t)E =A{p(t) : ¢ € G,p(0) € E},

ou F est un sous ensemble de X.

Dans ce cas, remarquons que T'(f)z est un ensemble de X et non plus une seule solution
comme c’est le cas pour les systemes dynamiques classiques. Pour un tel semi-groupe
généralisé G et une telle famille d’applications T'(¢), la notion d’attracteur est la méme
que celle donnée dans la définition 1.2. Afin de rappeler quelques résultats sur les semi-
groupes généralisés, on introduit la définition suivante, qui est classique pour les systemes
dynamiques.

Définition 3.2 Soit G un semi-groupe généralisé sur un espace métrique X .

1. On dit que G est dissipatif point par point s’il existe un ensemble borné B de X tel
que, pour tout ¢ € G, il existe to > 0 tel que ¢(t) € B, pour tout t > t.

2. On dit que G est asymptotiquement compact si, pour toute suite p; € G avec ¢;(0)
borné et toute suite t; € R telle que t; — 400, on peut extraire de p;(t;) une
sous-suite convergente.
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Dans le cadre d’'un semi-groupe généralisé G, J. Ball a montré dans [3] le théoréeme
suivant d’existence d’'un attracteur suivant, qui est un théoreme bien connu dans le cas
des systemes dynamiques classiques.

Théoreme 3.5 Un semi-groupe généralisé G sur un espace métrique X admet un at-
tracteur global si et seulement si G est dissipatif point par point et asymptotiquement
compact.

Ce théoreme est ’analogue d’un autre théoreme obtenu pour les systemes dynamiques
classiques, et démontré la premiere fois dans [44]. Dans notre cas, s’il est possible de
démontrer que ’ensemble des solutions faibles de (3.1) dans V;}er est un semi-groupe
généralisé dissipatif point par point, on ne sait pas a ’heure actuelle si ce semi-groupe
est asymptotiquement compact, et ce théoreme ne peut donc s’appliquer en ’état. En
revanche, si 'on pouvait montrer que la propriété (H4) de la définition 3.1 était vérifiée
pour la topologie faible de H*, alors par une méthode d’égalité d’énergie telle que celle
exposée dans [53], on pourrait conclure a la compacité asymptotique. Dans le cadre de
cette these, nous montrerons un résultat plus faible, qui montre en un sens l'existence

d’un attracteur dans Vi, ou s > 1, pour la topologie H'.

Théoréme 3.6 Si f € L*(T?) est indépendante du temps, v > 0, B > 0, a; > 0 et
o1 < \/8uf, alors U'ensemble des solutions faibles de (3.1) sur T® a données dans V).,
est un semi-groupe généralisé sur V;}er. Si de plus oy < /vf3, alors pour tout s > 1, il
existe un ensemble compact invariant Ay C V;)lr, qui attire tous les bornés de V2, pour

e per
la topologie H*'.

Pour montrer que I'ensemble des solutions faibles de (3.1) est un semi-groupe généralisé

sur V.., on se sert notamment de la méthode d’égalité d’énergie décrite dans [53] com-

binée a la méthode de monotonie utilisée par M. Paicu pour montrer le théoreme 3.2.

Pour montrer que les bornés de V., sont attirés vers un compact A, on montre, en

s’appuyant entre autres sur les travaux de V. Busuioc et D. Iftimie, que ces solutions
restent bornées dans V;, ., pour peu que a; < y/vf3. En utilisant le caracteére compact de

V. dans Vet en reprenant la démonstration du théoreme 3.5, on est ensuite & méme

de conclure a I'existence d'un ensemble compact et invariant de V.. qui attire les bornés
de V... De plus, on verra dans le chapitre 4 que si 1 < s < 2, alors A est un ensemble
borné de V..

Ce résultat est plus faible que le théoreme 2.6 obtenu pour les fluides de grade 2, car
la convergence vers l'attracteur a lieu pour la topologie H' alors que les données sont

supposées plus régulieres que cet espace.
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Chapitre 3

Fluides de grade 2

Asymptotic profiles for the second
grade fluids equations on R?

1 Introduction

The equations of fluids of second grade have been introduced from a mathematical
point of view in 1974 by J. Dunn and R. Fosdick in [24] and since have been the topic of
many research works in mathematics. These fluids are a particular case of a large class
of non-Newtonian fluids, called fluids of differential type, or Rivlin-Ericksen fluids (see
[59]) which play an important role in the nature. For instance, some oils used in industry
or even fluids that we use every day, like wet sand or melted cheese are non-Newtonian
fluids. Given the vorticity v > 0, the parameter a > 0 and an initial divergence free
vector field vy of R? or R3, the equations of motion of fluids of second grade are given
by

O (u — aAu) — vAu + curl (u — aAu) X u+ Vp =0,
divu =0, (1.1)
Ult=0 = Uo,

where x denotes the classical vectorial product on R? and p is the pressure which depends
on u. In the two-dimensional case, we have used the convention that u = (uy, us,0) and
curl u = (0,0, Oyug — Doy ).
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Several existence and uniqueness results have been obtained for this system of equa-
tions, mainly on a bounded set € of R? or R?® with Dirichlet or periodic boundary
conditions (see for instance [5], [8], [19], [20], [21], [22], [34], [54] or [52]). The first
existence and uniqueness result has been obtained by D. Cioranescu and O. El Hacene
in 1984 in [19]. They have shown, on a bounded set of R, d = 2,3, with homogeneous
boundary conditions, that there exists a unique weak solution to (1.1) belonging to the
space L ([0,T], H*(Q)?), where T > 0 and H*(2) denotes the Sobolev space of order s
(see [19]). Besides, this solution is global in time when the dimension is 2. This result is
based on a priori estimates and a Galerkin approximation with a basis of eigenfunctions
corresponding to the scalar product associated to the operator curl (u — aAu). In the
same case, using the Schauder fixed point theorem, P. Galdi, M. Grobbelaar-Van Dalsen
and N. Sauer established the existence and uniqueness of classical solutions to (1.1) when
data belong to H™, with m > 5 (see [35]). They also have shown that these solutions
are global in time, provided that the initial data are small enough in H™(f2). Later,
D. Cioranescu and V. Girault improved the results of [19] and [35] and showed that the
local weak solutions belonging to H3(2) are actually global in time in dimension 3 if the
data are small enough and are strong solutions if the data belong to H™, m > 4 (see
[18]). Finally, D. Bresch and J. Lemoine have generalized the results of [35], [19] and [18§]
in dimension 3 in establishing the existence and uniqueness of local solutions belonging
to the space W2"(Q) with r > 3. Furthermore, they have shown that these solutions
are global in time if the initial data are small enough in W2"(2) (see [8]). In this work,
instead of applying a Galerkin approximation, the authors used Schauder’s fixed point
Theorem.

In the present paper, we are interested in the description of the asymptotic profiles
of the solutions of second grade fluids equations. In what follows, we consider a second
grade fluid which fills the whole space R3, without any forcing term applied to it. In
this case, if the initial data are small enough, the solutions of such a system tend to 0
when the time ¢ goes to infinity. The aim of this study is to investigate the way that
these solutions go to 0. More precisely, we will show that the solutions of (1.1) behave
asymptotically like particular solutions to the heat equation, which are smooth and that
one can compute explicitly. In this article, we restrict ourselves to the study of the
first order asymptotic profile, that is to say that the speed of the convergence of the
solutions of (1.1) to explicit smooth functions is limited by spectral considerations. For
Navier-Stokes equations, there exist already several results that describe the asymptotic
profiles of the solutions. In dimension 2, T. Gallay and E. Wayne have shown in [36] that
the first order asymptotic profiles of the solutions of Navier-Stokes equations are given
up to a constant by a smooth Gaussian function that is called the Oseen Vortex sheet.
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Actually, the equations that they considered are the scalar vorticity equations, and not
Navier-Stokes equations themselves. This result initially held under restrictions on the
size of the data, but has been generalized to the case of any data in [38]. For this work,
the authors applied arguments that come from the study of dynamical systems. In fact,
they have shown the existence of a finite-dimensional manifold locally invariant by the
semiflow associated to the Navier-Stokes equations. Then, they proved that the solutions
of Navier-Stokes equations are locally attracted by this manifold, and consequently be-
have like the solutions on it. The study of the dynamics of Navier-Stokes equation onto
this manifold gave them the description of the first and second order asymptotic profiles.
In dimension 3, with similar methods, they have shown the same kind of results in [37],
under smallness assumptions on the size of the data. The asymptotic profiles of the
solutions of the equations of second grade fluids have been studied in dimension 2 by B.
Jaffal-Mourtada in [47]. She has shown, under smallness assumptions on the data, that
the first order asymptotic profiles of solutions to second grade fluids equations are given
up to a constant by the Oseen vortex sheet, as it is the case for Navier-Stokes equations
in R2. To obtain this result, the author performed energy estimates in various functions
spaces, notably weighted Sobolev spaces. The concrete interpretation of this result is
that, in dimension 2, the fluids of second grade behave asymptotically like Newtonian
fluids. The main aim of this article is to extend this observation to the dimension 3.

Actually, the system that we will solve in this article is not exactly (1.1) but the one
satisfied by the vorticity w = curl u. Assuming, for the sake of simplicity, that v = 1,
considering initial vorticity data wy and taking formally the curl of (1.1), we get the
vorticity system of equations

O (w — aAw) — Aw + curl ((w — aAw) x u) =0,
divu = divw = 0, (1.2)
w|t:0 = Wy.

In this system, the divergence free vector field w is reconstructed from w via the Biot-
Savart law, which is a way to get a divergence free vector field from its given vorticity.
In the section 2, more details will be given about the Biot-Savart law and its properties.

In this article, we show that the solutions of the system (1.2) behave asymptotically
like vector fields whose components are self-similar solutions to the well known heat
equations, that is to say under the form

0~ et (em)
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where F is a divergence free vector field of R and T is a positive constant.

We introduce now a powerful tool in the studying of asymptotics of solutions to
partial differential equations, that is scaled variables or self-similar variables. Let T be

a positive constant that we will always assume 7" > 1 and w be a solution of (1.2). We
x

t+

make the change of variable X = and set 7 = log(t + T'). By this way, one

defines W and U, given by

]

1 x
w(t,x)=——=W log(t+1T), >,
00 = W (w47, L3
(t,) Ly (10 (t+T), —— '
ult, - 9
JirT \® Vit T
Equivalently, we have the equalities
T T /2
W (r, X) ew(e T,e X), (1.4)

U(r,X)=e"u(e” —T,e/?X).

Scaling variables have been initially introduced to study the asymptotic behaviours of
solutions of parabolic equations, and in particular to show the convergence to self-similar
solutions (see [25], [26], [33] or [48]). Actually, this tool is also efficient to study the long-
time behaviour of a lot of various equations, not necessarily parabolic ones. For instance,
T. Gallay and G. Raugel used them to describe the first and second order asymptotic
profiles of solutions to damped waved equations (see [40]) and to show the stability of
hyperbolic fronts (see [41]). Self-similar variables have been also used to investigate the
asymptotic profiles of the solutions of Navier-Stokes equations in [36], [37], [38] and [39]
and second grade fluids equations in dimension 2 in [47]. Assuming that w is a solution
of (1.2), a short computation shows that W is a solution of the system

Or (W —ae TAW) — L(W) + curl (W —ae 7TAW) x U)
+ae TAW + oze_T%.VAW =0, (1.5)
divU =divW =0, ’
VV\T:IOg(T) = WOa
where L is the linear differential operator defined by
LW) =AW +W + 3 VW.
In the first equality of the previous system, there are several terms which formally tend
to 0 when time goes to infinity. Actually, the main theorem of this article shows that the
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solutions of (1.5) converge when 7 goes to infinity to particular solutions to the equality
0-Wo = L(W). (1.6)

More precisely, the aim of the present paper is to decompose W on the spectrum of
L on an appropriate space of functions and to show that the asymptotic behaviour of
W is dominated by the projection of W onto the eigenspace corresponding to the first
eigenvalue of £. Additionally, this projection satisfies the equality (1.6). We define now
the weighted Lebesgue spaces, which are suitable for the study of the spectrum of L.
For every m € N, one defines L?(m), given by

L2(m) = {u € IR : (1+ [2) " u e L2(R3)} ,

3 1/2
where |z| = (Z xf) :
i=1

By the same way, for m € N and n > 2, we define the weighted Sobolev spaces by
H'(m) = {u e L*(m): du € L*(m),i € {1,2,3}},
H"(m) = {ue L*(m) : u € H" '(m),i € {1,2,3}}.

The incompressibility condition on the vector fields W and U makes natural to work on
the spaces

L2(m) = {u € L*(m)? : divu = 0},
H?(m) = {u € H*(m)? : divu = 0},

equipped with the norms

m
2

el oy = || 1+ 121%) %

2’

and

_ 2 \V4 2 vg 2 1/2
lull g2my = (ellz2in) + VUl 20 + 1Vl 200 )

In [37], T. Gallay and E. Wayne show that the spectrum of £ on IL?(m) is the union of
the discrete spectrum

oq4(L) = {—%(k’—i— 1),k e N*},
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and the continuous one
o (L)y={AeC:Re(N) <1 -2},

In order to describe the first order asymptotic profile of solutions of (1.5), we need to
have at least one isolated eigenvalue. Looking at o.(L), we notice that one can ”push”
the continuous spectrum to the left by choosing m large enough. For this reason, we
should work at least in the weighted space 1.?(3), where —1 is an isolated eigenvalue of
L. Actually, in order to be close to the optimal rate of convergence, we prefer working
in L%(4), where the discrete spectrum is o4(£) = {—1,—2} and the continuous one is
o.(L) = {N € C: Re(\) < —I}. The main aim of this article is to show that one can
decompose a solution W of (1.5) into the form

W(r)=Q(7) + R(7), (1.7)

where €2 is an eigenfunction of £ associated to the eigenvalue —1 and R tends to 0 faster
than Q into L?(4) when 7 goes to infinity.

Since the first eigenvalue smaller than —1 is —% , the best result that one expects is
R(t) = O(e”7) in L2(4).

Actually, the result that we obtain holds under smallness assumptions on the size of the
data in H?(4). Besides, provided that the initial data are small enough compared to the
parameters of the equations, one can be as close as wanted to the optimal rate.

2 First order asymptotics and preliminary results

Before stating the main theorem of this paper, we have describe the eigenspace of £
associated to the eigenvalue —1. In [37, appendix A], they show that the multiplicity of
the eigenvalue —1 is 3 and that a suitable basis {f1, f2, f3} of the associated eigenspace
E 4 is given by

fi =cul (Ge;), i=1,2,3, (2.1)
1 1x|?

where G(X) = (I} e~ 1 and {e}, ey, e3} is the canonical basis of R3.
m

Through a short computation, we see that f;(X) = p;(X)G(X), i=1,2,3, where
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1 0 1 X3 1 — Xy
Pl(X):§ —X3 7P2(X):§ 0 ar1dp3(X):5 X
X —Xi 0

In particular, the vector fields p; satisty divp;, =0 and curl p; = e;. Integrating
by parts, we notice also that

/RBpZ-(X).fj(X)dX = g curl (p;(X)). (G(X)e;) dX = (e;.€;) /R3 G(X)dX = 0;;. (2.2)

Furthermore, defining £* = A — %.V — % the formal adjoint of £, we check easily that

Lp; = —p;.
With the basis {f1, f2, f3}, the decomposition (1.7) can be written

Z Bi(T) fi + R(7 (2.3)

where 5;(7) € R.

As we can see in [37], £L%(4) = E_; & W, where

= {f cL(4): | Xif;y(X)dX =0, i,j= 1,2,3}.

RS

Consequently, one has to choose [3; such that X;Rj(1,X)dX =0, for 4, j € {1,2,3}.
R3
To this end, we set

Bi(t) = /R pi(X).W (7, X)dX.

In fact, assuming that W € 1.?(4) and using the divergence free property of W, it is easy
to check that

/ (X)) W(X)dX = | XoW3(X)dX = — | XsWa(X)dX,
R3 R3 R3
/ pA(X)W(X)dX = [ XsWi(X)dX =— [ X,W5(X)dX,
R3 R3 R3
R3 R3 R3

and thus, using (2.2) and the decomposition (2.3), we can conclude that
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R3

The next lemma gives more details about f3;, and shows that the projection of W onto
E_; is actually a solution of (1.6).

Lemma 2.1 Let W € C°([r,T),H?(4)) be a solution of (1.5) and let
Bi(7) Z/ pi(X).W(r, X)dX.
R3

Then, for all T € [19,T],
B@(T) = bie_T, (24)
where b; :/ pi(X) Wo(X)dX.
R3
Proof: The proof of this lemma is made formally, assuming that every quantity that
we consider is well defined. Actually, in the remaining of this article, we will work with

regularized solutions for which the next computations are rigorous. In order to get (2.4),
we only have to show that f; satisfies

Performing the L?—scalar product of the first equality of (1.5) with p;, we obtain

0-Bi(1) = ae™" (ps, 0rAW) 12 — ae™™ (pi, AW) 1 + (ps, LW)) 2
+ (pi,curl (U x (W —ae TAW))) . —ae™™ (pi, AW + 2. VAW) , .

(2.6)
Integrating several times by parts, it is easy to check that
e (p, 0-AW) 1o = ae™™ (pi, AW ) 12 = ae™™ (ps, AW + %.VAW)LQ = 0.
Thus we have
0-Bi(1) = —Bi(71) +/ €;. (U(X) X (W(X) — oze_TAW(X))) dX. (2.7)
R3

It remains to show that the last term of the right hand size of (2.7) vanishes. Noticing
that W = curl U, an easy computation shows, for i € {1,2,3},

(U(X) x (W(X) —ae TAW(X))), = %ai (|UP) = UNVU; — ae™™ (UO,AU — UNVAU;) .
(2.8)
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Thus, using the divergence free property of U and integrating by parts, we get

/ ei. (UX) x (W(X) —ae TAW(X))) dX = —ae ™™ / U(X).0,AU(X)dX.

RS

Another integration by parts yields

[ W) 5 (700 s () ax = e [

and thus we obtain (2.5).

0 (IVU(X)]?) dX =0,

3

OJ

We are now able to state the main theorem of this paper, which shows in particular that
the first order asymptotic profile of a solution W in H?(4) of (1.5) is the same as the
first order asymptotic profile obtained for Navier-Stokes equations.

Theorem 2.1 Let § be a fired constant such that 0 < 6 < 2 and Wy € H?*(4). There
exist two positive constants vy = Yo(«) and Ty = To(a) > 1 such that if T > Ty and there
exists a positive constant v < 7y such that

_ o 2 3 2
Wil + V9ol + e [AWAIE, + e [|1X1° AWal[7, < 7 (5 -6) © 29)
where 9 = log(T),

then there exist a unique solution W € C° ([rg, +00) ,H?(4)) to the system (1.5) and a
positive constant C' = C(0, «,v,Ty) such that

(Id — oze_TA) (W(T) —e 7 Z sz})

where b; :/ pi(X).Wo(X)dX.
R3

< Ce ', (2.10)
L>(4)

In the classical variables, the theorem 2.1 gives the next corollary.

Corollary 2.1 Let 0 be a constant such that 0 < 6 < %, wy € H*(4) and
1
b, = T/ pi(x).wo(x)dx. There exists yo = Yo(a) > 0 and Ty = To(a) > 1 such that if
R3

there exist T' > Ty and v < g such that

2
T2 wollze + T |||l wol [ o + T2 [ Vawo| |2

2.11
+aT3/? ||Aw0||i2 + a2T—3/2 H|x|4 AwOHiZ <~ (% — 9)2 , ( )
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then there exists a unique solution w € C° ([0, +00),H?*(4)) to the system (1.2) such
that, for all 1 < p < 2, there exists a positive constant C' = C(0, a7y, To, p) such that

<C@+T) ", (2.12)

wlt) - 23; (t +biT)2f" (WZ—T)

7

Lp
and there ezists a positive constant C' = C(0, «v,y,Ty) such that

4 i b; x
z[* (Id — aA) (w(t) - ; s T)sz- ( T T))

Let u be the divergence free vector field obtained from w through the Biots-Savart law.
For all p € [%, 6} , there exists a positive constant C' = C(0, «,y, Ty, p) such that

<C@+7)i%. (213
L2

<C@t+T) 7%, (2.14)
L

bi T
u(t) — V;
) ;(tJFT)?’/2 <\/t+T)
where v; is obtained from f; via the Biots-Savart law.

We prove the theorem 2.1 in several steps. First, in section 3, we introduce a new
system that is close to (1.5), but which contains the regularizing term e A?W, with € a
small positive constant that is devoted to tend to 0. Thanks to this regularizing term,
we are able, through a semi-group method, to show the existence of local solutions to
the regularized system. In a second time, in the section 4 we make energy estimates
on these approximate solutions, and show that these ones are global in time and satisfy
the inequality (2.10). Then, in section 5, we pass to the limit when e tends to 0 and
show that the approximate solutions converge to a global solution of (1.5) which satisfies
(2.10). Finally, we show that this solution is unique.

Biot-Savart law:

Now, we recall some properties of the Biot-Savart law. Let w be a given divergence free
vector field of R?, the Biot-Savart law gives a divergence free vector field u such that
curl u = w. It is given by

u(z) = —i . (@ —|my)_>;|”§t)(y) dy. (2.15)
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In particular, passing into scaled variables preserves the Biot-Savart law. Indeed, if u
is obtained from w via the Biot-Savart law and W is w expressed into scaled variables,
then the divergence free vector field U obtained from W through the Biot-Savart law is
u expressed in scaled variables. The next lemma gives some estimates on vector fields
obtained by the Biot-Savart law, in various functions spaces.

Lemma 2.2 Let u be the velocity field obtained from w via the Biot-Savart law (2.15).
(a) Assume thatl <p<3,3 <q<oo and% = %—%. Ifw e LP(R3)?, thenu € LI(R3)3,
and there exists C' > 0 such that

ull e < Cllwll, - (2.16)

(b) Assume that 1 < p < 3 < q < oo, and define n € (0,1) by the relation % = g+ @.
If we LP(R3)3 N LY(R3)3, then u € L>°(R?®)3 and there exists C > 0 such that

lull g < C | o]l (2.17)

(c) Assume that 1 < p < oo. Ifw € LP(R3)3, then Vu € LP(R?)? and there exists C' > 0
such that
IVull, < Cllwll, - (2.18)

This lemma is proved in [37] and will be very useful when making estimates on solutions
of (1.5).

3 Approximate solutions

In this section, we introduce a new system that is close to (1.2), which contains the
regularizing term eA?w, where ¢ is a small positive constant. The reason to introduce
such a system is to get smooth solutions of the new system, for which we are able to make
estimates in H?(4) and obtain the inequality (2.10). In the section 5, we will pass to the
limit when ¢ goes to 0 and show that the limit of the solution of the regularized system
satisfies also the inequality (2.10). We introduce the following regularized system, given
by

O (we — aAw,) + eA*w, — Aw, + curl ((w, — aAw,) x u.) = 0,
div u. = div w. = 0, (3.1)
Welt=0 = Wo-

The next theorem shows that, for every wy € H?(4), there exists a unique local solution
to (3.1) belonging to H?*(4), which is smooth enough to perform the estimates of the
section 4.
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Theorem 3.1 Let e > 0 and wy € H?(4). There exists t. > 0 and a unique solution w.
to the system (3.1) defined on the time interval [0,t.) such that

we € C1((0,2.) , H'(4)) N C((0, 1) , H*(4)) .

Proof: To get this result, one defines w, ,(t,r) = w. (t, %), where 1 > 0. This change

of variables enables us to show the existence of solutions to the system (3.1) without
restrictions on the size of the parameter . We define u. , obtained from w., by the
Biot-Savart law (2.15). It is easy to check that e ,(¢,2) = pu.(¢, %). In order to show the
existence of a unique solution to (3.1), we will prove that there exists a unique solution
to the system

O (wey — ap*Aw, ) — ep* Aw, , — p?Aw, , + curl ((wey — ap®Awe ) X uey,) =0,
divw,,, = divu., =0,
Weplt=0 = wo(:) € H?(4).
(3.2)
We define now z(t,z) = q(z)w. ,(t, ), where ¢(z) = (1 + |:E]4). In particular, if w, , €
L?(4), then z. € H, where

H={ze L*(R33:div (¢'2) =0} .
For later use, we define also, for s > 0,
He =HNH(R®?, and H~* = (M),

where (H*)" denotes the dual space of H*.

We equip H*® with the classical H® Sobolev norm, which makes H* complete. From the
system (3.2), we deduce the following one, that we solve in z,

0, (zE — ap’Az. — aplqAg 2 — 2ap,2qVq_1.Vzg) +eptA?z = F (2, 2.),
div (¢7'z.) =0, (3.3)
Zelt—o (2) = 20(x) € H?,

where

F(,z) = —ep'qA® (¢ z:) + pqA (g7 2)
+qeurl (ue, % (72 — PonA (¢ '22)))
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The system (3.3) is actually autonomous. Indeed, one can recover u. , by the Biot-Savart
law (2.15) applied to ¢~ 2.. To show the existence of solutions to (3.1) in H'(4), it suffices
to show the existence of solutions to (3.3) in H!, for data belonging to H?.

We set two linear differential operators B : D(B) = H! -+ H ' and D : D(D) = H —
H~1, given by

B = ap’qAqt + ap’A,
D = au?qVqt.V.

Via Lax-Milgram theorem, we show now that if ;1 is sufficiently small with respect to «,
the operator (I — B — D) is invertible. In order to do that, we define the bilinear form
on H! x H!, given by

a(u,v) = (u,v) 2 + ap? (Vu, Vo) 2 — ap? (¢Aq  u,v) 2 — 2a0* (qVq . Vu,v) . .

Since gAg~! and ¢V¢ ! are bounded on R?, the bilinear form a is continuous on H!. We
now show, taking p small enough, that a is also coercive on H'. Indeed, integrating by
parts and using Holder and Young inequalities, we have

a(u, u) > (1 —ap”sup (¢Aq™") +ap® inf (div (qVq_l))) lullZ> + ap® [ Vull7. -

z€R3
Thus, if we take p sufficiently small, we get
a(u,u) > Cla, p) ||ull7

where C'(a, 1) is a positive constant depending on « and p.

The classical Lax-Milgram theorem enables us to define (I — B — D)™ from H " to H'.
We define the linear differential operator A : D(A) = H3? — H! given by

A=eu*(I-B—-D) ' A2
We can rewrite the system (3.3) as follows:

drze+ Az =1 —-B—D)"F(z,2),
Zelt=0 — <0-

(3.4)

In order to show the existence of solutions to such a system, we use, like in [47], a semi-
group method. First, we show that —A generates an analytic semi-group on H! which
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is equivalent as A is sectorial on H!'. We decompose A as follows:
A=¢ep*(Id— B — D) ' A?
—ep* (Id— B) " A+ ep*(Id— B—D)"' D(Id— B)™' A?
=J+ R,
where

J=1Id+ep* (Id— B)' A2,
R=—Id+eu*(Id—B—D) "'D(Id— B) " A%

We first show that J is sectorial. We will see later that R satisfies properties that enable
to conclude that A is sectorial if J is sectorial. Taking p sufficiently small compared to
o, it is easy, arguing like we did to invert (I — B — D), to show that (I — B)™" is well
defined from H~! to H!. Consequently, the operator .J is well defined from H3 to H!.
We define now the bilinear form j on H? x H? associated to J. To this end, we introduce
a H'—scalar product which is adapted to J. We define

(1,0 2 = (1= ap2gAg ™) 1, ) 2 + e (Vut, Vo) 1o

If p is sufficiently small, (.,.),;: is a scalar product on H'. In particular, if u € H? and
v € H', one has

(u, )i = (I = B)u,v) 2.
Via this product, we define
J(u,v) = (u, ) g1 +ept (Au, Av).
In particular, if u € H? and v € H!, one has
J(u,v) = (Ju, v) -

The bilinear form j is obviously continuous on H? x H2 Furthermore, if y is small
enough, it is also coercive on H2. Indeed,

j(u,u) = Cla, p) llullz +ep | Aull7
> Cla, pye) [full e

Thus j is continuous and coercive on H? and consequently J is sectorial on H!, that is
equivalent to say that —.J generates an analytic semi-group on H!. Furthermore, we can
check that R is continuous from H? to H', and we have
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[Rull g < Clew, py€) [Jull 2 -
Using the coerciveness of j, we get, for all u € H?,

“RU’Hi]l < C(oz,,u,e)j(u,u)
< C(O./“LL,EE) <JU,U>H1 (35>
< CllJull g [l g

Applying the Young inequality, we obtain, for all § > 0
|]Ru||§{1 <4 ||Ju||§{1 +C ||u||§1,1 , for all u € H3.

From a classical result that we can find in the book of D. Henry [46], it implies that
J + R is sectorial on H1.

To achieve this proof, we check that A='F(x,v) is locally Lipschitz in v € H! on the
bounded sets of H2. According to [58, section 6.3] and [46, chapter 3], we finally get
Theorem 3.1.

O

4 Energy estimates

In this section, we perform energy estimates on the solution of (3.1) given by Theorem

3.1. We consider a fixed positive constant @ such that 0 < # < 2, which is the rate of

convergence of Theorem 2.1. Let T be a positive constant Whi(th will be made more
precise later and that we assume, without loss of generality, to be such that T"> 1. We
consider W, the divergence free vector field obtained from w. via the change of variables
(1.4). According to Theorem 5.1, there exists a maximal time 7. such that W, belongs to
C! ([ro,7) ,H'(4)) N C° ([70, 72) ,H?(4)), where 79 = In(T'). A short computation shows

that W, is the solution of the system

Oy (W. — ae TAW,) + ee AW, — L(W,) + curl (W, — ae "AW,) x U.)
+ae TAW, + ae‘T%VAWE =0, (A1)
div U, = div W, =0, '
WElT:T() - WO:
where we recall that

LW.) =W, + AW, + 5.VW..
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In this section, we obtain several energy estimates in various functions spaces. More
precisely, assuming that 7" is large enough and W, is small enough in H?(4), we show
that the solution of (4.1) stays bounded in time in those energy spaces and is consequently
global in time. In addition, we obtain the inequality (2.10) for W..

3
We define Q. = Zbifi> where b; = / pi(X).Wo(X)dX, and {fi, fo, f3} is the basis of
i=1 R3

the eigenspace of L associated to the eigenvalue —1, given by (2.1). The decomposition
(2.3) becomes
Wo(r) = e Qo + Ro(7). (4.2)

A short computation shows that R, satisfies the equality
Or (R. — ae™"AR.) + ce "A’R. — L(R.) + curl (W, — ae""AW.) x U.)

+ae "AR. + ae" "X VAR, 4 3ae 7 AQq + ce A = 0.
(4.3)
In this section, we assume that W, satisfies the condition (2.9) for some positive constant
~. Let M be a positive constant such that M > 2 which will be made more precise later.
We define 7 the largest positive time such that, for all 7 € [, 77),

W ()72 + IVWe(T) 72 + ae™™ AW (7).

2 4.4
+0426_2T|||X|4AW5(T)HiQ < M~y <;—9> , (4.4)

Since R. belongs to C° ([1o,77),H?(4)), the time 7 is well defined. The next lemma
gives two inequalities on VW, and R..

Lemma 4.1 Let R. € C°([r,72),H?(4)) satisfying the condition (4.4), there exists a
positive constant C such that, for all T € 19, TF),

2
ae T |[|X]F VWL(r)|[5, < CMy <g — 9> : (4.5)

Let R. = W, — e ™ Q. There exists a positive constant C' such that, for all T € |19, 7),

B + 1| Re(7) |22y + IV Re(7) 172 + e [|ARL(7)][

4.6
cate ||X[ RN < oMy (2 -0yt OO
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Proof: The proof of the inequality (4.5) comes from an integration by parts. In fact,
applying Holder inequalities, one has

H|X\4VW€||;:/ X [P VW2 dX.
R3
=— | | XPAW.W.dX —8 | |X|°X.VW..W.dX
R3 R3

= — [ | XPAW.W.AX +36 | |X|°(W.)*dX
R3 R3

3/4
L2

IW[%"

L2

< X" AW o T W] 36 1T

Due to the inequality (4.4), we obtain (4.5). To prove the inequality (4.6), we notice
that , for all i € {1, 2,3},

bl < / X [Wol dX
R2

. 1/2 12
<[ tmax) ([ xey e ox)
R2 (1+ |X]%) R2

< C[Woll 2y -

3

Thus, recalling that R, = W, —e™ 7 Zb" fi and taking into account (2.9), we obtain
i=1

(4.6).

For sake of simplicity, we will assume in this section that v < 1 and (% — 9) <1.

4.1 Estimates in H~*2)(R?)

In this section, we perform an estimate of R. in the space H~*2)(R3) on the time
interval 1y, 7). This operation is motivated by the H' estimate that we establish later.
Indeed, in the H! estimate, we obtain terms involving the L? norm of R. that we cannot
absorb directly. To overcome this problem, we look for an estimate in the homogeneous
Sobolev space H~(?+2) (R3). Combined with the next ones, it gives an estimate in the
classical Sobolev space H~*+2)(R3). To this end, we define, for s € R, the operator
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(—mﬂu:f<§g@,

where u is the Fourier transform of u, given by
e) = [ e *ula)ds,
R3

and F is the inverse Fourier transform.

In this section, given 0 < § < 3, we apply the linear operator (—A)_(gﬂ) to (4.3) and
then make the L%inner product of it with (—A)_(gﬂ) R.. We are allowed to consider
(—A)_(%H) R. by the lemma
Lemma 4.2 Let u € L*(4) such that / u(x)dx = 0.

R3

1. ]f/ ziu(x)dx = 0 for every i € {1,2,3}, then, for all0 < s < Z—i, (—A)Pu €
R3

L*(R3) and there exists a positive constant C such that

=)l < < el @)

2. For all 0 < s < % (=A)"Vu € L*(R®)® and there exists a positive constant C
such that

1(=2)7 V|, <

C
N [ull p23) (4.8)

Proof: Using Fourier variables, we get

—A)"u 22: — [a(¢))*d
d ul|7s .
o} /mq o [HOP e+ i

1 1
We note [ = 3 / s [0(€)|” d¢. Using the fact that (0) = / u(z)dz = 0 and
(2m)" Jigj<1 [€] R?

the Cauchy-Schwartz inequality on (0, 1), we have

1
@)’ /s<1 €1

1 N
< C/£|<1 i 2/ IVi(o€)|* dodé.

<

2

dg

/§Vua§da
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Then, due to the fact that 0;u(0) = z/ zju(z)de =0, we get

R2

1 1712
of gl
1€1<1 |€|4 ? 0 (z;

1 1
< C/5|<1|§|4%/0 /0 V2i(ro€)|* drdode.

Finally, the continuous injection of H?(R3) into L>(R?) gives

1
/ &;0;0;u(rof)dr
0

2
) dod§

1<
— T7—4s

C
7—4s
c >

2/\”2
V2l

2~]12
< ape

<

and thus the inequality (4.7) is shown.

To get (4.8), using Fourier variables, we have

TNl 2 p— / a2 de + [ull

— |u
o) ey 1672
2

1
/Og.va(sg)ds de + ||ul)?.

1 1
- (@2 /£|<1 "2

< 1 / 1
= (2n) Jig< 0

Using now Holder inequalities, the fact that 4s — 4 < 3 and the continuous injection of
H?(R?) into L>=(R3), we have

2
d¢ + ||ull3. .

[ vitsoas

s 2 1 1 -
lcayvul <o [ e P deds + Jul
o Jig=1 [€]

1 ~
<c ( / mdé) IVl + [l
el<t €]
C

<
— 7—4s

2 2
[l 2 sy + llullzz
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OJ

In order to apply the lemma 4.2 to the non linear terms of the equation (4.3), we state
the following lemma.

Lemma 4.3 Let w € H*(4) and u obtained from w via the Biot-Savart law (2.15). For
all C' € R, we have

/R ()~ Cdu(e)) % u(z)de =0 (4.9)

Proof: In order to show this equality, we just have to consider (2.8). An integration by
parts gives directly (4.3).

O

Lemma 4.4 Let u belongs to H*(4) and s such that 0 < s < %, then u satisfies the
equalities

1((=2)7 L), (~A) ") 1 = = [|(=2)5 ]

L2

R OR[Nt

2 ((=8)7 (3:VAw), (=2) " u) = (s+ 5) [|[(-2)F "y

2

This lemma is easily obtained with a few integrations by parts, when passing into Fourier
variables.

In this section, to simplify the notations, we note R instead of R., W instead of W,
and U instead of U.. We also note U, the divergence free vector field obtained from €
via the Biot-Savart law and K the divergence free vector field obtained from R via the
Biot-Savart law. We assume also, without loss of generality, that 7" is sufficiently large
so that ae™™ < 1, where we recall that 7y = log(7T"). We define the energy functional

2
7))
2

The next lemma gives a H~?*2) which is necessary to obtain a good rate of convergence
in the theorem 2.1. Actually, the space H~(*2) is chosen to get the rate of convergence

6.

Bor) = 3 (- G R + 0 -2y )

Lemma 4.5 Let W € C* ((19,7.),H'(4)) N C° ((0,7.) ,H3(4)) be the solution of (4.1).
There exist two positive constant vy and Ty such that, if T > Ty and W, satisfy the
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condition (4.4) for some ~y such that 0 < vy <y, then there ezists a positive constant C
such that

1 —(e82) 2
o0t 3 -2 ()
2 _or —4r
CMy ([IXI* B[, + IVRIG: + a2 | AR ) + CMye ™.

(4.10)

Proof: To prove this lemma, we apply the operator (—A)_<g+1) to (4.3) and make the

L?—inner product of it with (—A)_(gﬂ) R. Applying Lemma 4.4 and through some easy
computations, one has

_8 (H R ;+a€T (- ()R ;) teeT||(-A) 2R ;

(g i)l e (1 (5 o) oo O <
(4.11)

where

L = ((—A)f(%ﬂ) (curl (U x V (W — ae_TAW))) ’ (_A)*(gﬂ) R) ’

L2

_or (e (e
I = ((=2) 5 (can. —2a%0)  (-a) U R)
We start with the estimate of the easiest term, that is I,. Using Cauchy-Schwartz
inequality, we get
(—a)~ (1)

—27

I <ae™ (—A)_g Q

(—a)75 0

(—a)~(s+1) R‘

+ €e :
L2

Using Lemma 4.2 and taking into account the good regularity of 2., and the inequality
(4.6), one has

I <0 |Qullyag (-2 R|
—(5+1) 2 C’b‘
< p H 2 R‘ ot p 2 (4.12)
2 CMy(3-0
SMH(—A)—G“)R +C 7(2 ) e
L2 I

where 1 is a positive constant that will be made more precise later.
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It remains to bound I;. Using Cauchy-Schwartz inequality and the lemmas 4.3 and 4.2,
we obtain

1 <c|=a) B v @ x (W -acmam))|| -2 G R

L2 2
C -7 - g-l—l
SWnU(W—OZG AW)||L2(4)H(_A) ( )R 12
O —T — % 1
< G gy IV W = 0 aW g (27 G0 ],

The inequality (2.17) of the lemma 2.2 with p =2, ¢ = 6 and n = % and the continuous
injection of H'(R?) into L°(R?) yield

(8
I < WL WIS W = ae AW, |2 G R

L2

C
-0
2
C B i
< . N1/2 HVVHH1 HWHL2(4) + ae HAW“L2(4) (_A) (§+1) R
(3-0)"
g -
-2y ) R
C

M esry W1 + I9WI3) (I 2200y + 0% 1AW 2y )
2

L2
2
gyl

L2

We use now the decomposition (4.2) to get

I < MH(_A)—(%ﬂ) R 2

L2
c o
+ gy (IRI+ IVRIE) (Wl + e 1AW ()
2

CG—QT o
g (19llfe + 190 172) (I1RIE) + 0% [ ARIE2(q))
n(s—0)
Ce o Q|2 (190]? 2627 || AQ |12
+M(§——9)(H sollzz + Vs |lz2) (I sollzoiay + e | AL [I124y ) -
2
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Finally, using the inequalities (4.4) and (4.6) we get
2 N CM (% — 0) ye 4T
L K (4.13)

I, < MH(_A)—@“) R

CM~ (2—-0 o
++) <||RH%2(4) +||VR|[}: + a’e” ||AR||i2(4)> :
Combining (4.11), (4.12) and (4.13), it comes
2 2 2
-a (H )R L +aeT||(=a)” (") g )—l—ee |-t R

(e

_9_2“»“ (5 R 2

(4+3)oe) oo 59

3
2
+

{

CM~y(3-6 N CM (5 — ) et
= ;-9) (1RI200) + IV RIZ + e |ARI0) + ( ; )
(4.14)
3 _
We set 1 = 2——, and we obtain
1 2
0. Ey + 20Ey + H(_A)—(g%)R <
7 (4.15)

OM7 (1Bl + VRN + 02 [|AR Gy ) + CMre™.

Furthermore, using Fourier variables and Holder inequalities, we see that

||R||i2=% / ]%2

2(14-6) 2
2(1 /\ 2 1 -~ 216
< i T RO de
€] 72
1 I oys 2 N7 1 ol 2\ 70
< RO d R ‘ d
_(ﬂ) 2(21:99) 2+9
< |- IVRIE"

Using a convexity inequality, it is easy to see that
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2 1+9 i 2
sy (20 o,

forall 0 <n <1.

246
n

T910

IVRI:,

Via a short computation, using the fact that 0 < 6 < % and 0 < n < 1, one obtains

2

5 7]2 2
L + 5 HVRHL2 . (4.16)

< (—a) (%) R

IR] <

Applying (4.16) with n = 1 and taking v small enough, the inequality (4.15) becomes

+

8, Ey +20E, + ~ H (%)
e = 2 4 (4.17)
CMW(WX\R%P+HVRMy+ae‘WMRmﬂ®)+CMW€T.

IN

O

4.2 Estimates in H!(R3)

This section is devoted to the H' estimate of the solutions of (4.3) under the condition
(4.4). In particular, we see in this section that the previous estimate in H~(+%) enables
to absorb the terms involving the L?-norm of R. To obtain this H' estimate, we make
the L%-scalar product of (4.3) with R. We define the energy functional

Ei(r) = 5 (IRl7: +ae [VR[7.).

l\DI»—

The estimate of R in the Sobolev space H'(R3) is given by the next lemma.

Lemma 4.6 Let W € C' ((10,7.), H'(4)) N C° ((70,7) , H3(4)) be the solution of (4.1).
There exist two positive constants o and Ty such that, if T > Ty and W satisfy the
condition (4.4) for some ~y such that 0 < vy < 7, then there exists a positive constant C
such that, for all T € [19, 7)),

1 7 3 2
aa+ﬁa+5ﬂvm;gium;+0M%(§—®(e“
. 5 (4.18)
+CMW(§—9>(Ww;+%f€%HARﬁJ.
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Proof: We make the L?—scalar product of (4.3) with R. Integrating several times by
parts, we obtain

1 . a 1
20, (IRI2% + 0c™ IVRIZ) + AR + (1= 2 ) IVRIZ — TR = 1+ 1
(4.19)

where

I = (curl (Ux (W —ae TAW)),R);-,

I =e " (—alAQy — eA*Qu, R) 2 -

As usual, because of the good regularity of €., the easiest term to estimate is Is.
Integrating by parts, one has

I =e? (aVQy +eVAQ,, VR);..
Using Holder and Young inequalities and the inequality (4.6), we get

I < (a]|VQul 2+ IVAQ|l 1) IVRI| 2
< Cb(a+¢e)e ™ [|[VR]

4.20
My (-6, 20

9 C
<pu ||VR||L2 +

where 1 is a positive constant that will be made more precise later.

The last remaining term will be estimated by the same way, using the divergence free
property of U. Integrating by parts, we obtain

I = (U X (W — Oze_TAW) ,curl R)L2 .
We decompose I; as the sum of three terms
L= +1}+1},
where
If = (K x (W —ae TAW) , curl R)

L2

IF=eT (Voo X (R — oze_TAR) ,curl R)L2 ,

I} =e™ (Voo X (Qoo — oze_TAQOO) ,curl R)L2 .
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Holder inequalities lead to
L <C(IEW| 2 +ae ™ [KAW| 2) [VE] 2
< CNE| g (IWIl2 + e AW ]| 2) VR 2.
Applying the inequality (2.17) with p = 2, ¢ = 6 and n = % and using the continuous
injection of H'(R3) into L5(R?), one gets

I < CURNZ IR (Wl + ae™ |AW|,) [ VR]| 2

L2 L6
< ORI IR (IW 2+ ae™ AW 1) [IVRI| 2 -

Then, we use Young inequality and the inequality (4.4). We obtain

C o
Il < u||VR|7. + m (IW1[72 + o> |AW|3.) (|RI[7= + [V R][72)

CM~ (% - 6’)2

< || VR, + (IR + | VR]3.) -

Holder inequalities yield
12 < Ce™ [Vaellm (IBll 2 + ae™ | AR 2) IV

Applying the inequality (2.17) of the lemma 2.2 with p =2, ¢ = 6 and n = %, and the
inequality (4.6), we get
I < Ce [[Quoll 5 196617 (I1R]l 2 + e [|AR] 12) IV R 2
< Clble (IRl + ae™™ ARl ) IVR] 12
CMy (2 —0) .
< VR[5 + (M L (IRIE, + o™ |ARI)

It remains to estimate 7. By the same computations, we get

C
2 —4r 2 2 —27 2
I < ul VR + ¢ T Vaollzee (1920 l72 + @%e ™ [ AQG][72)

C 4. 2 _or 2
< p|IVRI: + ¢ 100l 2 1900l 6 (19200][72 + %™ [ AQ[72)

CM*? (5 - 6)"

e 47,

< || VR +
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In particular, we have shown that

CM22 (2 — 9)*
[1 S 3,U HVRH%z + 7 (2 ) 6747’

+C’M’y (% — 9)2 (

(4.21)
IR|[72 + [VR|7. + a®e " |AR||7.) .

Thus, due to the inequalities (4.20) and (4.21), the inequality (4.19) becomes

7 7 CM2~ (3 —9)?
0.Ey + 3E; + (1 4 Io‘ef) IVRIZ: < IR + /(j ) i

CM~y (3 —0)°

[NJ[oV)

+

(IRIZ= + VRl + a®e T |AR][L:) -
(4.22)

=

Taking vy and p small enough and 7" = €™ large enough, we obtain

1 7 3\’
0-Er +3Ey + 5 | VR < { |IRIZ + CMy (5 - 9) (IRI%, + a2 | AR|%,)
3 2
+CM?y <§ — 9> e .
(4.23)

O

Using the interpolation inequality (4.16), we get

1 s _T7/(5 (o) 12 n? 5
0-Fy + 3B + 5 | VR < | (W [ B ][+ v R

L 2
+0My (3= 0)° ([[-ar CE) R, + VAL + e ARYE
2

+CM?y <§ — 9> e

2
(4.24)
where 0 < n < 1.
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Taking n = \/% and ~ sufficiently small, we get

2

|
0rE+3Ey + 7 | VR < (385 +C M~y (— . 9) ) H (2)

L2
+OMyy (2 (H -(15%) RHL2 +aZe?r ||AR||§2) +OM?y (2 —0)% e,
(4.25)

Using the two energies Ejy and F;, we define
E2 == 6E0 + El'

Combining the inequalities (4.10) and (4.25) and setting + sufficiently small, we check
that
(e 2 1
OFy(r) + 20Ex(r) + || (-2 FV ||+ ZIVRIE, < w0
5 :
CMy ([[IXT* B[y + a2 ARG, ) + CM2e.

4.3 Estimates in H*(R?)

In this part, we perform an H? estimate for the solution R of (4.3) under the smallness
assumption (4.4). To this end, we make the L?—scalar product of (4.3) with —AR. We
define the functional

2 _r 2
Es(r) = 5 (IVEI[7> + ae T |AR]|7.) .
The next lemma gives an estimate in the space H?(R?).

Lemma 4.7 Let W € C* ((19,7.),H'(4)) N C° ((10,7.) ,H3(4)) be the solution of (4.1).
There exist two positive constants vy and Ty such that, if T > Ty and W satisfy the
condition (4.4) for some positive constant vy such that v < o, then there exists C > 0
such that, for all T € [19, 7)),

0, E3 + 3E5 + - ||AR||L2

3 2
< FIVRIE + 0ty (5 -0) (IRl + IVRIE:)

2
+COM?y (; — 9) e s
(4.27)
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Proof: The proof of Lemma 4.7 is made through the L?-scalar product of (4.3) with
—AR. First of all, we remark that

curl (W —ae TAW) xU) =UN (W —ae TAW) — (W — ae TAW) .VU.

Making some computations that we let to the reader involving integrations by parts and
the divergence free property of U, we obtain

3o 3
0 (IVRIE: + e IARIE)+ (1= e IARIE = JIVRIE+ 1+ fot F, (425)

where
L =(-UV(W —ae TAW),AR),.,
Iy =((W —ae "AW) .VU,AR),-,
Iy = e ¥ (aAQy + A’ Q0 AR) ;.

Like in the previous estimates, the easiest term is I3. Indeed, using Holder and Young
inequalities and the inequality (4.6), one has

Ig S 6_2T (CY ”AQOOHL? + € HAzgooHLz) ||ARHL2

CMy(3-0)°

4.29
<ularp+ SEZEL o (4:29)

where p is a positive constant which will be made more precise later.

We now look for an estimate of I;. We decompose it as follows:
L=L+1}+1},

where

If = (KV Qs —ac "AQ) ,AR)

L2

I} =e% (Voo V (o — e TAQ) ,AR)

I} = (UV (R—ae "AR),AR),,.
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Due to the smoothness of {2, and the inequality (2.17), we get

1< e 1K e (1V900ll 2 + ae™™ [VAQL | 2) |AR] .
< Clple RS RIS AR e -

L2 LS

The continuous injection of H'(R?) into L%(R3), Young inequality and the inequality
(4.6) yield

I} <Ol e[| Rl g AR 12
CMy (5 -6)°

< p| AR + e (| RIZ= + IVRIIZ2)

Doing the same computations, we get

OM*2 (2 - 6)"
I} < pl|AR|Z + —— G=0) e

The divergence free property of U and an integration by parts imply

I3 = (UVR,AR),..

Thus, using Holder and Young inequalities, the lemma 2.2 and the inequality (4.4), we
obtain,

I} < U]y VRl | AR 2
< C|WIE W IVR] 2 [AR]|
< Wy IVR| 2 AR

My (5 -6)°
L

C
< u||AR|fZ. + VR, .

Consequently, we have shown that

CM~ (2 = 0)°
I < 3u||AR|7. + 15 =0)

CM?9? (3-0)" _
(IRIZ. + IVR|%) + : ) e (430

It remains to estimate 5. We set
IL=1)+1I2,

where
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I} = — (W.VU,AR),,,

IZ = ae™ " (AW.VU,AR), .

Recalling that W = 772, + R and using Holder and Young inequalities and the in-
equality (2.18) with p = 4, one has

L < W5 VU 4 |AR]] 2
< OW5s AR .

C
< plI ARz + m Wl

C —4r
< ul|AR|7: + m (€™ 1 Qu0llzs + 1R 1) -

The condition (4.6) and the continuous injection of H*(R?) into L*(R3?) yield

Iy < pl|AR|;. +

CM272 (% _Q)4674T + g ||RH4 .
7 po

CM* (3-6)" . CMy(3-0)°
e

—4T

< pl ARz + (I1RIZ= + IV RI72) -

0

Using the inequality (2.17) with p =2, ¢ =6 and n = % and the continuous injection of
H'(R?) into L°(R?), we obtain

2 <ae ([|AR]| 2 + ¢ [AQ]l2) VU] [|AR]| 2
< Cae™™ (||AR|| 2 + e[| AQl) [VW L VWM AR .

L6
< Cac™ (AR + €7 1Al 2) VW W32 IAR] 2

We set § = M~y (3 — 0)2. Taking into account the inequalities (4.6) and (4.4), it comes,

I3 < C8Y2e™ T (AR . + 6% | AR
< 8% T ||AR|2, + Coe™ T AR,
7T

<C (51/26—'% + 5) IAR|2, + Coe™F

3 3 2 T
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Finally, we have shown,

CM~ (2 —0)*
TGO (R + IVRIE)

3
I, < (CM71/2 (5 — 0) + u) IAR|[3, + P
CM 0 _ T
oM (3-0)

Combining (4.28), (4.29), (4.30) and (4.31), one has
9a0 | 2 9 2 1/2 3 2

87E3+3E3+ 1—5M—Z€ HARHLQ S ZHVRHLQ"‘CM’}/ 5—9 ||ARHL2
CM*y (3 -6)" &

e 2.

CM~ (2 —6)
+ ;=) (IRl + IVRIZ:) +
Il f
(4.32)

We take vy and p small enough and T' = e™ large enough compared to o and obtain

2
I IVRIZ. + Aty (— _ e) (IRIZ. + IV RI%.)

0.E5 + 3E3 + = HAR”Lz <1
2
+CM?y (g — (9) e 5.

To achieve the H? estimate, we use Ey and E5 to define the functional
Ey=12F, + Ej.

Taking into account the two inequalities (4.26) and (4.27), we see that E, satisfies

_(p—1 2 3 1
0.E, + 20E, + 12 H(— (0-%) RHL2 + S IVRIZ: + 5 IARS: <

+OMy (BRI + VR + [IX]* R[5, + 0% |ARIZ ) + CMP e
(4.34)

Using again the interpolation inequality (4.16) and taking 7, small enough, this inequality

becomes

1 2
0: By +20B, +10||(-2) "V R + LIVRIL. + 1 IARIE: < (4.35)

C M~ H|X|4R||i2 + CM2’}/€_77T.
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4.4 Estimates in H?(4)

To finish the energy estimates, we have to work in weighted spaces. We can see
that the terms of the right hand side of the inequality (4.35) involve weighted L? norms
that we have to absorb. In order to perform estimates in weighted Lebesgue norms, and
additionally absorb the weighted terms of (4.35), we make the L?—inner product of (4.3)
with [X|® (R — ae""AR). One defines the energy functional

1
By = S [IIXI* (R = ac"AR)|},

The next lemma summarizes the terms provided by the linear part of (4.3), when making
the L?—scalar product with |X|° (R — ae "AR).

Lemma 4.8 Let u be a divergence free vector field of H*(4), a € R and F(u) =
|2[® (u — aAu). The five next equalities hold.

1.
(Au, F(u));. = 36 H|x|3qu2 - H|x!4 VuHi2 —a H|x|4 Au”i2 . (4.36)
2.
fVF)) =P, = 22 et vl + da |2 V)|, . (4.37)
(5 ) === [l ully. = = lllal* Va7, +da |[lof @ V)7, . 4
3.
7 4 2 5@ 4 2 4 2
(€ Pz = = ol = (1 28 ) 1ol Pl — a lol* dulf
+a |||z (2. Vu) ||, + 36 (1 — a) ||| .
(4.38)
/.
(A%, F(u)),, = |||z* Aul[;, - 16 u]x\SVuH;—96"2\3:]2(95.Vu)||; 2
+1512 H|x|2uHL2 +a H|x|4 VAUHL2 — 36a |||x\3AuHL2.
(4.39)
5.
T 13 2 11a 2
(398w F) , = el Tullz + = llef* A, (1.40)

+4 |2 (2. Vu) |5, — 180 ||| ul%,

69



Chapitre 3. Fluides de grade 2

Proof: Let us show the first equality. One has
2
(Au, F(u));. = Z \x! Au(z)u;(x)dr — a H|a€|4 AUHL2 :

Integrating twice by parts, we obtain

Z |x| Auy(x)u; f—H]x\ VuHL2 82/ x; |a:| Oju;(z)u;(x)dx

1]1

=ﬂmwM4Z/%ma () da

1,7=1

=~ [[la1" Zul[ s + 36 2" .

(4.41)
which gives the equality (4.36).
We now prove the equality (4.37), integrating by parts, one has
x xr 8
(—.Vu,F = - Z x] |z|® 9 (u; (z)) dx—a(—.Vu,\:d Au)
2 11 ! 2 L (4.42)
1

-7 H\wi ;. — e (§.w, ol Au)

We now have to compute the term of the right hand side of (4.42). Several integrations
by parts lead to

“32 [, et (Vo) d

2
1
- Z / ik |x\8 + 8xjxy, |:U|6) Oju;(z)Opu;(z)dx
k:

m»—

<§.Vu, |z|® Au) T

l\D

9
= H\xﬁquLQ — 4|2 (V)|
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Thus, going back to (4.42), we get (4.37). The equality (4.38) is now easy to obtain.
Indeed, one has

(‘C(u)7F(u))L2 = (U’?F(u))LQ + (AU, F(u))L2 —+ (E

5 Vu, F(u)>

L2

2
- H]a:|4uHL2 —a(u, jf* Au) .,

+ 36 |2 ul| . — [[|21* V). — al|l2)* Aul];,
11

n 9a‘
4 4

Ml ull; = = [l V|| + da |||z (2. V)|,

7 9
=~ let* = (145 ) Mol 9l = a if* Auf

+ 36 H\x|3uHiQ +4a H]x|3 (zchu)Hi2 —a (u, |33\8 Au)L2 .

Using the equality (4.41), we get (4.38). The equality (4.39) comes through the same
kind of computations. Integrating twice by parts, we have

3
(A%u, —|z° aAu) ,, = al||z|" VAuHiQ +4GZ/RS x;|2)° 8 (|Au(2)]?) da
=1

— al||e] VAU, — 36a]||* Au|, .

By the same way, we get

3
(A%, |2Pu),, = |Hx\4AuH; + 162/}1@ i |z|® Au(z)Oyu(z)da
=1

+ 72 /]R3 |2|° Au(z)u(x)dz.
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Integrating again by parts, it comes

3
(A%, |:1c|8u)L2 = H|x|4 AUH; -8 Z /R3 z; |z|° o, (|8]u(x)|2) dx — 16 HILL’|3 Vu”i2

1,j=1

3
— 96 ||« (2.Vw)|[;, — 72 |||2* V[, — 2162/ zi o)t 0 (u(x)?) do
R3

— [l Aul|;, — 16][|® V|, — 96 |[|2]* (2.Vw) || . + 1512 ||z u|| ;. -

Thus, we have
(A%, F(u))L2 = H|x|4‘AuHi2 — 16 H|x|3 VuH; — 96 H|x|2 (xVu)”i2
+ 1512 |2 |, + a ||| VAL, — 36a |||z Aul[, .
It remains to show the equality (4.40) of this lemma, integrating by parts, one has

<g.VAu, F(u))L2 = (g.VAu, |z[® u> T ?1<§.VAu, |z[® Au) L (4.4
= (g.VAu, |x|8u>L2 + Ta H|x|4AuHiz :

Another integration by parts yields

3
T 8 o _1 189 2
(Evaulefu) = 4;/R 2, |2* 8, (IVu(@)?) de

L2

_% > /Rg O (25 |2]*) 0jOhui (2 )us(z)de

i,5,k=1

11
= 7 [llal* v,

3
1
2 Z / (&5 |2 + 8y |2]°) 80k us(w)us(x)da.
R3

1,5,k=1

3
- % 2] Va7, - %;/Rg 2f® () ug(2)d

3
—4 Z / ;x| 2|° 9;0u; (2)u; () d.
R3

i k=1
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The equality (4.41) shows that

1
- Z |x| Au;(z)u;(x)de = 3 H|x|4 VUH; —18 H|9U|3uHi2 :
Thus, we get

T 13 2 2
(5w lelu) = z|||$|4VUHL2 — 18 o

_4 Z / zjzy, [2|° 0;0ku;(z)u; (x)d

i,j,k=1

Integrating one more time by parts, one has
—4 Z / x| 2|° 0;00u; (x)u; () de = 4 H|.CE| z.Vu) HL2

i,5,k=1
+18Z/x3|x|6’ x)) da

— 4laf® (@.V )|}, — 162 |2 u]f3.
and consequently
(5980 fef*u) , = et Fullye-+ 4 lof” @90, — 150 o ]
Going back to (4.43), we get

(g.vm Flu )) -

L2
13 11
— et V| + 4 [l2f @V ) [, = 180 [[lef ||y, + == [[laf* Aulfy,

The next lemma enables us to close the H?(4) estimate.
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Lemma 4.9 Let W € C* ((10,7.),H' (4)) N C° ((0,7.) ,H3(4)) be the solution of (4.1).
There exist two positive constants vy and Ty such that, if T > Ty and W satisfy the
condition (4.4) for some positive constant such that v < g, then there exist C > 0 such
that, for all T € [19, 7)),

1 2
0-B5 + 3E5 + — || X" RI[,. + (%e—T + O‘Ze—%) [IX]* AR|[2, < K1 |R|%
2

3\ 3
+OM (5 -0) " (IRIS: + IV RIS + IARIE) + Chy (5 -0) e

(4.44)
where K7 is a positive constant independent of the parameters.

Proof: To obtain the inequality 4.44 of this lemma, we perform the L?—inner product
of (4.3) with |X|® (R — ae""AR). We deliberately omit the positive terms provided by
eA?WW which do not play any role in the next estimates. Using Lemma (4.8) and making
some easy computations, one obtains

1 7 7
300 (11" (R = aeam) 1) + X1 R, + (14 e ) 11V,

7 2
(e ) o1t R - 08ae 1P AL =

36 |[|XP R+ L+ I+ Iy + L,
(4.45)
where
L = (-UV (W —ae "AW),|X|* (R — ae""AR))

L27

L= ((W—ae"AW).VU,|X|* (R — ac""AR)) ., ,
Iy = (—ee A2 — ae 7 AQy, | X[° (R — ae"AR)) ,, ,

I = e (16 [[|XI° VR|[}. + 96 [[|X P (X.VR)|[;. + 36ae || X]° AR|}. ).
In the proof of this lemma, we use the notation

§=My(2-6)".
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As usual, I3 is the easiest term to estimate. Indeed, due to the smoothness of 2., and
the inequality (4.6), we get

Iy < O X (0090 + 820 s (1] B, + e~ (X1 AR )

C'[b
< p||[XIR|[, + pa2e ™ |[|X[* AR, + LI i .
My (2 - 0)°
< p|IX[* R||%, + paPe ||| X|* AR|[., + C My (: ) i

where g is a positive constant that will be made more precise later.

We now give an estimate of I, which is also quite simple to bound. We just need
Holder and Young inequalities to estimate this term in a convenient way. Indeed, using
convexity inequalities, it is simple to show that

[IXPVR|., + |IX(X.VR)|.. < C||IX|*VR|,, + C|VR|?,
and
ae ™ |[|XPAR||S, < Cae ||| X[* AR||}, + Cae™ |AR|% .

Thus, if we take ¢ < aM~ (% — 9)2, we get

1, < CMy (3= 0)" (ae™ [[IX* VR, + a2 > ||| X| AR}, )

+OMy (2 = 60) (ae™ |VR|2, + a2 |AR|%) .
(4.47)
As for the H? estimate, we have to study separately I; and I,. We begin with I;, that
we rewrite

L=1+1}+1I},
where
Il = (UV (R —ae"AR) ,|X|* (R — ae"AR))

L27

I} = (Voo.V (Qo — ae TAQ) , | X[° (R — ae "AR)) ., ,

I =e¢ (K.V Q0 — ae "AQ) , |X[° (R — ae"AR)),, .
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Using an integration by parts and Holder inequalities, one has

/]X\ U(X).V (|R(X) = ac"AR(X)[*) dX

— 4 /Rd X[ (X.U(X)) |R(X) — ac " AR(X)|” dX

The inequalities (2.17) with p = 2, ¢ = 6 and = § and (4.4) and the continuous
injection of H'(R?) into L5(R?) give,

S C”UHLoo <H’X|7/2 RH +O{2€72T |X‘7/2

1< CIWIEIWILE (IR + [1X1 RIS, + o*e™ ARG + o [IX]* AR],)
< CIW I (IBIZ: + [1XT B[, + a2e > AR + o2 ||| X[* AR]}, )
< a2 (2 6) (IR + 11" 7],

+ o2 |ARIE + % ||[X[ AR|L ).

Because of the smoothness of Q,, I? is a little easier to estimate. Indeed using once
more the inequalities (2.17) and (4.6) and Holder and Young inequalities, we get

I} < Ce™ |Vaoll e ([|1X]* V2 +oae " [[|X]T VAQ|,.)
(X" Rl » + ae T [[|IX[* AR]| )
< O[] e (|20l 120013 ([1X1* R| o + 0™ [|[|X]* AR )

< Clole” ([[|IXI" Rl o + e [[|IX|" AR]| )

CM~y (3 —0)?
< ul||IX[* B[, + pote ||| X|* AR, + ﬂ,f )

ol 12
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Likewise, we get

13 < Ce | K| ([IXT* Bl| . + 0 [|IX] AR )
< Ce | Rl (IIXI" R 12 + ae T [[|X[* AR )

3
< a2 (5 0) (IRIE + IVAIE: + 11 RIE, + e X1 AR|,)

70

Finally, taking 7" so that ae™ < 1, we have

NI

2

CM~y (36
L < ul[|XI"R|[ . + pae™™ ||| X" AR|[, + 7(: ) i

3 4.4
rOM (£ 0) (VRIS + IV RIS+ IARIES (4.48)

+{IX1 R + ae [[IX1 AR|[S. )
It remains to bound I, which is the hardest term to estimate. Like for I;, we rewrite it
L=0L+ 12+ 13+1;,
where

I=e7"((R—ae "AR).VV, |X|* (R — ae "AR))

L27

I3 = ((R—ae"AR) .VK,|X|* (R — ae "AR))

L2

I =e ((Q — aeTAQ) .VVi, | X [P (R — ae "AR))

I = e (U — ae"AQy) VK, |X|* (R — ae""AR)),, .
Using the inequality (2.17) and the smoothness of Q... we get
13 < O Wil o (1X1° BI|L. + a7 [ 1X] AR, )
< Ce V2 IVl (11" B3, + %> (|11 AR],)
< C| ([IX1* RIS + e [[1X1* AR];.)

<onres (3 0) (X1 Bl + o 1t arl).
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We now estimate I3. We recall the notation § = M~y (% - 9)2. Using again the inequality
(2.17), the inequality (4.6) and the continuous injection of H'(R?) into L°(R?), one has

B < VKl ([IX1 B[S, + a2 [IXI AR],)
< CIVRIZ IR (II1X1* RIS, + afe || 1XT* AR,
< CoVVRILE ([1X1* R, + a2e ™ [[1XT* AR
< 002 ([IIXI* B[, + % [|lx[" AR||.)
+ Ca AR (1) BRI, + o [1XT* AR|T)
< 082 (|1X1" R + 0% IXT* AR + €8 AR [I1XI* B

+ 08 20T T ||X I AR, .

To finish the estimate of 2, we use the convexity inequality ab < %a% + ib‘l and the
condition (4.6). We obtain

13 < oM (|[IX)" R, + a2e ™ [[IXT* AR| L. ) + oV (IARIE. + [1XI* RIS )
+ 051/2017/46_% |X|4 ARH;

< 052 (|1X1" R + a2 [IXI AR|L.) + 08 |ARIE, + 0572 X AL,

+ O80T T ||X AR,

Consequently, if we assume v < 1 and (% — 9) < 1, one has

1/2
B onent (30) " (IR + IARES e |11 AR,

It it easier bound I3. Indeed, the inequality (2.18) and the inequality (4.6) imply
I3 < Ce™™ ||Qu — ae T AQuo| oo [V Violl 2 (J|IX[* B[, + ce™™ ||| X[" AR]|,.)
< O™ [ Quoll 2 ([1XT° Bl| 2 + e [IXT" AR )
< Clel e ([IXI R 4+ e [IXI"AR] )

4 pll? 2,2 4 2 (%_1)2 4
< p[IX[* R|| . + paPe ™ ||| X" AR][, + e
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Likewise, it comes

I} < Ce || — ae T AQu]| o IVK |2 (J[IXT R . + e ||IX[" AR]|,,)
< Cple IRl ([1X1° Rl + ae™ [[IX] AR )

3 2
< OMy (5 - 1) (I + [[1XT* R, + 0% |11 AR][,)

Thus, taking Tp large enough so that ae™™ = Z < 1, the following inequality holds:

4 CM’Y (g B 1)26—47'
3 1/2 : 2 2
FOMA (é - 1) (IRIG: + AR + [|1XI* B[}, +ae™ [1X1 ARl

(4.49)
Combining the equality (4.45) together with the inequalities (4.46), (4.47), (4.48) and
(4.49) and taking Tj big enough compared to «, we have

L < ([IX1 RIS + ae™ [|1XT* AL

1 7 7
S0 ([1X1 (B = aeAR)|.) + 7 [I1XI" Bl + (1 + 7) X1 V|,

7 2
(e T ot s, - 05 P A <

3 1/2
C (M71/4 (5 — e) + u) (nyy‘*RH; +ae || X[*VR|, + ae T H\XﬁARH;)

f 3 1/2
+30]|IXI" R, + €Y (3 -6)  (IRIE + IVRIE: + |ARTE)
2
OG-0,
]

(4.50)
Integrating by parts like in the proof of Lemma 4.8, we have

1 2
By = 1K1 RI + Sre X1 AR + e ™| X1 VR, = 360e ™ 1XP R,
(4.51)
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Consequently, the inequality (4.50) becomes

055 + 385+ ¢ [1XI' RI[5. + (14 5e7) X1 VA,

2
# (aem 4 Ze) X1 AR, <
CM1/43 6’1/2 4 2 —r 4 2 _r 4A 2
(5 =0) ) (X1 Bl + ae [IXI VR, +ae ™ [[1X]* AR )

3 1/2
36 || X[° B[, + Oy (5 - 9) (IRI1%> + I VR + [ ARIT)

LMy (-0
1
(4.52)
Thus, taking vy and g small enough, we obtain
2
0, E5 + 3E; + é 1X1* B2, + (%e + %e—%) [1X[* AR|[Z, < 36 ||| X ||,

3 1/2 3 2 B
+CMAM* (5 - 9) (IRIZ2 + IV R 72 + [|ARI[:) + C My (5 - 9) e

(4.53)
Using Hélder and the convexity inequality ab < }la‘l + %b%, a simple computation leads
to

3 4/3 1
[1XP° Rl < == X1 Rl + 45 RIS
for all u > 0.

Using this inequality with p small enough, we finally obtain

2
0, E5 + 35 + % [IX1 R + (56 + O‘Ze%) [IX]" AR|%, < Ky ||R|1%
+OMAMYA (2= 0) 2 (JIR|Z, + | VRIZ + |AR|%) + CMy (3 — )% e,

(4.54)
where K is a positive constant.
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OJ

This lemma, combined with the inequality (4.35) enables to finish the H?(4) estimate of
R. We define the functional
Es = KE, + Es, (4.55)

with K some large positive constant that will be made more precise later.
Inequalities (4.35) and (4.44) show that one has

_(p_1 2 K K
0, g + 20Eg + 10K H(—A) (6-3) RHL2 + 5 IVRIZ: + 7 IAR]G

042

Lo |11 AR| <

1 4 2
F xR, +
2 T
Ky IRIE: + 00 (R + [VRIE + |ARIE + I1X] B}, ) + €M%,

1 2
Interpolating again ||R||%, between H(—A)f(efz) RH , and VR, and taking K and
L

7o respectively sufficiently large and small, we get

8, Eg + 20Eg < CM?vye™ 7 | (4.56)

5 Proof of Theorem 2.1

5.1 Theorem 2.1 for approximate solutions

In this section, under the condition (2.9), we show that the solutions of (4.1) are
actually global in time and that the inequality (2.10) of Theorem 2.1 holds for these
solutions. To get this result, we take advantage of the energy estimates that we have
obtained in the section 4. The following theorem is a copy of Theorem 2.1 for solutions
of the regularized system (4.1).

Theorem 5.1 Let 6 be a fized positive constant such that 0 < 0 < 3, ¢ be a positive

27
constant and Wy € H?(4). There exist three positive constants vy = Yo(), € = go(a) and
T = To(«) such that if T > Ty, € < g9 and there exists a positive constant v < 7o such

that Wy € H?(4) satisfies the condition
o o 2 3 2
Wl + IVWalls + ac™™ AWl + o |IxI' W[5, <4 (3 -6) . 6.
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where 19 = log(T),

then there exist a unique solution W, € C* (19, +00) , H*(4)) N C° ((10, +00) ,H*(4)) to
the system (4.1) and a positive constant C' = C(«,~,0, 1) such that, for all T > T,

(Id — oze_TA) (Wg(T) —e 7 Z bzfz>

< Ce ™, (5.2)

L%(4)
where b; —/ pi(X) Wo(X)dX.
R3

In order to prove this theorem, we use the energy estimates that we established in
the section 4. To obtain the inequality (5.2), we need the energy functional Fg to be
equivalent to the H?(4)-norm of R.. If we take K large enough in the definition (4.55)
of Fg, then the next lemma holds.

Lemma 5.1 Let R. € C* ((19, +00),H'(4))NC° ((19, +00) ,H*(4)) and Eg be the energy
functional defined by (4.55). There exists Ky such that, if K > Ky, then there exists a
positive constant C' such that

s oy 2
Bo(7) < C (I RellZagey + IV RIS + e AR + a2 [IX[' AR, ). (5:3)

r _or 2
C (IRelagsy + IV R + ae AR + % > [|X* AR 1)) < Bolr). (54)

Proof: The inequalities (5.3) and (5.4) come directly from the definition of Eg and the
interpolation inequality (4.16).

O

Proof of theorem 5.1: Let 0 be a fixed constant such that 0 < 6 < % and

W. € C' (7, +00) ,H'(4)) N C° ((79, +00) ,H3(4)) be the solution of the system (4.1)
given by theorem 3.1. Let T"and K be sufficiently large so that they satisfy the conditions
of the lemmas 4.5, 4.6, 4.7 and 4.9 and assume that the initial data W, satisfy the
condition (2.9) for some v > 0 which will be made more precise later. We decompose
W, such that

Wz—: = e_TQoo + R€7
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3
where Q. = Zbifi, by = / pi(X) Wo(X)dX and {fi, f2, f3} is the basis of the
i=1 R3

eigenspace of £ associated to the eigenvalue —1, given by (2.1).

Let M be a positive constant such that M > 2 that will be made more precise later and
T € [19, 7] be the biggest positive time such that the inequality (4.4) holds. We take =y
and e sufficiently small and T sufficiently large so that the lemmas 4.5, 4.6, 4.7 and 4.9
hold. According to the inequality (4.55), one has, for all 7 € [r, 7),

0, (E¢(1)e™) < CM*ye (G-20) (5.5)
Integrating in time the previous inequality between 7y and 7 € [ry, 7)), we get
Eo(r) < Bo(ro)e ™) 4 CMPe™ 5" (72007 — =3 (5.6)

Arguing like in the proof of Lemma 4.1 and using the inequality (5.3), we can show that

3 2
E6<7—0) S Cl’)/ (5 — 0) y

which implies
2
Eg(1) < Cv (; - 9) + CM%@J%. (5.7)
According to the inequalities (5.4) and (4.6), one has, for all 7 € [y, 77),

b + | Rell 720y + VRN + ae7 AR, + aPe™™ H|x;|4ARe||2 <
3 T
Cy (5 - 9) O M2ye 3"

3
Recalling that W, = Z bifi + R., we get

=1
—r _or 2
IWellFo ) + VW72 + e |JAWL][72 + o™ ||| X[* AWL||” <
2
7T

3 0
Cyy (5 - 9) + CoM?ye 2,
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where C; and Cy are two positive constants.

We take M sufficiently large so that C; < 2L and 75 = In(T') sufficiently large so that

2
opre < MG

1 , we obtain, for all T € [r, 7¥),

2
IWellZagq + IVWell72 + ae™ AW + %™ [[|I X" AWL]|" < (5-8)

My (5 -0)°

5 :
In particular, the inequality (5.8) shows that 7 = 7.. Furthermore, letting 7 tend to 7.,
we see that if 7. is finite, then the H'(4) norm of W, stay bounded on [r,7.). According
to the proof of Theorem 3.1, it implies in particular that one can extend the interval of
definition of W, over 7.. Consequently, we have necessarily 7. = +o00. In addition, going
back to the inequality (5.6) and applying the inequality (5.4) of Lemma 5.1, we see that
the inequality (5.2) holds.

O

5.2 Existence of solutions in H?(4)

In this section, we show that there exists a weak solution to the system (1.5) belonging
to the space C° (|7, +00),H?(4)). To this end, we show that, when ¢ tends to 0, W,
tends to a divergence free vector W which satsifies (1.5) in a weak sense. Let (&,),cy
be a sequence of positive terms which tends to 0. Let W., € C'((r,+00),H'(4)) N
C° ((79, +00) ,H3(4)) be the global solution of (4.1) given by Theorem 5.1, with initial
data Wy. Let O be a bounded open set of R®. For s € R*, H*(O) denotes the restriction
of the Sobolev space H*(R?) on O. For s > 1, we define also the space

HS(O) = {U S HS(O) : U|3O:0} .
Let 11 be a fixed positive time such that 71 > 7. Due to the boundedness property of W,
in L> ([ro, 1], H?(4)) uniformly with respect to n, there exist W € L* (1o, 7], H?(4))
and a subsequence of €, (that we still note €,,) such that

W., =W weak*in L* ([ro,n],H*(0)%). (5.9)

Since W, is bounded in L™ (7o, 71] , H?(4)), applying the operator (Id — Oze_TA)_l to the
first equality of (4.1), it is quite easy to see that 0, W, is bounded in L* ([ry, T|, L*(O)?)
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uniformly with respect to n. Consequently, W is equicontinuous in time on L?(0)3.

Indeed, given oy and oy belonging to [y, 71|, one has

[Wer(02) — Wer (02) 30y = \

/ oW, (s)ds

L*(0)

o1
<[ 10 (9o s

2

S lov = oof max [10:-We, (3)ll12(0)

Besides, for all 7 € [7, 1], the set |J W, (7) is bounded in H?(0)? and thus compact
neN
in L?(0)3. Applying the classical Arzela-Ascoli theorem, we conclude that

W., — W strongly in C ([ro, 7], L*(O)?).
A classical interpolation inequality between L? and H? yields, for all s < 2,
W., — W strongly in  C° ([ro, 7], H*(0)?) . (5.10)

The two identities (5.9) and (5.10) are sufficient to pass to the limit in the weak formu-
lation of the system (4.1) and to show that W is a weak solution of the system (1.5).
More precisely, for every ¢ € C' ([rg,71], H}(O)?) such that div ¢ = 0, one has, for all
T € [19,T1),

/O (W(r) — ae " AW (7)) p(r)dX + / /0 E(W(J))gp(o)dXda
_|_/TT /O Ulo) x (W(o) — ae AW (0)) curl (0)dX do
= /@ (Wo — ae” AW, ¢(10)dX + /TOT/O (W(o) — ae" AW (0)) 0-¢(0)dX do

) / 037%0 AW (0)p(0)dX do + / /O ST AW (0) (X V(o)) dX do
(5.11)

70
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We just show that the non-linear term converges, using (5.9) and (5.10). The other ones
are nearly obvious. We have

/ / ol (0) — ae 7AW, (0)) curl p(0)dX do =

/ / (0) — ae " AW () curl p(c)dXdo + Ry + S,

(5.12)
where

R, — / ' /O (U(0) — U, (0)) x (We (o) — ac " AW, (o)) cwrl p(0)dX do,

Sy = /T /O U(o) x (W(o) = W.,(0) — ae™® (AW (o) — AW, (0))) curl (0)dX do.

Due to Holder inequalities, the boundedness property of W, in H*(0)?3 and the inequal-
ity (2.17), we have

R,<C / 1U(@) = Unr(0) | 0 IV () | 120
<C / W (o sn<o>uzéio> W (o) = We, ()l ooy V0(0) ] 120y do

T = 7) s [W(o) = We, (0) o, max [Ve(0) o)
Thus, the identity (5.10) implies that R,, — 0 when n — +o0.

Because of the identity (5.9), it is clear that we have also S,, — 0 when n — +o0. Thus,
we have shown that, for all 7 € [r, 7],

nl—i>rfoo /TOT /o U, (o) x (Wgn(0-> — ae_”AWEn(a)) curl p(0)dXdo =
/T/OU(U) X (W(U) — ae"’AW(U)) curl p(o)dXdo.

(5.13)
Furthermore, since W, (7) converge weakly to W () in H?(4), from the inequality (5.2),

we get
3
(I —ae74) (W(T) —eTy bifi)

< Ce ™, (5.14)

L2(4)
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for all 7 € [r, +00).

Uniqueness

It remains to show that the solutions of (1.2) are unique in the space C° (R, H?(4)).
To show this fact, it suffices to show that the divergence free vector field u obtained
from a solution w of (1.2) through the Biot-Savart law is unique. Since w belongs to
CY(R*,H?(4)), the inequality (2.16) with ¢ = 2 and p = ¢ and the inequality (2.18)
with p = 2 of the lemma 2.2 imply directly that v € C°(R*, H*(R?)3). Furthermore,
u satisfies the equations of motion of second grade fluids (1.1). The uniqueness of the
H3—solutions of (1.1) has been shown in [18] for the case of a bounded open set of R?
with Dirichlet boundary conditions. In our case, we can apply the computations of the
proof of [19, Theorem 2], which imply the uniqueness of the solutions of (1.1) with initial
data in H3(R?)3.
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Chapitre 4

Fluides de grade 3

I. Asymptotic profiles for the third
grade fluids equations on R?

1 Introduction

The study of the behaviour of the non-Newtonian fluids is a significant topic of re-
search in mathematics, but also in physics or biology. Indeed, these fluids, the behaviour
of which cannot be described with the classical Navier-Stokes equations, are found ev-
erywhere in the nature. For examples, blood, wet sand or certain kind of oils used in
industry are non-Newtonian fluids. In this paper, we investigate the behaviour of a par-
ticular class of non-Newtonian fluids that is the third grade fluids, which are a particular
case to the Rivlin-Ericksen fluids (see [59], [62]). The constitutive law of such fluids is
defined through the Rivlin-Ericksen tensors, given recursively by

Ay = Vu+ (Vu)',
A = 0iAk1 +u. VA + (Vu)t Ap_1 + A1V,

where u is a divergence free vector field of R? or R3 which represents the velocity of the
fluid. The most famous example of a Rivlin-Ericksen fluid is the class of the Newtonian
fluids, which are modelized through the stress tensor

o= —pld+vAy,
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where v > 0 is the kinematic viscosity and p is the pressure which depends on u. Intro-
duced into the equations of conservation of momentum, this stress tensor leads to the
well known Navier-Stokes equations.

In this article, we consider a larger class of fluids, for which the stress tensor is not linear
in the Rivlin-Ericksen tensors, but a polynomial function of degree 3. As introduced by
Fosdick and Rajagopal in [31], the stress tensor that we consider is defined by

o = —pld+ vA; + aq Ay + as A2 + B | A1) Ay,

where v > 0 is the kinematic viscosity, p is the pressure, a; > 0, s € R and 3 > 0.

We assume in this article that the density of the fluid is constant in space and time and
equals to 1. Actually, the value of the density is not significant, since we can replace
the parameters v, aq, as and 8 by dividing them by the density. Introduced into the
equations of conservation of momentum, the tensor o leads to the system

O (u — a1 Au) — vAu + curl (u — oqAu) Au

— (a1 + ap) (A.-Au+ 2div (LLY)) — Bdiv (JA]* A) + Vp =0, (1.1)
divu =0, ’
Ujt=0 = Up,

where L = Vu, A(u) = Vu+ (Vu)" and A denotes the classical vectorial product on R,
d

For matrices A, B € M4(R), we define A : B = Z A;;B;; and |[A]” = A . A If the
ij=1

space dimension is 2, we use the convention u = (u1, us, 0) and curl u = (0, 0, Oyus—Jauy ).

Notice also that if a; + as = 0 and = 0, we recover the equations of fluids of grade 2,

which is another class of non-Newtonian fluids, introduced earlier by Dunn and Fosdick

in 1974 (see [24], [35] or [19]). If in addition a3 = 0, then one recovers the classical

Navier-Stokes equations.

The system of equations (1.1) has been studied in various cases, on bounded domains
of R? or R? or in the whole space R? or R? (see [1], [5], [9], [10], [11] and [55]). On a
bounded domain 2 of R d = 2,3, with Dirichlet boundary conditions, Amrouche and
Cioranescu have shown the existence of local solutions to (1.1) when the initial data
belong to the Sobolev space H3(Q)? (see [1]). In addition, these solutions are unique.
For this study, the authors have assumed the restriction

a1 + as| < (2408)",
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which is justified by thermodynamics considerations. The proof of their result is obtained
using a Galerkin method with functions belonging to the eigenspaces of the operator
curl (Id — ayA). In dimension 3, a slightly different method has been applied by D.
Bresch and J. Lemoine, who used Schauder’s fixed point Theorem to extend the result of
[1] to the case of initial data belonging to the Sobolev space W27 (Q)3. They have shown
in [9] the local existence of unique solutions of (1.1) in the space C°([0,T], W*"(Q)?),
where 7' > 0. In addition, if the data are small enough in the space W27 ()3, the solu-
tions are global in time. Notice also that the existence of such solutions holds without
restrictions on the parameters of the system (1.1).

In the case of third grade fluids filling the whole space R?, d = 2,3 , Busuioc and If-
timie established the existence of global solutions with initial data belonging to H?(R%),
without restrictions on the parameters or on the size of the data (see [10]). In this study,
the authors used a Friedrichs method and performed a priori estimates in H? which allow
to show the existence of solutions of (1.1) in the space Ljs, (R, H*(R?)?). Besides, these
solutions are unique if d = 2. Later, Paicu extended the results of [10] to the case of
initial data belonging to H'(R?)¢, assuming additional restrictions on the parameters of
the equation ; the uniqueness is not known in this space (see [55]). The method that he
used is slightly different from the one used in [10]. Indeed, although Paicu also consid-
ered a Friedrichs scheme, the convergence of the approximate solutions to a solution of
(1.1) is done via a monotonicity method. Notice that Theorem 1.1 of this article shows
the existence of solutions of the equations of third grade fluids on R? for initial data in
weighted Sobolev spaces (see Section 3).

In what follows, we consider a third grade fluid filling the whole space R%. Actually,
the equations that we consider are not exactly the system (1.1) but the one satisfied by
w = curlu = dyus — Osuq. In dimension 2, the vorticity equations of the third garde
fluids are given by

O (w — agAw) — vAw + u.V (w — a1 Aw)
. 2 . 2
' —Bdiv (|A]* Vw) — Bdiv (V (JA]") A A) =0, (1.2)
divu =0,

Wy—o = wo = curl ug.

Notice that the parameter s does no longer appear in (1.2) and thus does not play any
role in the study of these equations. Indeed, due to the divergence free property of wu,
a short computation shows that  curl (A.Au + 2div (LL")) = 0, or equivalently there
exists ¢ such that A.Au + 2div (LL') = Vgq. This phenomenon is very particular to the
dimension 2 and does not occur in dimension 3. Notice also that the previous system
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is autonomous in w. Indeed, the vector field u depends on w and can be recovered
from w via the Biot-Savart law, which is a way to get a divergence free vector field such
that curl v = w. The motivation for considering the vorticity equations instead of the
equations of motion comes from the fact that, due to spectral reasons, we have to study
the behaviour of the solutions of (1.2) in weighted Lebesgue spaces. Unfortunately, these
functions spaces are not suitable for the equations of motions and are not preserved by
the system (1.1).

In this article, we establish the existence and uniqueness of solutions of (1.2) in
weighted Sobolev spaces, but the main aim is the study of the asymptotic behaviour of
these solutions when t goes to infinity. More precisely, we want to describe the first order
asymptotic profiles of the solutions of (1.2). We consider a fluid of third grade which fills
R? without forcing term applied to it. In this case, as it is expected, the solutions of (1.2)
tend to 0 as t goes to infinity. Our motivation is to show that these solutions behave
like those of the Navier-Stokes equations. In our case, we will show that the solutions of
(1.2) behave asymptotically like solutions of the heat equations, up to a constant that
we can compute from the initial data. The methods that we use in the present paper are
based on scaled variables and energy estimates in several functions spaces. This work is
inspired by several older results obtained for other fluid mechanics equations. The first
and second order asymptotic profiles have been described for the Navier-Stokes equations
in dimensions 2 and 3 by Gallay and Wayne (see[36], [37], [38] and [39]). In dimension 2,
they have shown in [36] and [38] that the first order asymptotic profiles of Navier-Stokes
equations are given up to a constant by a smooth Gaussian function called the Oseen
vortex sheet. More precisely, for a solution w of the vorticity Navier-Stokes equations
(that is the system 1.2 with oy = 8 = 0), for every 2 < p < 400, the following property

holds:
o= ()

= (’)(f%ﬁ), when ¢ — +00,

Lp
where G is the Oseen vortex sheet
Gla) = e (1.3)
47 ' ’

The methods that they used in [36] are very different from the ones that we develop
in this article. Although they also considered scaled variables, the convergence to the
asymptotic profiles is not obtained through energy estimates. Indeed, using dynamical
systems arguments, they established the existence of a finite-dimensional manifold which
is locally invariant by the semiflow associated to the Navier-Stokes equations. Then, they
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showed that, under restrictions on the size of the data, the solutions of the Navier-Stokes
equations behave asymptotically like solutions on this invariant manifold. The descrip-
tion of the asymptotic profiles is thus obtained by the description of the dynamics of the
Navier-Stokes equations on the invariant manifold. Later, the smallness assumption on
the data has been removed (see [38]). In [47], Jaffal-Mourtada describes the first order
asymptotics of second grade fluids, under smallness assumptions on the initial data in
weighted Sobolev spaces. She has shown that the solutions of the second grade fluids
equations converge also to the Oseen vortex sheet. In this paper, we apply the meth-
ods used by Jaffal-Mourtada, namely scaled variables and energy estimates. According
to these results, one can say that the fluids of second grade behave asymptotically like
Newtonian fluids. In this paper, we show that, under the same smallness assumptions
on the initial data, the same behaviour occurs for third grade fluids equations. We em-
phasize that the rate of convergence that we obtain is better than the one obtained in
[47]. Actually, we show that we can choose the rate of convergence as close as wanted
to the optimal one, assuming that the initial data are small enough. Since second grade
fluids are a particular case of third grade fluids, we establish an improvement of the rate
obtained in [47]. Actually, the main difference between third and second grade fluids
equations in dimension 2 is the presence of the additional term  Adiv (|A|2 A) in the
third grade fluids equations. Sometimes, this term helps to obtain global estimates, like
in [10] or [55], but introduces additional difficulties when one looks for estimates in H?® or
in more regular Sobolev spaces (see [1], [5] or [11]). Here, we have to establish estimates
in weighted Sobolev spaces with H? regularity for the vorticity w, which is harder than
doing estimates in H? for u.

We next introduce scaled variables. In order to simplify the notations, we assume
that v = 1. Let T" > 1 be a positive constant which is introduced in order to avoid
restrictions on the size of the parameter ; and which will be made more precise later.
We consider the solution w of (1.2) and define W and U such that curl U = W through

Y andr= log(t +T). We set

Vt+T

the change of variables X =

1 x
u(t,z) = Ullog(t+1T), ,
0= gt (a4 1) ) »
w(t x)—LT/V(lo (t+1T) ‘ > .
’ t+T & WVt T)
For 7 > log(T'), we have
U(r,X) = eu(e” = T,e7?2X),
/2 (1.5)
W(r, X)=ew(e" —T,e/?X).
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These variables, called scaled or self-similar variables have been introduced in order to
study the long time asymptotic of solutions of parabolic equations and particularly to
show the convergence to self-similar solutions (see [25], [26], [33] or [48]), that is to say

1 T
der the fo F )
under rm T <\/H-—T>

Scaled variables have been used to deal with the asymptotic behaviour of many equations,
not necessarily parabolic ones (see [13], [14] [47], [40] or [41]). For instance, in [40],
Gallay and Raugel described the first and second order asymptotic profiles in weighted
Sobolev spaces for damped wave equations, using scaled variables. In [41], they use
scaled variables to show a stability result of hyperbolic fronts for the same equations.

For sake of simplicity, we set A™ = 9;U; + 0;U;. Considering self-similar variables, one
can see that W and its corresponding divergence free vector field U satisfy the system

Oy (W —are TAW) — LIW) + UV (W — a1e TAW) + ape TAW
+ae TE VAW — Be ¥ div (JA]? VIV) — Be~>div (V (JA]*) A A) =0,
div U = 0,
VV|T:TO = WO:
(1.6)
where 75 = log(T), Wo(X) = e™wp (€™/2X) and L is the linear differential operator
defined by

LW) =AW +W + 3. VW.

Notice that the initial time of the system (1.6) is log(T"). By choosing T sufficiently large,
one can consider a1e”7 as small as wanted. This fact will allow to study the behaviour
of the solutions of (1.6) without restrictions on the size of ;. Formally, we see that most
of the terms of the system (1.6) tend to 0 as time goes to infinity. We show that the
solutions of (1.6) asymptotically behave like solutions of

O W = L(Wo). (1.7)

In order to describe the solutions of the system (1.7), we have to study the spectrum
of the linear differential operator £ in appropriate functions spaces. The form of the
previous system and the definition of £ lead to consider weighted Lebesgue spaces. For
m € N, we define

L2(m) = {u e 2R : (14 |2) " u e L?(R?)},
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equipped with the norm

1/2
2\m 2
ol = ([ (0 )" o))

The spectrum of £ in L*(m) is studied in details in [36, Appendix A]. It is composed of
the discrete spectrum

o4 (L) = {—g cke{0,1,...m— 2}} ,
and the continuous spectrum
o.(L) ={A € C:Re(\) < -1},

In particular, the eigenvalue 0 is simple and the Oseen vortex G given by (1.3) is an
eigenfunction of £ associated to 0. Of course, G is a solution of (1.7) and we will show
that the solutions of (1.6) behave like G when the time goes to infinity. To this end, we
decompose the solutions W of (1.6) as follows

W(r) =nG + f(7),

where 1 € R will be made more precise later and f(7) is a rest which will tend to 0 as 7
goes to infinity.

In order to get a good rate of convergence for f, we shall "push” the continuous spectrum
of L to the left by choosing an appropriate weighted Lebesgue space. For this reason,
we work in L?(2), so that o.(£) = {A € C: Re(\) < —3}. Since the second eigenvalue
of £ in L*(2) is —3, the best result that we expect is as follows

f(r)=0(™?) in L*?2), when 7 — 4oo0.

Notice that choosing a weighted space L?*(m) with m > 2 would be useless for describing
the first order asymptotics only. Indeed, if we take m > 2, the second eigenvalue would
still be —% and the rate of convergence could not be better than e~7/2.

For later use, we define the divergence free vector field V' such that curl V = G. It is
obtained by the Biot-Savart law and given by

1x|2
. 1—e"3 —X2
VX = om | X |? < Xy ) '
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In particular, for every X € R2, one has
V(X).X =0, V(X).VG(X) =0 and V(X).VAG(X) = 0.

Before stating the main theorem of this paper, we have to define some additional func-
tions spaces. For m € N, we set

H'(m) = {ue L*(m): 0;u € L*(m);j € {1,2}},
H*(m)={ue H(m):0;ue H (m);j € {1,2}},

equipped with the norms

2 2 1/2
Vel gy = (Illoy + 1900 32)  and

9 9 9 1/2
el sy = (Ilsgmy + 19200 ))

2 2
where |Vu|* = Z (8;u)* and ‘V2u|2 = Z (8,0;u)?.

i=1 ij=1

The following theorem describes the first order asymptotic profile of W in H?(2), if one
assumes that the initial data W, are small enough in the weighted Sobolev space H?(2).

Theorem 1.1 Let @ be a constant such that 0 < 8 < 1. There exist two positive constants
Y0 = Yolau, B) and Ty = To(ary) > 1 such that, for all Wy € H%(2) satisfying the condition

2
(0751 2 « 2
[Woll7m + T N H\X|2 Wol| . + T_; H\X|2 AWl L, <~v(1 - 0)°, (1.8)
for some T > Ty and 0 < v < 7,

there exist a unique global solution W € C° (1o, +00), H*(2)) of (1.6) and a positive
constant C' = C(ayq, 3, 0) such that, for all T > T,

- 2 _or
H (1 — e A) (W(r) — 77G)||L2(2) < Cye ™7, (1.9)
where n = / Wo(X)dX, 70 = log(T') and the parameters a; and [ are fized and given
in (1.1).

Remark 1.1 The smallness assumption (1.8) is not optimal. By working harder, it is
possible to get v (1 — 6)" with p < 6 in the right hand side of the inequality.

96



Chapitre 4. Fluides de grade 3

Remark 1.2 Notice that Theorem 1.1 establishes an improvement of [47, Theorem 1.1]
concerning the first order asymptotics of the second grade fluids equations. Indeed, the
above theorem holds also with = 0 and consequently describes the first order asymptotic
profiles of the solutions of the second grade fluids equation. The improvement comes from
the fact that one can choose 0 as close as wanted to 1, which is the optimal rate. In [47],
the constant 6 can not be bigger than %

Theorem 1.1 implies the following result in the unscaled variables.

Corollary 1.1 Let 6 be a constant such that 0 < 6 < 1. There exist two positive
constants o = yo(a1, 8) and Ty = To(ar, 8) > 1 such that, for all wy € H*(2) satisfying
the condition

1 2 a? 2
T g +7 |2 o [l ol 0n T g 2+ 20| a5, < 7 (1~ 6)°
(1.10)
for some T > Ty and 0 < v < 7y,

there exists a unique global solution w € C° ([0, +00), H*(2)) of (1.2) such that, for all
1 < p <2, there ezists a positive constant C' = C(ay, 8,0) such that, for all t > 0,

_14l_0
11 = a1 A) (w(t) = nQt))|| o < Cy(E+T) 572,
and there ezists a positive constant C' = C(aq, 5,6) such that, for all t >0,

2]
2

2] (1 = anA) (w(t) = nQE))|| ., < Cy (t+T)772

1 x
h = d dQ(t,x) = G .
where 1 /szo(x) x and Q(t, x) T (\/YH-—T)

Theorem 1.1 describes the asymptotic behaviour of the solutions of (1.6) in H*(2)
at the first order. Since the solutions of Navier-Stokes equations converge also to the
Oseen vortex sheet, we can say that the fluids of third grade behave asymptotically like
Newtonian fluids. Notice that the functions space H?(2) is suitable for the first order
asymptotics because it ”pushes” the continuous spectrum of £ far enough to get 0 as an
isolated eigenvalue. If we had to describe the asymptotics of (1.6) at the second order,
we should work in a space where £ has at least two isolated eigenvalue. Due to the
forms of 0. and o4, the second order asymptotics must be studied in functions space
with polynomial weight of degree at least 3, in order to get the two isolated eigenvalues
0 and —1.
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Notice also that as the system (1.2) and our change of variables preserve the total mass,
we have, for all 7 > 79 and ¢t > 0,

n= /R2 wo(z)dr = /R? w(t, x)dx = g Wo(X)dX = W(r, X)dX.

RQ

The plan of this article is as follows. In Section 2, we recall classical results concerning
the Biot-Savart law and give several technical lemmas. In Section 3, we introduce a
regularized system, which is close to (1.6) and depends on a small parameter ¢ > 0.
Actually, we add the regularizing term e AW to the system (1.6) and show the existence
of unique regular solutions W, to this new system. In Section 4, using energy estimates
in various functions spaces, we show that W, satisfies the inequality (1.9) of Theorem
1.1, and thus tends to the Oseen vortex sheet G when 7 goes to infinity. In Section 5, we
let € go to 0 and show that W, tends in a sense to a solution W of (1.6). Additionally,
this solution satisfies the inequality (1.9) of Theorem 1.1 and consequently tends also to
the Oseen vortex sheet. Finally, we establish the uniqueness of W, which enables us to
say that every solution of (1.6) satisfying the assumption (1.8) converges to the Oseen
Vortex sheet when 7 goes to infinity.

2 Biot-Savart law and auxiliary lemmas

In this section, we state several technical lemmas which are useful to prove Theorem
1.1. These lemmas concern the Biot-Savart and inequalities involving weighted Lebesgue
norms. The first one is needed when making energy estimates in weighted Sobolev spaces.
In what follows, we use the notation

[[ull = full 2,
and C denotes a positive constant which can depend on the fixed constants a; and /.

The first lemma will be useful in Section 4 to obtain estimates in Sobolev spaces of
negative order. We define, for s € R, the operator (—A)*, given by

(—A) u=F(l¢]*a),
where @ (also denoted F(u)) is the Fourier transform of u, given by

) = | ulo)e e
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and F denotes the inverse Fourier transform
— 1

Fo)) = G [ e

Lemma 2.1 Let s be a positive real number such that % < s < 1, then we have the

following two inequalities.

1. Let g € L*(1). Then (—A) *Vg € L*(R?) and there exists C > 0 independent of g
and s such that

[(=A)"Vgl| < (2.1)

C
m ||9||L2(1) .
2. Let g € L*(2) such that / g(z)dz = 0. Then (—A)*g € L*(R?) and there exists
R2
C > 0 independent of g and s such that

80l < = ol (22)

Proof : We start by proving the inequality (2.1). For j € {1,2}, using Fourier variables,
one has

s 1 -
(=) 09|l <C | —pg [ de + ||g%

4s—2
g<1 €]
2s ~—S

1 S—l R e 1;3
c ( / —%dé) ( / = d&) + gl
<t €] g|<1

C
1—5)

IN

<

1917 2= + llgllze
L

I-s

—~

We now use the continuous injection of H(R?) into L1 (R?). Looking at the compu-
tations of [15, p. 723-724], one can see that there exists a constant C' > 0 such that

ull,, < Cpllull,;:, forall we H'(R?) and 2 < p < 4o0. 2.3
L H

Notice that C'p is not the optimal constant in the previous inequality. Using the inequal-
ity (2.3), one has

s ¢ s
1=2)7 9sallze < =5 8l + Nl

2
< sy 19017201 -
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We now prove the inequality (2.2). Since f (x)dx = 0, using Fourier variables, we get

=2y all = eo® [ = i’ SN
< (2r)? /5 g O+ ol

. (2”)2/a<1 "

< 0/ -
gl<1 |€!4 ’

Cauchy-Schwarz inequality and Fubini’s theorem give

2
de + gl

1
/ EVg(ol)do
2

dé + [lgll7- -

/ V5(0€)| do

—s 112 ! 1 -
[ar sl <c [ | = IVatoe) dsdo + gl
o Jig=t €]

Using Holder inequality, we get

1 1 s ) 1-s
AR, <0 ~d ( \vil Hd) d 2
2yl <c | (/I5 = ) [ Wi de) okl
s s 1 N % 1-s )
<o) [ ([ 1vater=ac) ao-r ol

The change of variables ( = ¢ yield

s 112 s\ [! 2 s
lcaral<e (7)) [ (] sIvaarsda) o ol
0 I¢|<o @

s \° 1
< 9.
<o (1) (o) 1991, + ol

Finally, we use again the inequality (2.3) and obtain

iy (1 2 \? .
learal <o (1) (5m) () 19l + loli

2
3 ||9||L2(2),

C
< =~
(=)

which concludes the proof of this lemma.
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OJ

Lemma 2.2 1. Let 1 < p < 400 and f € LP(R?) such that |z|* f € LP(R?), then
\z| f € LP(R?) and the following inequality holds :

el fllw < W2 N2 £ (2.4)
2. Let f € H*(2), there exists C' > 0 such that
[z V2 £ < C (IIFIl+ [zl V£ + ||z Af]]) - (2.5)

3. Let f € H*(2), then |z|>Vf € LY(R?) and there exists C > 0 such that
lal* Y lla < € N2l VA (LA + Wl VA + [l A7) 26)

Proof: The inequality (2.4) comes directly from Hoélder’s inequality. To prove the
inequality (2.5), we show by a simple calculation that, for every j, k € {1,2},

llal* 0| < € (AP + N2l TP + (1= Af]) (2.7)
Indeed, we notice that
[[* 0;01f = 00k (|« £) — 20;f — 2200 f — 2240, f, (2.8)
and furthermore
|05k (12> NI* < C 1A (P 1) < € (1P + Wl TAP + [l A7) (29)
Combining (2.8) and (2.9) we get the inequality (2.7).
To obtain (2.6), we use Gagliardo-Niremberg’s inequality as follows:
2P 7] < Ol V19 (12 90
<PV (Mt VA1 + e 927

and consequently inequality (2.5) implies (2.6).
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Biot-Savart law: Let w be a real function defined on R2. The Bio-Savart law is a way
to build a divergence free vector field u such that curl u = w. It is given by

@) = o [ 0wy, (2.10)

where (21, 22)" = (=, 21).

The next two lemmas give estimates on the divergence free vector field u obtained from
w via the Bio-Savart law.

Lemma 2.3 Let u be the divergence free vector field given by (2.10).

1. Assume that 1 < p <2 < q < oo and é = ]lo — 1. Ifw e LP(R?), then u € LY(R?)?
and there exists C' > 0 such that

[ull Lo < Cllwll s - (2.11)

2. Assume that 1 < p < 2 < q < 00, and define a € (0, 1) by the relation % = %—i—l_To‘.

If w € LP(R?*) N L9(R?), then u € L™®(R?)? and there exists C > 0 such that

a 11—«
[ull poe < Cllwl[7 lwllza" - (2.12)

3. Assume that 1 < p < oo. If w € LP(R?), then Vu € LP(R*)* and there exists
C > 0 such that
IVullp < Cllwll - (2.13)

In addition, divu =0 and curlu = w.
We refer to [36] for the proof of this lemma.

Lemma 2.4 Let u be the divergence free vector field given by (2.10).
1. If w € L*(2), then u € L*(R*)? and there exists C' > 0 such that

lull o < Cllwl] 2 ) - (2.14)
2. If w e L*(2) N HY(R?), then u € L>®(R?)? and there exists C > 0 such that

1/2 1/2
]l oo < C'llwllgs w55y, (2.15)
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5. LetscRIf (-A)T we LARY)  fors € R, then (~A)Pu e [AR)? and
there exists C > 0 such that

s—1

H(—A)S/QUH < CH(—A) > wH (2.16)

4. Let s € R. Ifw € H*(R?), then Vu € H*(R?)* and there exists C > 0 such that
IVull s < Cllwllgs - (2.17)

The proof of the two first inequalities are shown in [47]. The two other inequalities are
obvious when using Fourier variables. The next lemma is useful to get energy estimates
in weighted Sobolev spaces for solutions of (1.6). For a vector field u, we set

2 2
IV2u|? = Z (0;0pu;)* and  |V3u|? = Z (0;0100u;)°.
i k=1 igkl=1

Lemma 2.5 Let w € L*(R?) and u be the divergence free vector given by (2.10).
1. Ifw € HY (1), then V?u € L*(1) and there exists C > 0 such that

V20l 10y < C Ulwllgn + [l Vwll). (2.18)
2. If w e H*(1), then |z| V?u € L*(R?) and there exists C > 0 such that
21 V2ul| o < C (]l + Nl Tl (V]| + ] Aw])'2. (2.19)
3. Ifw e H%(2), then u € |z|> V3u € L*(R?) and there exists C' > 0 such that
1ol V] < € (ol + el Vol + [l Auc]) (2.20)

4. Ifw e L*(1) and/ w(z)dr =0, then u € H'(1) and there exists a positive constant

C such that
[ull + |l Vul| < C||z] w]] . (2.21)

5. Ifwe HY(2) and / w(z)dz = 0, then |z|> V2u € LA(R?) and there exists a positive

]R2
constant C' such that
I 92| < C lwll s (222)
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Proof: Let us show the inequality (2.18). Let w belong to H*(1) and u be the divergence
free vector field obtained via the Biot-Savart law. From the inequality 2.13 of Lemma
2.3, we obtain

[V2ul] . < ClIVwl|. . (2.23)

Since the divergence of u vanishes and since we are in dimension 2, it is enough to show
the inequality
@3] < C (el + 2] Tul). (2.24)

where i, 5, k € {1,2}.
We omit k that doesn’t appear in the following calculations. One has
2 (2
e o3l = 2m? [ fos (a0 a
—~12 2 ~|2
<c[ watacrc | |goal a
R2 R2
<CIIVulf+C [ 1F (8 )l dg
RQ
< CO||Vul* + C|||z] Aul)*.

Using the inequality (2.13) of Lemma 2.3 with p = 2 and remarking that 0;w = Auy and
0w = Auy, we obtain (2.24). Combining it with the inequality (2.23), we get (2.18).

The inequality (2.19) is a direct consequence of (2.18) and Gagliardo-Niremberg inequal-
ity. Indeed, one has

|eidzull,o < Clledul| ||V (2:0Fu) |
1/2

< Clwdiull (05ul] + |25 vul) .

Furthermore, the inequalities (2.13) and (2.18) yield
1/2 1/2
leid2ull,. < C (lull + llal Twl) (IVw] + 2:72w]) .
Making the same computations than the ones we made to establish (2.18), we obtain

lz: V2wl < C ([Vwll + [[|z] Awl),
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which gives

zi05ul| Lo < © (lwll + [ll2] Vel) (| Vaw]) + [[l2] Aw])'2,

and the inequality (2.19) comes when summing for i € {1, 2}.

In order to get the inequality (2.20), it suffices to obtain it for |z|* 9;0u, where j,k €
{1,2}. One has

2P &;08u||” = (27 / A (g¢2) | de
<c / 6P (€ + &) Aal d§+/ (& + &) al d§+/ e vl d&)

C(Hm o) +Hw|ﬁ+ZHA<xiu>u2)

IN

| /\

C (llal” 7 aul* + [ Val + lla] Al ?)
< C (|l V2 " + ] + lle] Vo)

Applying the inequality (2.5), we get (2.20). The proof of the inequality (2.21) is made
in two steps. It is shown in [47] that

[ull < Clfz]w][. (2.25)

To finish the proof of the inequality (2.21), we notice that
|| w||® = |||z] drus||® + |||z| Bauall® — 2/ |2|* Oy ugdouy da. (2.26)
R2
Integrating by parts, one gets

—2 |.’]7|2 81u282u1da: = / ’.36‘2 u28182u1dx + 2/ x1u282u1dx
R2 R2

R2

+ |CU|2 8132u2u1dx + 2/ ng)luQuldx.
R2

R2

Using the divergence free property of u and integrating by parts, we have
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—2/ ‘37|281U282U1dl’ = |H£IZ’|81U1H2+H|Z'|82U2H2+4/ $2U282U2d37+4/ xlalululdx.
R2 R2

R2

Finally, integrating again by parts, we get
2 2 2 2
—2/ |2|” OruzOpurde = ||[x] Qyua[|” + [|[x] Daual|” — 21|u]|”.
R2

Thus, going back to (2.26), one has
Iz Val® = fl|z| w]|* + 2 flu]*.

Combining this equality with (2.25), we get inequality (2.21). The inequality (2.22) is
obtained in the same way.

O

3 Approximate solutions

In this section, we introduce a "regularized” system of equations, whose solutions are
more regular than the solutions of (1.2). Actually, this new system is very close to (1.2),
and is obtained by adding the small term eA%w to (1.2). Here, the positive constant &
is supposed to be small and is devoted to tend to 0. Adding this term, we are able to
prove the existence of solutions to the regularized system via a semi-group method. The
presence of the term u.VAw would not let us obtain solutions to (1.2) by a semi-group
method because of the too high degree of derivatives in this term compared to the linear
term Aw. We introduce now the following regularized system of equations:

O (we — ayAw,) + eA%w. — Aw. + u.V (w. — ay Aw,)
—pdiv (JA.|* Vw.) — Bdiv (V (JA]*) A AL) =0, (3.1)
wa‘t:() = Wy - H2(2>,

where A, = Vu, + (Vua)t.

The aim of this section is to prove the following theorem.

Theorem 3.1 Let wy € H*(2). For all € > 0, there exists t. > 0 and a unique solution
we of the system (3.1) such that

we € C1((0,t.) , H'(2)) N C°([0,t.) , H*(2)) N C° ((0, t) , H?(2)).
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Proof: First of all, we introduce the change of variable ¥ = vy, where ~ is a positive
constant that is close to 0 and will be made more precise later. This is made in order
to not have to consider restrictions on the size of a;. We note v.(z) = w.(z/v). The
system (3.1) provides a new system in v., that we will solve in H?(2).

O (ve — V2 Av,) + eyt A%v, — Y2 Av. + yu..V (v, — ary? Av,)
—BYV (JA)?) Vue — By |Ad? Av. — Bdiv (V (JA]?) A A) =0,

Vejmo = wo(z/7y) € H?(2).
(3.2)
Although there are terms involving u. in this system, it is actually autonomous. In fact,
one recover w, from v, and then recover u. via the Biot-Savart law (2.10) applied to w..
We set
ze(x) = q(z)ve(2),
where ¢(z) = (1 + |x|2)

To show the existence of a solution in H?(2) to the system (3.2), we are reduced to show
that there exists a solution in H?(R?) of the system

O (ze — Va1 Az. — v qAq 2. — 2921V .V 2) + ey A%z, = F (z.),
Zelt=0 = qu(x/’y) € H2(R2)7

where

F(z.) = —ev*qA? (¢ 2) + 72qA (¢ 2) — vqueV (¢ 2 — Y*on A (g7 1z))

(3.3)

+587v4V (JA]?) .V (g7 2) + By2q |A]* A (g7 %) + Badiv (V (JA]*) A AL).

We define the two linear operators B : D(B) = H'(R?*) — H '(R?) and D : D(D) =
L*(R?) — HY(R?) as follows:

B(z) = a1y’ Az + any?qAq 'z,

D(z) = 2a17%qVq . V2.

Via Lax-Milgram theorem, it is easy to show that A = (I — B — D) is invertible. We
define the bilinear form on H'(IR?)

a(u,v) = (u,v) 2 + 1v* (Vu, V)2 — any’ (¢Aqg'u, U)L2 —2a17* (¢Vq~ . Vu,v) o
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We notice that a is obviously coninuous on H'(R?) x H'(R?). Using the fact that ¢gAq™!
and ¢Vq~! are bounded on R?, one has, for all u,v € H'(R?),

|a(u, v)| < Clar, ) [[ull g J0ll g1,

where C'(ay,7) is a positive constant depending on a; and 7.

We show now that a is coercive. Via an integration by parts, we get
ofusu) = ul? + arr? [Vall* = arr? [ g™ uf do+ ary? [ div (4947 Juf do.
R2 R2

Due to the boundedness of ¢Ag™! and div (¢V¢™!), there exists C' > 0 such that
a(u,u) > (1= a1y*C) [|ul® + any? || Vu|*.

If we take  sufficiently small, the bilinear form a is both continuous and coercive on
H'(R?). From the Lax-Milgram theorem, we conclude that for all f € H~1(R?) there
exists u € H'(R?) such that

a(u,v) = (f,v) g1, foral ve HY(R?), (3.5)

and consequently (I — B — D)™ " is defined from H~'(R?) to H'(R?). We define A
D(A) = H*(R?*) — H'(R?) the linear differential operator on H'(R?)

A=ey*(I-B—-D)"' A2

We rewrite the system (3.3) as follows:

Opze + Alze) = F (2),

Zepp—o = quo(z /) € H*(R?), (3.6)

where F(z.) = (I — B— D)™ F(z.).

To finish the proof of this theorem, we show that the operator A is sectorial on H'(R?),
which is equivalent to the fact that —A generates an analytic semigroup on H'(R?).
Then, we check that F is locally Lipschitz from bounded sets of a Sobolev space H*(R?)
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to H'(R?), where 1 < s < 3. By a theorem that one can found in [58], we get theorem
5.1. A small computation leads to
A=ey*(I—-B) 'A2—ey*(I-B—-D)"'D( — B) ' A?
—I+ey*(I-B) 'A’—I—ey*(I-B—-D)'D(I —B) "A?
=J+ R,

where

J=1+ey"(I - B)"A?

R=-I—-ey*(I-B—-D)"'D(I —B) 'A%
Using the same method as the one used to invert (I — B — D), one can invert (I — B)
and define (I — B)™' from H '(R?) to H'(R?). Consequently, .J is well defined from
H3(R?) to H(R?). In the remaining of this proof, we will show that —.J generates an
analytic semi-group on H'(R?) and then show that R satisfies the conditions of [58,
Theorem 2.1 p. 81]. According to this result, it implies that —A generates an analytic
semi-group on H'(R?). In order to show that J is sectorial on H'(R?), we associate it
to a continuous and coercive bilinear form on H?*(R?) x H?*(R?). To this end, we define
a H'-scalar product which is suitable to J. Let us define, for u,v € H'(R?), the bilinear
form on H* given by

(u,v) i = (1 — a1v?qAq ") u,v) 12 + 1y* (Vu, Vo) 1.

If v is sufficiently small compared to aj, then (.,.),: is a scalar product on H'(R?).
Furthermore, for u € H*(R?) and v € H'(R?), one has

<U7U>H1 = (([ - B) uav)LQ'

We define, using this scalar product, the bilinear form j on H*(R?) x H?*(R?) associated
to J by the formula

J(u,v) = (u,v) g1 +ev* (Au, Av) .
A short computation shows that, for u € H*(R?) and v € H*(R?), one has
j(u7 U) = <JU’7 U>H1 : (37>

Furthermore, if +y is small enough, using the definition of (.,.) ;; and j, we see that there
exists C'(ay,€,7) > 0 such that, for all u,v € H*(R?),

J(u,v) < Clon, &,7) llull gz 0]l g2 -
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Besides, it is simple to check that, if v is mall enough, there exists C'(aq,v,e) > 0 such
that, for all u € H?*(R?),

jlu,u) > Clan,y,e) |ull3e -

The bilinear form j is thus coninuous and coercive on H?*(R?) and the operator J is
sectorial on H'(R?). Additionally, The linear operator R is defined from H?(R?) to
H'(R?), and one can check that there exists C'(a,7, €) > 0 such that, for all u € H?(R?),

Rl < Clar,9) lull e (3.5)
Applying the equality (3.7) to u € H?*(R?), we get
Jlu,u) = (Ju,u) 0, for all u € H*(R?).

Because j is coercive on H?, we obtain, via Cauchy-Schwartz inequality,

lullzze < Clav,y,e) [ Tull o llull g, for all w € HA(R?).
Going back to (3.8), the following property holds

|Rully < Clon,7.e) [ Jull g llull o for all u € H(R?).
In particular, the Young inequality yields, for all § > 0,

[Rulls < 6 11Tull: + Clan,7.e) ull , for all u € HY(R?),

By a classical result that we can find in [46], —A is thus the generator of an analytic

semigroup on H'(R?).

Lastly, it is easy to check that F is Lipschitzian from the bounded sets of H 2(R?)
into H'(R?). Combining several results from [46, chapter 3] and [58, section 6.3], we
conclude that there exists ¢ > 0 and a unique solution z. € C*'((0,t.), H'(R?*)) N
C°([0,t.), H*(R?))NC° ((0,t.), H3(R?)) of the system (3.3). Thus, there exists a unique
solution w. € C* ((0,t.), H'(2)) N C° ([0,t.), H*(2)) N C° ((0,t.), H3(2)) to the system
(3.1).

O
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4 Energy estimates

In this section, we perform energy estimates on the regularized solutions of the third
grade fluids equations in the weighted space H?(2). These estimates are independent of
¢ and will allow us to pass to the limit when ¢ tends to 0. Thus, we consider the solution
we(t,z) of (3.1). Let T, T > 1 be a fixed positive constant and 7y = log(7"). We define
W, (7, X), the vorticity obtained from w. by the change of variables (1.4) and (1.5). A
short computation shows that W, satisfies the system

Or (W — e TAW,) + ee AW, — L(W,) + U..V (W — aue TAW.) + ane AW,
X
+one”T S VAW, — fediv (AP VL) — Be > div (V (JAf) A AL) =0,
div U, = 0,
Wz—:|7‘:7‘g = W,

where 79 = log(T"), U. is obtained from W via the Biot-Savart law (2.10), A. = VU.
(VU.)" and we recall that
LW.) =AW, + W, + 5.VW..
By theorem 3.1, it is clear that there exists 7. > 7y such that
W. € C' ((ro,7.), H'(2)) N C° ((70, 72) , H3(2)) .

We assume also that the initial datum W, € H?(2) satisfies the assumption (1.8) of The-
orem 1.1, for some v > 0. Let n = ] Wo(X)dX, we write the following decompositions

R

We =nG + [,

U. =nV + K.,

where G is the Oseen vortex sheet defined by (1.3) and V' is the divergence free vector
field obtained from G via the Biot-Savart law (2.10). Using the fact that £(G) = 0, one
has the equality

Or (fe —ane "Af.) +ee TA?f. — L(f.) + K.V (f: — are” TAf)

(4.2)

+nV.V (fe — e "TAf) + K.V (G — a1 TAG) + ane TAf.
+a16’7§VAfa +nae TAG + nale’T%VAG +nee TA%G

—Bediv (|A]* Vo +n]Af* VG) — e div (V (JA|") A Ac) =0.
(4.3)
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Let M = M(aq,) > 2 be a positive constant which will be made more precise later.
Let 77 € (19, 7] be the largest time (depending on M) such that, for all 7 € [, 7), the
following inequality holds

, 2
IWe() 7 + cre™ AWz + [[|XT We(n) | 2

4.4
+aZe? H|X12AW€(T)H; < My(1—106)°. (44

To simplify the notations in the following computations, we assume that 0 < v < 1 and
a
we take T sufficiently large so that ?1 =ae < 1.

Since W, € C° ([0, 7-) , H*(2)) and the condition (1.8) holds, 7 is well defined. Further-
more, there exists a positive constant C' independent of W such that, for all 7 € [ry, 77),

P el e NALAG+ [IX P £l fata2e ™ [IX PP AL 7. < CMAy(1-60)°. (4.5)

Indeed, using Cauchy-Schwartz inequality, we get
R2

1+ X[
:/ L g 0ax
e 14X

< </R e |1X|2>2dX> " (/R (1+ (X)) [Wo(X)P? dX) -

< C[Woll 2 -

Considering the decomposition (4.2) and the smoothness of GG, we obtain the inequality
(4.5).

To simplify the notations, in this section we write f instead of f., W instead of W., U
instead of U, and K instead of K.

The aim of this section is to show that the inequality (1.9) of Theorem 1.1 holds
for the regularized solutions of the system (4.1), provided that the condition (1.8) is
satisfied by Wj. To this end, we consider a fixed constant # such that 0 < 6§ < 1 which
is twice the rate of convergence of W to nG in H?(2). In fact, we will show that, under

the assumption (1.8), the decaying of f to 0 in H?(2) is equivalent to e~ . As it is
explained in the introduction of this paper, the spectrum of £ in L?(m) does not allow
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the rate of convergence to be better than e 2.
In order to get the inequality (1.9), we construct in this section an energy functional

E = E(7) such that, for every 7 € [0, 7)),
E(7) ~ [l F (D) 3202
and there exists a positive constant C' = C(ayq, 3, 6,y) such that, for all 7 € [rg, 77),
8,E(1) +0E(r) < Ce. (4.6)

This inequality will enable us to show that 77 = +o00 and obtain, by the application of
Gronwall Lemma,

E(1) < Ce™ for all T € |19, +00).

This functional is built as the sum of several intermediate energy functionals in various
functions spaces, for which we perform convenient estimates.

4.1 Estimates in H~ 5

We start by performing an estimate of the solution of (4.3) in the homogeneous
Sobolev space H - (R?). Combined with the other estimates, it will give us an estimate
in the classical Sobolev space H -5 (R?). The motivation to do this comes from the fact
that the H'—estimate that we will perform later (see Lemma 4.3) makes the term |ju||%,
appear on the right hand side of our H'—energy inequality. In order to absorb this
term, we look for an estimate in a Sobolev space of negative order. To this end, due
to Lemma 2.1 and the fact that / f(X)dX =0, for % < s < 1, one can apply the

R2
operator (—A)™° to the equality (4.3) and take the inner product of it with (—=A)™" f.
Through the computations that we will perform below, one can see that, in order to get
the estimate (4.6), we have to choose at least s = 12ﬁ. Actually, since we have to absorb
terms coming from the non-linear part of (4.3), it is more convenient to take ITJFG <s <1,

for instance s = #. In [47], the considered operator was (—A)_3/ % which implied the
restriction 0 < 6 < %

The next lemma summarizes the computations needed when applying (—A)™° to (4.3)
and taking the L?-scalar product of it with (—A)™* f.
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Lemma 4.1 Let f € H3(2) such that | f(X)dX =0, then, for all 5 < s <1 the three
R2
following equalities hold.

(G%V”(gVV)J—AVfﬂp=*—@+%)W—AVﬁﬂﬁm

(=) (L), (A )= = (2|, = =D I FL @)

2

((—8) " (£.941),(=8) 7 f) o = (s +1) H(—Aﬁ—Sf

Proof: Using Fourier variables, it is easy to see that

L2
X v r N A ~ 2~
FVI==]-5V] and F.VAf=2[¢]+5EV]
The proof of this lemma is then obtained through the Plancherel formula and direct
computations.

O

In order to obtain a priori estimates of f in H~ (]R2) we define the functional

Y

140 |12
4f)‘

The estimate in H~2" of f under the condition (4.4) is given in the next lemma.

Lemma 4.2 Let W € C' ((ro,7.), H(2)) N C° ((10,7.) , H*(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some v > 0. There exist yo > 0 and Ty > 1 such that
if T'> Ty and v < o, then, for all T € [10, 7)), E1 satisfies the inequality

08+ 08+ (141 e ) -2 F g < oarra - e

$OMy (1= 0 (I ey + IV + 03e™ A fI20 )
(4.8)
where 6, 0 < 6 < 1 is the fized constant introduced at the beginning of Section 4.

Proof: Since f(X)dX = 0, according to Lemma 2.1, (—A)_¥ f is well defined.
R2

Thus, we apply (—A)_¥ to the equality (4.3) and we get

0 (=) % f e (=)F f) e (-8)T - (=) (L)

—a1e T (=A) T fHae T (=A) 1 (5. VAf) =H (1,G, f,W)
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where

346

H(r,G, f,W)=(=A)" 7 | =K.V (f —ane TAf) = nV.V (f —aje "Af)
—nK.V (G — a1e7"AG) — naie TAG — nare 5 . VAG
—nee TA2G + Be *eurl div (|Af A)) :

Taking the L?—scalar product of (4.9) with (—A)_¥ and taking into account the equal-
ities

(= (8% @), (a7 7)== g+ () e g
and
(ale—r (—A) 340 ( VAf) ( y% f>L2 — (779) e~ ( _ 146 fH
given by Lemma 4.1, we obtain
20 <H<—A>3f R [ DR [ |
£ () |2 A+ (1 (442) ane f) (N
= (HEG.H.(=2)7F) .
(4.10)
Now, it remains to estimate the right hand side of (4.10), that we write as
(H(ﬂGaf)?(_A)_% f>L2 =h+ L+ I3+ 1+ I,
where
=(< A) T KV (f - e Af) (-8) T )
2= () (¥ (f — e af), < > ),
= (8 (4R (G — e BG)) (A 1
= (( A)” i( nae TAG — naye” "5 . VAG — nee TA’G) , (- A)_¥ f)L2
= () F (=87 y)
I = ((=8)"% (B >rewl div (AP 4)),(-2)"% f) .
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The remaining of the proof of this lemma is devoted to the estimate of these terms. We
recall that curl K = f, curl V = G and curl U = W. Since the divergence of K vanishes,
we obtain

3460

= () (v (1 (F — e 80) (-85,
< e v (- mean)| a7 4.

Using the inequalities (2.1) of Lemma 2.1 and (2.15) of Lemma 2.4, together with the
Young and Hélder inequalities and the property (4.5), we get

C . _ 340
L < m | K (f — one Af)”Lz(l) H(‘A) ! f‘
C . _3+0
< m 1K || || f — are AfHL2(1) ‘(—A) 1 fH
340 (4.11)
< |2y 7] ————ﬂﬁhnwﬂMJU—aw”AMpm

0)
QC’M —
L My
W

_M oy
<pja) O (1 + a2 1Ay

where g is a positive constant which is made more precise later.

Similar computations and the inequality (4.5) give similar estimates for /. One has

_s0 12 CMry(1-6)°
g A0

b<ui- L (U + ade ™ 1 2a,) - (012

We likewise estimate the term /3. Indeed, the same computations and the smoothness
of G yield

3+(9

<ula)y 7 g >AUM2Hﬂm4W—awTAGﬁm)

-5 fH2+CM7< —

< (- O (11 + 11 (L ™)

Taking Tj sufficiently large so that aje™ <1, we get

_3+6
4

2 OM~(1-6)>
f++

h<ul- ey + 197 413)
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Estimating I, is simple, because of the smoothness of G. We first remark the fact that

/ J(X)dX = 0. Thus we can apply the inequality (2.2) of Lemma 2.1 to obtain
R2

a0 JH - Clnle ™ |G| g

H(_A)i (1 _9)3/2

Using the above inequality and the smoothness of GG, we can write

[4 S(lc—n—(;_);/2 (=) 7| 5 (4.14)
a0

It remains estimate the term I5. The inequality (2.1) of Lemma 2.1 implies

1€ T I (AP ) i) o]
O I e LA
A short computation leads to
IV 42 4) 22, < CIF0F 20,

Using Holder inequalities, the inequality (2.15) of Lemma 2.4 and the inequality (2.18)
of Lemma 2.5, we get

IV (AP A) [y < CIVU L [[V2U 720

< W 2oy W1 (IWI: + I9W gy )

Finally, taking into account the inequality (4.4), we get
316 2 OMS 2.3 1—06 18 —4r T
3;0fH+ P (1—6)"e (He_)
7 a
2 OM33(1—0)%e?
+ . .

I; < NH(_A) (4.15)

_ 346
4

< /LH(—A)
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The equality (4.10) and the inequalities (4.11), (4.12), (4.13), (4.14), (4.15) imply that

500 ([ s

2
+ aqe

1460 2

A (Al

(e (5 e

1y + IV £ + e [AF ) )
(4.16)

—T

(=4)"

3 _ 3 _—2r _
< CM ’y(lM 0) e +CM7(1 0) (

1—-0
Setting p = 50 we finally get

08+ 08+ (141 e ) -2y ¥ < earra— e

+OMy (1= 0)* (I [F20) + IV A1 + afe 1AF |Gy
(4.17)

O

4.2 Estimates in H'(R?)

We next establish an H!-estimate of f. As explained earlier, we get it by performing
the L%-scalar product of (4.3) with f. In this section, we will see how useful the lemma
4.2 is for absorbing bad terms which appear in the computations made below. One
defines the functional

1 —T
Ey(1) =5 (A1 + e IV FI)
The H! estimate of f is given by the following lemma.

Lemma 4.3 Let W € C' ((1o,7.), H(2)) N C° ((10,7.) , H*(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some v > 0. There exist vo > 0 and Ty > 1 such that
if T'> Ty and v < o, then, for all T € [10, 7)), Ea satisfies the inequality

OrEy + By + 5 | VfI* + 5e7> [[|A] Vf|*

where 0, 0 < 6 < 1 is the fized constant introduced at the beginning of Section 4.
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Proof: Taking the L?-inner product of (4.3) with f, performing several integrations by
parts and taking into account the equalities

1
(=L Dz = VAP = 5 A1,

and

X
e (GVALL) =aw IS,

L2

we obtain the equality

0: By + By + e T [|AS|P + (1= are ) |V f|* + Be=> [[| AV f|]*

4.1
= fIP+ 1+ L+ Is+ I, + I, (4.19)
where

-[1 = - (Kv (f - O[1€_TAf) af)L2 )

I, =—n (K.V (G — ale’TAG) ,f)L2 ,

Iy=—n(VV(f—oae TAf), f) .

Iy = —nage™" (aiAQG + AG + %.VAG, f) +nBe " (div (]A\2 VG) ,f)L2 ,

1 L2

Is = (Be*div (V (|A]°) A A) . f)

We notice that, since K is divergence free, (K.Vf, f);. = 0. Integrating by parts and
using the inequality (2.15) of lemma 2.4 and the inequality (4.5), we obtain

I =—-oe " (KAf,Vf);
< Cone ™ | K| IAFI IV
< Cane™ || fllt 11 oty 1A IV ]
< OyaMA (1 8 e )

COM272 (1 —0)%
< ulIVIIE+ 7/5 )

(4.20)

where 1 > 0 will be made more precise later.

By the same method, using the inequality (2.14) of the lemma 2.4 and the smoothness
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of G, one has
L =n(K(G-ae AG), Vf)
< Il 1K |4 |G = ne TAGH 4|\VfH
<C(+ae ™) £l IV (4.21)

CM~(1-4
< IV + % (1718 + 1P )

The same method gives

Iy =—ae"™n(VAS, Vf)L2
< e [ [V IAFIIV L
< CyarMy(1-6)° e 2|V | (4.22)
CM?2~2 (1 — )2
< v+ G0

e .

Because of the regularity of GG, the estimate of I is simple. Indeed, an integration by
parts and Holder inequalities yield

L <Chl(e+an)e ||l —nBe ™ (JA VG, V) .
<Ol +ar) e £l +Cnl Be > VGl VU35 |V £l s

Then, by the inequality (2.13), the continuous injection of H!(R?) into L3(R?) and the
inequalities (4.4) and (4.5), one obtains

I <Cll(e+a) e |[fll +Cnl B |WLa IV £l s
< (et a) My (100 e +Clal 6 W (VA4 187Dy e
<Ce+an) My(1—=0)° e+ M2 (1—6)’ e '
SCMS/g (1 9)6 -7

Finally, using the same arguments, due to the inequality (2.13) and the continuous
injection of H'(R?) into L*(R?), one has

—66‘3( (JA] )A;l V)

CBe™> VU] |vV2U| . Iarvs)

CRe™ W |1 HWHHQ/\HA! Al

BMy(1—0)° e 2 < \/_|I|A|Vf||
AV + CMA2 (1 —0)2 e

I5

IAIA

(4.24)

IN

C
<8,
=3¢
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Taking into account the inequalities (4.20), (4.21), (4.22), (4.23) and (4.24) and assuming
that v < 1, we deduce from (4.19) that

8TE2 + E2 + (1 - 3,u — e ) HVfH + ﬂ

e S =0 (||f|| X ) + oMy (1=

(4.25)

e A VE? <

If we choose for instance y = and Ty large enough to have aje™™ < }l, we get

s By LIV 5 S AT <
2
112+ Oy (1= 0)° (712 + 1 71I°) + CM2 (1= 0)° e

To achieve the H'—estimate of f, we have to combine the inequalities (4.8) and (4.18).

1 2
We can interpolate || f||* between H(—A)_%g fH and ||V f||*>. Indeed, via Holder and
Young inequalities, we get

1 1+9 2(1+6)

2 2 3+6 3+0

117 = @n)? [ e 65 7] 77 a
2 g| 55

oo (L ighalTe)” WW

<[-a7% s o
146

< (3 svnr+ (525) (5) " e

Since, 0 < # < 1, we obtain

ik

0 112
71 < F 191 +5 =) % 4] (4.27)
Thus, we have
0.5+ Byt 1 IVSIP+ Do 141V 41 <
5(- —*fH + My (1= 0)° (ILFIP + [[1XP ) + CM2y (1= 0) e
(4.28)
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We define E3 = 6F; + F5. Inequalities (4.8) and (4.28) give

3
&,—Eg + 9E3 + (1 + 5 (1 - 9) ale_T)
_or 2 oy 2
4Oy (1= 07 (171 + VA2 + e AR + [IXP £ + a2~ || [X Af]).
(4.29)
2
Interpolating again || f||*> between ||V f||* and H(—A)_l‘lﬁ f” and taking v sufficiently

small, we obtain

_1e (121 .
(—A) fH + 7 IV < My (1= 6)e

1 _1+0 2 1 2 3 2 7
8TE3+9E3+§H(—A) i fH + IV < oMy (1-0)e

+OMy (1= 0)” (a3e > IAS + [1X I + ader [[1x P Af])
(4.30)

4.3 Estimates in H?(R?)

We now perform a H? estimate of f. This is done with the same method as for the
H' estimate in the previous section. Indeed, we perform the L? product between (4.3)
and —Af and, after some computations, we see that the inequality (4.4) enables us to
absorb all terms involving the H? norm of f. Combined with (4.30), we get an estimate
in H?, where only terms with weighted norms remain. More precisely, we introduce the
following functional.

Bi(r) = 5 (1951 + ane™ JATI).

The H? estimate of f is given by the lemma below.

Lemma 4.4 Let W € C' ((19,7:), H'(2)) N C° ((70,7.) , H3(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some v > 0. There exist vg > 0 and Ty > 1 such that
if T'> Ty and v < 7, then for all T € |10, 7)), E4 satisfies the inequality

1 3
0. i+ Byt SIASIP+ Do LA AFIP < 391 +CMy (1 - 6)° e

2
+Cny (1=0)° (IIFI7 + IV AP+ [1X P £)
(4.31)
where 0, 0 < 6 < 1 is the fized constant introduced at the beginning of Section 4.
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Proof: We take the L? product of (4.3) with —Af. Doing several integrations by parts,
it is easy to see that

(—L(f), =Af) 2 = |AFI? = IVFI?,

and

X 1
- (041€T§-VAJC> Af) = 504164 IAFIP.

L2

Furthermore, one also has
2
Be " (div (JA*Vf), Af) = Be ™ |[JA|AF|* + Be™> ) / A0 A0; fAfAX.
j=1 "R

Using Hélder inequalities, the inequality (2.13) of lemma 2.3, the continuous injections
of H'(R?) into L*(R?) and the inequality (4.4), we get

2
B S / A: 9,40, fAFAX < CBe ™ |||A| Af| VAV S|
j=1 /R

< CBe A AL VAU a1V Fl
< CBe A AFIHIVW g1 IV £l o
< B || Al Af|”

CB o,
+ﬁ?e2nwmpWVﬂP+HAmﬂ
< i Be” |||A| Af))?

CM~ (1 —0)°
L MY AZOF 4 1A S

where p; > 0 will be chosen later.

Consequently, we get

(%
0Byt ee VAL + (1= S ) AFIP + 81— m) e 4] AfJP

CM~(1-6)°
1

<|IVI* + (VAP +IAFIP) + Lo+ Lo+ Is + L+ I,

(4.32)
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where

L= UV (f —oue 'Af),Af)
L=n(KV(G—-ae'AG),Af)

Iy = poye™ (aiAZG L AG+ g.VAG, Af> +nBe (div (JAPVG),Af) .,
1 L2

L2

Iy =B (div (V (JA]*) A A),Af) .
Integrating by parts and using the divergence free property of K, one can show that
2
Li=-> / 0,U;0; foh fdX.
jk=1"R?

Due to the Gagliardo-Niremberg inequality and the inequalities (2.13) and (4.4), it comes

L <C|VU|IVfls
S CIVUIVEITAL

B (4.33)
< pig ||Af\|2 + M

0 2
VA,

where s > 0 will be chosen later.

We now estimate I with the help of the inequality (2.15) of lemma 2.4, the inequality
(4.5) and the smoothness of G.

B < [l 1Kl |G~ aae " AG]| 1A
< Cln (1 + ale_T) £l ||f||L2(2) [Af]] (4.34)

CM~(1—6)° 2
< A7 + EEEZOT g g2 i )
M2
We rewrite
L=1 +I2,

where

X
I; = 77@1677- (@ilAQG+AG+ EVAG, Af) s
L2

I3 = nBe™™ (div (JA* VG) ,Af),,.
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Using the good regularity of G' and the inequality (4.5), one can show that
I <OM'PHY2 (107 e |Af]

CM~(1—6)°
< poaf)?+ CM L0

The estimate of I3 is slightly more complicated. Actually, we can bound I3 by two kinds
of terms that we estimate separately. In fact, it is easy to see that

B <Cllse™ [ [VAAIIVG]Aflax +C il s [ |AP[VG]|Af]dX. (435)
R2 R2

Each term of the right hand side of (4.35) can be estimated in a convenient way. We use
again the inequality (2.13) of the lemma 2.3, inequality (4.4) , the Holder inequalities
and the inequality (4.4). We get

Clolge™ [ 19A1|AIIVGIAf|dX < €l g [TU| [V, 4] A

C —27

< e | Al AFE + 'Z' B oo v
CM?42(1 - 6)"?

< mpe |AIAFIP + =07

H1
By the same way, we have
CM?22 (1 —6)*
Clilge [ |AF [9%6] 1511 de < pupe A ag + SO
R

and thus we have shown

CM2~2(1—6)"
12 < e 4 afp+ LT L0 o

Finally, assuming v < 1, one has
CMQ,Y (1 B 6)6 —27
- e .
min(yir, p2)
It remains to estimate I;. Recalling that U = nV + K, one has

I <ClnlBe™ [o [VAA[ V2V Af|dX + C |n| e [o |AP VPV Af] dX

Iy < piz | AF|” + 2 Be™ |[|[A] AF| + (4.36)

+OBe™ [, [VA|A| V2K |Af|dX + CBe™? [, |A]” [VPK||Af] dX.
(4.37)
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We have to estimate each term of the right hand side of the equality (4.37). The first
two ones can be estimated exactly like we did for I3. The inequality (2.13) of lemma 2.3
and Gagliardo-Niremberg inequality yield

g [ VAA[TK| |AF1dX < pape 4] A

Cﬁe 2
m” VU IV,
< juBe || A AT
C —27
T Be AR

< e IHA!AfH
C —27

| Gpe

1

IVWIHIAWIHIVATAF -
Due to the inequality (4.4), we get

Coe [ IVANJA|VK| IAf| X < pfe 4] AP
R2

3T

CM~(1—80)Ce 7
N v ( ) e

M1

(VAP +HAFI) -

By the same method, we obtain

2

VU2 [ VOK|

_or _or CBe™?
g [ AP [V°K]1A714X < mpe > 4] A7+ =5
R2

< mfe”* | A Af|
056727

VW2 VW 2oy IAFI®

< uBe ™ [[|[AIAf]” + IAF.

CM~(1—6)%e "
251

Finally, we have shown that

CM?*y(1—0)°e "

I < 4 Be™™ ||| Al ASIP + (VAP +IAFI) - (4.38)

Going back to (4.32) and taking into account the inequalities (4.33), (4.34), (4.36) and
(4.38), we get
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(07
0 Eut (1= 32— S ) IASIP + (1= T) e [ A] A < [V

2
CM?y (1 —6)° 2 CM*y(1-6)° _,
. (LI + IS £17 4 1AL + X P £)) + = e,
min (g, po) min (g, p2)
Taking for instance p; = 1—147 p2 = 1—12, ~ small enough and 7" = €™ large enough, we

finally have

1 3
0B+ But SIAFIP+ Do 1A AT < 3 VI +CM (1 - 6)° e
2
+OMy (1= 0)° (IFIP + IV A1 + [IXP £])
(4.39)
0J

In order to finish the H? estimate of f we define a new functional Ejs as a linear combi-
nation of F3 and Ej given by

E5 - 16E3 + E4.
From the inequalities (4.30) and (4.31), it is clear that one has

_e 1201 1
0 Bs + 08 + 8| (—8) 75 || + S IVAP + SIASP < CMPy (1-0) e

+CM>y (1= 0)° (I1fI? + VA1 + ate ™ Af)°
2 Y, 2
e e NG )
(4.40)

Using the interpolation inequality (4.27) and taking 7 small enough and 7 = log(T)
large enough, we finally obtain

_1ge 121 1

0 Bs + 085 +7 (=) % 1| + IVAP + J1ASIP S OMPy (1 - 0) e

+OMy (1= 0) ([1XP 1| + aze™ 1x1* Af][)
(4.41)

4.4 Estimates in H?%(2)

In order to achieve the estimate of f in H?(2), it remains to perform estimates in
weighted spaces. Combined with the inequality (4.41), it will give us an estimate in
0?(2). To do this, we make the L2—scalar product of (4.3) with |X|" (f — are "Af).
We define the functional
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B(7) = L IXP (F = are A )

Before stating the lemma which contains the estimate of E, we state a technical lemma,
which gives the terms provided by the L?—product of the linear terms of (4.3) with
X" (f — are TAY).

Lemma 4.5 Let [ € C'((ro,7:), H'(2)) N C°((70,7.), H*(2)) and H be defined by
H(X,7, f) = |X["(f — are "Af). For all T € (19, 7.), the next equalities hold.

2 2
(L HX D)y = =X A+ Sane ™ [1X] £ = ane™ [P V1]

2 (AL HX,T ) = are |[|IXPALI] = 81X £+ IXP Vs

~

o (ZVAHX 1), =3[IX] fII° = 24ae” THIX!fH
+3a,e7 || X VfH — e (X.VAL X' f)
4. (LU, HX, 7 f)) L2—2H|X\ 7+ @+ 20 ||IxP oo
+are ™ [[[X]PAF|" = (84 16a1e ) [1X] fI* = Ge T (X.VALIX['f) 2
5. (e TE VAL HX, 7, f)) 0 = e ™ (XVAL X[ ).+ 2le2r ||| X2 Ar|
ST (O H(XT ) = e (IIxP var]* = siixiarP)

cem (JIXE AS = 81191 + 32 11 = 16 XV 77)

Proof: All these equalities are obtained via integrations by parts. We only show the
first four ones, the others are obtained with the same method. Let us show the equality
1. Two integrations by parts imply

(—F X (f = e ™AS) o = = [[IXP £ = cne T [|IXIP V1|
—4041@—72/ X; |X? fo;fdX
j=1 /R
=—IXP £ = ane [IXP V£
2
- 20&16_7—2/ Xj |‘XV|2 aj (f2) dX
j=1 /R
— —IXP A" = cre [IXP VA 4+ 8are |1X] £
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The equality 2. is obtained through the same computations. We show now the third
equality of this lemma. Integrating by parts, we obtain

X . ~ o~ [ XX e
(—?~Vf7|X| (f—041€ AJC)>L2—_]‘ZI/]R2 4 8j(]f|)dX

2

tone Ty X5 |X‘ O fAfdX

RZ

2 4
3 2 2 _r X|X|
:5\“)(] fII” + aue ;/M O fAfdX.
Besides, integrating several times by parts, we get
2
X; |1 X X; |1 X
ae”y ' i L9 fAfAX = —age” Z/ £0; | ‘ LS
=1 JE e
__3041@‘7/ |X\ fAfdX
R2
o —T
— 5 T (XVALIX'S)
2
= —2daye™™ |||X| fII* + 3are™ ||| X V]|
oy .
— 5T (XVALIX]f)
and consequently
(3 VLI = oeAN) o = FIIXE 7 = 24ene [1X] £

306 IIXPVF| — e (X.VALIX]' f),,

The fourth equality of this lemma is obtained by summing the first three ones. By the
same method, we obtain easily the equalities 5. and 6. of this lemma.

OJ

The H?(2) estimate of f is given in the following lemma.
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Lemma 4.6 Let W € C' ((1o,7.), H(2)) N C° ((10,7.) , H*(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some v > 0. There exist yo > 0 and Ty > 1 such that
if T > Ty and v < o, then for all T € [10, 7)), Eg satisfies the inequality

1
8E6+9E6+—H|X| P+~ Hle v+ =

Oél o7

lIx P af|
<My (10 e 4 1 S AP CMEE (L= 0 (U1 + I + 1AS)

(4.42)
where 6, 0 < 6 < 1 is the fized constant introduced at the beginning of Section 4.

Proof: To show this lemma, we perform the L?—product of the equality (4.3) with
I X|*(f — are™"Af). Applying the lemma 4.5, we obtain

1 2 4112 —r 2 2 L 0d 2 2
0B + 5 [[IXPFII"+ (1 cae™ ) [IXPVE]"+ (ene™ + Fe ) IXFAS|[" + 7

= Cee T |[|X|Vf|* + Ceare™ ||| X| Af|I* + (8 + 8aze™™) ||| X] fI°
+0h + Lo+ I3+ 1y + I,
(4.43)

where

J=—pe?" (div (|A|2 Vf) , |X|4 (f — ale_TAf))LQ )
L= (KN (f — e "Af) X (f — a1e "Af)) L
I =10 (KV (G—-ae AG),|X|" (f —oue "Af)) 0
Is=n (V.V (f — ale_TAf) , |X|4 (f - ozle_TAf))Lz ,
Iy = —nmee™” (A2G7 |X|2 (f - O‘le_TAf))LZ’
+ nage" (AG + )2—(.VAG, X[ (f - ale‘TAf)>

L2

— nBe”" (div (|A|2 VG), X" (f - ale_TAf))L2 :
= —Be™ " (div (V (JAP") AN A)IX|* (f — are AS)) -

We estimate now J. One has
J=J+ Js, (4.44)

where
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Ji=—Be™ (div (JAP V) X[ f) ..
Jo = Bare™ (div (JAP V), IX["Af)) ..

We estimate J; and J, separately. Integrating by parts, we obtain
) 2
T = B ||| XAV F|* + e 2/2 X, | X2 |AP 0, fdX.
j=1 7R
Using Holder and Young inequalities, we obtain

<

™

e ||X Al v

2
4@3272/ X, | XA 0;ffdX
j=1 7%

+CBe |1X] fIP IV UIz-

Then, using the inequality (2.15) of Lemma 2.4, the inequality (2.4) of Lemma 2.2 and
the conditions (4.4) and (4.5), we get

<

O™

e ||| X2 1A V[

2
4ﬁe‘272/ X; | XA 0;ffdX
j=1 /R

+ OB [[IXP ATV W g VW] 20

< Do |IXP 1AV + 0ot (- )2,
and we conclude that
Jp > geQT |1 1% 4] Vf||2 —CM*A P (1—0) e . (4.45)
By the same way, we estimate J;. A short computation shows that
Ty = Bane 3 [[|XP A AF|) + 280073 S0 [ |X[P ;A A0, fAfdX.

We define

I =

2
2Bare” Z/ | X" 0,A : AD;fAfdX
j=1 7R
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Applying Holder inequalities and the continuous injection of H'(R?) into L*(R?), we
obtain

1< Cone ™ X141 A7 |1XP 951, 9201
< CBone™ ||1XP* 141 A7 |1 XP 9] [[920]) .

Using the inequality (2.6) of Lemma 2.2 and the inequality (2.17) of Lemma 2.4, we get

1/2

I < CBane™ ||| XAl A [IXIP V||
< (A2 4+ XA 4 1XP ALY 1 e

Due to Young inequality and the condition (4.4), we obtain

1< gale_?” XAl Af|
+ CBone™ Wi (I + 1912 + IXP VAP + 1 A7)
< §a163T [1X 214 Af|

+OMy (1= 0 (IFI1P + IV AP + [IXP AP + 1XP ar]).
Thus, we can conclude that

Jy > 2&16—37 H|X’2 |Al Af”2

2 2
—CMy (1= 0)° e (I + IV A+ [1XP V£ + [1XP af]).
(4.46)
Combining the inequalities (4.45) and (4.46) and going back to (4.44), we have shown
that

72 S (KPS + are |IXP 1AL A7) = CM22 (1 - 02 e

—CMy (1= 0)° e (I + IV AP+ [1XP V£ + [1x1 Aaf])
(4.47)
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Taking into account the inequality (4.47), the equality (4.43) becomes

1 2 2 _r 2 2 _r O[% _9r 2 2
0B+ S [[IXF A"+ (14 aae™) [IXP VA" + (ene™ + e ) [[IXPAS

B o 2 . 2
+2e (IXP 1AV +are [|IXP A Af]) <
Cee™ [|X|VFII* + Ceare ||| X] AS|* + (8 + 8are ™) |1 X] f]
oy 2 2
+OMy (1= 0)° e (I + IV £ + [ |XP V£ + [1X1° af])
FOM* P (1= )P e+ L+ I+ I+ I+ Is.
(4.48)

It remains to estimate every I;, © = 1,...,5. Using the divergence free property of K,
integrating by parts and using Holder inequalities, we get

2
I = —22/ XX K, | f — ane " Af|PdX
j=1 /R

< ONE | oo [[IX* (f = cne TAL)[IX] (f = aneAS)|| -

The inequalities (2.15) of lemma 2.3 and (2.4) of lemma 2.2, the Young inequality ab <
%a% + %b‘l and the inequality (4.5) yield

3/2 1/2

Lo < Clfllge 115 NIXP (F = are ™ AH|77 | f = cae " A
< COMY2M2 (10— 0) ([|IXP (f = ene A"+ ||f - ale’TAfHQ)
< M2 (1= 0 (|IXP £||” + ade > |[|IXPAF|] + [IFI1* + a2e ™ \|Af\|2> .
(4.49)

Using the inequality (2.14) of Lemma 2.4, one can bound I in a convenient way. Indeed,
one has

L < Ol |K ] [[|IXPV (G = are TAG) |y || X1 (F = cne™"Af) |
< C PNl g2y (NXF FI| A+ ene™ [[IXFAF]) (4.50)
< OM"y (1= 0)° (IXP 7| + e | IXP AL+ 1117)
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Via an integration by parts, due to the facts that V(X).X = 0 and divV = 0, we show
that I3 vanishes. Indeed

2
Iy = gZ/R X" V;0 (\f — ale’TAff) dXx
j=1
2
:_QnZ/ |X|XjVj|f—oqe_TAf|2dX:O.
j=1 /R

We rewrite Iy = I} + I?, where

X
I} = —naje™ ™ <0%A2G + AG + E.VAG, |X]2 (f — OzleTAf)> ,
L2

I? = —nBe™" (div (|A|2 VG) , |X|4 (f — ale_TAf))L2 .
It is easy, using the smoothness of G and the inequality (4.5), to see that
I < Clnle " Gl (I1Fl + are™ [Af])
<COM~y(1-6)%e.

The term I3 is not really harder to estimate. Due to the inequality (2.13) of Lemma 2.3,
the inequality (4.5), the continuous injection of H'(R?) into L*(R?) and the inequality
(4.4), we get
17 < |nl B> (IVUIIza [1X1" AG| o + VUl [ VU] [1X1" VG|
< (IfIF+ane™ ™ [|AF]])

< Clnl e (IWl5a + Wl IV W) (11 + cne™™ A

< Clnl e (IW 5 + Wl W llg2) (11 + aae™ [AF])

<OM**(1—-6)2e 7.

Thus, assuming v < 1, the following inequality holds:
I <CM*y(1—6)°e. (4.51)

It remains to estimate [5, which is the term that does not appear in the second grade
fluids equations. We rewrite
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=1+ I3,
where
1= —pe (div (V (JAP) A A) X' F) .
I = Bage ™ (div (V (]A|2) ANA), X[ Af)ps-

We begin by estimating I3. After some computations, we notice that we have to estimate
two kinds of terms. In fact, one has

Iy <I3'+ 17,
where

Bt =cpe [ X920 9015 ax.
R2

% = 056—27/ (X' VU] VU | f| dX.
R2

In order to simplify the notations, we define
6= M~y (1—06)°

Applying the inequality (2.6) of Lemma 2.2 and the continuous injection of H?(R?) into
L>(R?), we obtain

I < Be* |IXIV2U [ VUl 11X £]
< OBe > (IW I+ I1X YWD (VW + IXTAW ) VU2 [[1XF £
Then, using the inequalities (2.4) of Lemma 2.2 and (2.17) of Lemma 2.4 and the condi-
tions (4.4) and (4.5), we get
13 < o (Wi + VW2 IX P vw )
< (IFWIL+ AW X P AW ) W e (1T 7]
< O5e 3712 (51/2 1/ H|X!2 VWH1/2> (51/2 1§/ |HX|2AWH1/2> .

Then, we recall that W = nG + f. Due to the fact that || < 6'/? and the smoothness
of GG, we obtain

I < Coe2 (62 4 64 || X PP W |77) (672 4 64| IX P A g )
1/2 1/2

< C&e P4 O HeTIR|XP VT + CsT e || X2 A

+C63/26757/4||]X|2Vle/2 1/2

X Af]

135



Chapitre 4. Fluides de grade 3

Using the Young inequalities ab < ta* + 20*/3 and ab < a® + 2b%/2, the inequality (4.5)
and assuming v < 1, we finally obtain
1 <ore ¥ v om (X + e )
+COP (e e ) + CoWe ¥
< crres + o0 (|IXE VAP + IXE A1)
e (e_zT N e—%) +CoeF + o ||| X PV
< OOy (-0 % + Car (1 0 ([IXP VS + [IXPASE).
(4.52)

XPvr|”?

In order to estimate I}, we use Holder inequalities and obtain
L% < Cpe™ [[|IXPVEU | [1XP £ IVU s
Then, using the Galiardo-Niremberg inequality, we notice that
11X Al < MXP A9 (X P )
< OflIxP A (UXLA+ [[1XP 9]

1/2
)1/2

The inequalities (2.13) of lemma 2.3, (2.20) of lemma 2.5 and the continuous injection
of H'(R?) into L8(R?) imply
1% < Cpe [[|IXP VAU [IXT £l 19U
< CBe™™ (IW] + X VW + ||| X" AW]))

<X N2 (XL + X v e

2
W[
Finally, using the conditions (4.4) and (4.5) and the Young inequality ab < a* + 3p%/3,

we obtain
1/2

2 <ot ||x P
< Cs?e ™+ OS5 || XPf| (4.53)
< CM*2(1—0)2 e+ CM~ (1—0)° ||| X £||.
Thus, combining the inequalities (4.52) and (4.53), we obtain

B OMy(1=0) e+ CMPy (1= 0)° (IXP £ + [1XP V1] + [I1X1° ar])
(4.54)

It remains to estimate I2. Like in the case of I3, we have to consider two kinds of terms.
Indeed, one can show that
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<+ 127

where
> = Calﬁe?”/ X[ [V2U[* VU |Af]dX,
R2
2% = Coqﬁe_3T/ (XM |VPU| VU |Af| dX.
]RQ

With the same tools than the ones used to estimate I}, one can bound I2'. Due to
Holder inequalities and the continuous injection of H?*(R3) into L>°(R?), one has

' < ConBe ™ |[|X P AS|| ||| X| VU3, IV U]
< CanBe ™ ||| X1 Af| [1X] VU3 19U

Then, using the inequality (2.6) of Lemma 2.2 and the inequality (2.17) of Lemma 2.4,
we obtain

I < Cane ™ [|IXPP AL AW+ 1XYW (VW] [1XT AW W] 42
Finally, the condition (4.4) and Young inequality imply

Y < Cele ||| X AL

4.
<OM*2(1-60)2e™? + CMy(1—0)° ||| X AfH (4.55)

Likewise, using the inequality (2.20) of Lemma 2.5 and the continuous injection of
H3(R?) into L (R2), we get

27 < CBane™ ||| X AF|| || X V2U || | VU]
< CPaxe ™ [[|IX[PAF| (W + 1XYW+ [[IX]* AW ) W[ 3gs/2
< O e || X[ AL W /2 -
Using the well-known interpolation inequality
[0l oz < Clollyf? lollygs,  for every v € HX(R?),

we obtain, using again the condition (4.4) and Young inequality,

% < Coe ||1XP° AfHIIWHHl W] 2
< O6%2e7372 ||| X2 Af| (4.56)
< OM?y* (1—6)2e™ + CM~y (1-0)° || XPAf|.
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Finally, the inequalities (4.55) and (4.56) imply
< CM*?(1—0)%e +CMy(1—0)° || |IX] af|”. (4.57)
Thus, combining the inequalities (4.54) and (4.57), we get
I; < CM2y (1= 0)° 7+ OM2y (1= 0)° (JIXP £[* + 1X1* V| + [I1XP Af]7)
(4.58)
Taking into account the inequalities (4.49), (4.50), (4.51) and (4.58) and going back to
(4.48), one has
1 2 2 -7 2 2 -7 Oé% —27 2 2
0- B + 5 NXP A+ +ae) [IXPVF + (ae™ + 3¢ |1XT7°AF|
— (84 8ane™) IX| £II” <
Cee ™ ||| X| VFII? + Ceare ™ ||| X|Af|* + CM?*y (1 —0)° e
+CM271/2(1—9)3(||f||2+||Vf||22+ IAf]) , )
+OM2 (1= 0) (JIXP A1 + 1XP 9| + [1x1 af])

(4.59)
Via the Young inequality and the condition (4.5), it is easy to check that

Cee  [|IX| VI + Ceare™ [|X] Af|? < & [[|IXP V| + Ce |V
+e2 IXPAF| + Cate ™ | Af|P
< |IxP V|t + e X1 af’
+CM(1-60) e ™.

70

1 age™
We assume that €2 < min (5, 12

). The inequality (4.59) becomes
2

2
# (G + G ) X AL = s X111 <

1 1
oy A (5 ) P

oMy (1-0)° e +8|X| /| 2 2
FOMA? =07 (I + IV AP+ IAF) 2
+C M3 (1= 0)° (IXP I+ [1X P 9 f |+ 1 af]).
(4.60)
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where (] is a positive constant dependent on a; and 3.

We take now ~ sufficiently small so that Cy M2y/2 (1 — 6)® < =2 We obtain

0.E¢ + (g + 17_9) H|X|2 fH2-|— <éll +ale—T) H|X|2 VfHQ
ar -, Oé% —27 2 2 -7 2
+(Ie + o )||yX| AF|? = sase™ [I1X] £]

CM*y(1—-6) e +8H|X\f|\
+C M2 (=0 (IFIP + IV AP+ 1AL

(4.61)
Using the inequality (2.4) of lemma 2.2, one has
SMXUH<hMX|ﬂ|+ Hﬂ| for all h > 0.
Thus, we set h = % and obtain
0 1-10 2 1 . 2
05+ (5 + 50 KR AP + (1 + 0 ) X107
ar _. o _ 2 _
n (Zle "4 27) 11X AF| = Sare [I1X] 1P
- 1024
CM*y(1-0)"e ™+ — HfH
+Ch M2 1/2( 0 (ILF1I° + IV I+ NAFI®) -
(4.62)

Integrating several times by parts, we notice that
2,112 —r 2 2 a2 _or 2 2 _r 2
= [IXP I+ ane™ [IXE VA" + Fe IXF AS]]" = 8are ™ [I1XT £
Consequently, the inequality (4.62) can be written

(05} o7

1
a£@+9E6+———JHX|fH-+—Hpm VfH+- {WX|AfH

<OM (-0 e 4 T 1024 S+ CME2 (1= 0)° (U712 + IV I + 1ASIP)
(4.63)

OJ
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5 Proof of Theorem 1.1

In this section, we consider the solution W of (4.1) with initial data W} satisfying the
condition (1.8) for some v > 0 and we take advantage of the energy estimates obtained
in Section 4 to show that W, satisfies the inequality (1.9). Then, we pass to the limit
when ¢ tends to 0 and show that W, converges, up to a subsequence, to a weak solution
of (1.6) which satisfies also the inequality (1.9). We recall that

Ws :UGJrfe;

where G is the Oseen vortex sheet given by (1.3), n = Wo(X)dX and f. satisfies the
R2
equality (4.3). We define the functional

K
= E E,
=9 5 + L,

where K is a large positive constant that will be made more precise later and E5 and Fg
are the energy functionals defined in Section 4.

E;

If K is large enough, this energy is suitable to estimate the H?(2) norm of f., as it is
shown by the next lemma.

Lemma 5.1 Let f. € C' ((10,7.), H*(2)) N C°((70,7), H*(2)). If K s large enough,

there exist two positive constants Cy and Cy such that, for all T € (79, 7:),

C
B < 75 (el + e AL + [IXP LI +afe IXPAL|) .

Co (1 fellip + e AL + IXP £]|* + e X AL]) < 2.

Proof: The first inequality of this lemma comes directly from the definition of E7. To
prove the second one, we notice that

CK 1
Erz1—5 (Il + aae™ ™ AL)?) + 2 [1X17 (f = cne ™ALL

Furthermore, we have already shown that

’ 2

1T (e = aae™ AL | = X £+ 2000 [[1XP VL[
2 2
+afe T [[[XIPALT - 161X £
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Via the Holder and Young inequalities, we get
IXP (f: = are ALY [* 2 [1X° £ + 2006 [|IXP V£
+ate NP AL - 5 X £ - 128 0107

Consequently, one has

CK 1 o
Br = 75 (15l + ane ™ IALIP) + 5 [1XP £ + ane ™ [[1XP V2|

2
+ S [IXP A — 6410

Thus, if K is big enough, we get the second inequality of this lemma.
O

Lemma 5.2 Let W, € C°([ry,7.), H*(2)) be a solution of (4.1) satisfying the inequality
(4.4) for some v > 0. There exist Ty > 0 and vy > 0 such that if T = e™ > Ty and
v < o, then, for all T € [10,7), E7 satisfies the inequality

O-E; +0E; <CM*y(1—60)e". (5.1)

Proof: We take vy and Tj respectively as small and large as necessary to satisfy the
conditions of the lemmas 4.2 to 4.6. According to the inequalities (4.41) and (4.42), one
has

8E7+9E7+—( H INE A

1 1024
+—IHX\ LI+ Fem [IXP AL <My (1 —0)em + =5 I£I°

AN )

+0M2<1—e>¢/2K(H|X| Fo|* + ade™ [[1xP L)
+CM? (1= )72 (II£I° + IV L7 + AL -

2
Using the interpolation inequality (4.27) of || f||* between H(—A)_%g fo|| and |V £|?
and taking K large enough and ~ small enough, we get
O-E; +0E; <CM*y(1—60)e". (5.2)
OJ

Remark 5.1 We can see in the proofs of the lemmas 4.2 to 5.2 that vy does not depend
on 0, but only on ay, B and M.

141



Chapitre 4. Fluides de grade 3

5.1 Regularized problem

Before proving Theorem 1.1, we show an intermediate theorem. This one gives the
same result than Theorem 1.1, but for the solution of the regularized system (4.1).

Theorem 5.1 Let 0 be a constant such that 0 < 0 < 1. There exist £g = £¢(aq, ) > 0,
Y = Yo(aq, B) > 0 and Ty = To(a, 5) > 0 such that, for all e < gy, T = €™ > Ty and
Wo € H?(2) satisfying the condition (1.8) with v < 7y, there exist a unique global solution
W. € C' (19, +0) , HY(2)) N C° ((10, +00) , H3(2)) of (4.1) and a positive constant C' =
C(ay, B,0) > 0 such that, for all T > 79,

(1 = @1e™A) (W) = 1G) 1oy < O™, (5.3)

where n = Wo(z)dz and the parameters oy and B are fized and given in (1.1).
R2

Proof of Theorem 5.1: Let W, € H?(2) satisfying the condition (1.8) with 0 <y < v,
and 0 < Ty < T, where vy and Ty will be made more precise later. By theorem 3.1,
there exist 7. > 79 = log(7T") and a solution W, to the system (4.1) which belongs to

C ((ro,72), HY(2)) N C° ((70,7) , H3(2)). Let n = / Wo(X)dX, and f. defined by the
R2

equality
We=nG + f.. (5.4)

Let M > 2 be a positive constant that will be set later and 7 € |7y, 7.) be the highest
positive time such that the inequality (4.4) holds. As shown at the beginning of Section
4, the inequality (4.5) holds on [ry, 7). We take Tj sufficiently large and vy and ¢
sufficiently small so that the results of the lemmas 4.2 to 5.2 occur. Consequently, there
exists C' = C(ay, ) > 0 such that, for all 7 € |7, 7),

Or (Ere”) < CMPy(1-0) e~ (=0, (5.5)
Integrating this inequality in time between 7y and 7 € [rg, 72), we obtain
Er(7) < Er(19)e” ™) 4 C M3y (e_(l_e)Toe_eT —e7). (5.6)
Due to the decomposition (5.4) and the lemma 5.1, for every 7 € [r9, 7)), one has

W) 2 + IXPWe(r)||” + ane ™ AW ()2 + a2 ||| X [P AW (7)||” <
C7]2 + CE7(T)
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Since f. satisfies the inequality (4.5), one has n? < Cy (1 — #)°. Taking into account the
inequality (5.6), it comes

W2 + 1 XP W) + are™ [AWL(F)|? + a2e~> ||| X2 AWL()|)” <
Cy (1 —8)° + Er(r)e - TO + CM?vye™™.
(5.7)
Using again the lemma 5.1 and arguing like for the establishment of the inequality (4.5),
we can show that

C
B < 1S (I + e 1L

-1
+IXP o) |+ ade |IXP A () )
<Cy(1-6).
Consequently, the inequality (5.7) becomes

W)+ [IXP W) || + aae™™ [AWL(0)|* + a2 [[|X [ AWL(7)||” <
Ciy (1—0)° 4+, M3’)/€ o,

(5.8)
where C and C5 are two positive constants independent of Wy and 6.
We set M = 401 , and we get

r —or 2
IWe(r) o + [[IXPWe(n)||” + aae™ |AWL(D)IP + ade™ [[|XP? AWL(r)|” <
M~ (1—-6
7(4 ) +CQM3’}/€_TO.
(5.9)

6
< M~ (1-6)

Finally, taking Ty sufficiently large so that CyM3~ye , we obtain, for all

T E [7—077-;)?

Wt X W) e AW ) -rade I AW () < 2220

(5.10)
This inequality shows in particular that 7* = 7. and thus (5.10) holds for all 7 € [r, 7).
From the inequality (5.10), we deduce also that 7. = 4o00. Indeed, if 7. < +o00, the
boundedness of W, in H*(2) on [ry, 7.) given by (5.10) is a contradiction to the finiteness
of 7..

In particular, the inequality (5.6) occurs on |1, +00). Applying the lemma 5.1 in the
inequality (5.6), we finally obtain the inequality (5.3).
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5.2 Existence of weak solutions in H?(2)

Now, we show that under the hypotheses of Theorem 5.1, there exists a global weak
solution W of (1.6) which belongs to C° ([ry, +00), H?(2)), and that this solution con-
verges to the Oseen vortex sheet G when 7 goes to infinity. To this end, we pass to the
limit in the system (4.1) when ¢ tends to 0 and show that, up to a subsequence, W. con-
verges in some sense to a solution of the system (1.6) which satisfies the inequality (5.3).
Let (€,)nen be a sequence of positive numbers tending to 0. We consider the solution
W, € C* (9, +00), H(2))NC® ((19, +00) , H3(2)) of (4.1) which satisfies the conditions
of Theorem 5.1. Due to technical reasons linked to the compactness properties of Sobolev
spaces, it is more convenient to establish the convergence of W, to W in every regular
bounded domain of R2. Let Q be a regular domain of R? and 7; be a fixed positive time
such that 7y < 71 < +00. In what follows, H*(2), s > 0, denotes the restrictions to {2
of the functions of the Sobolev space H*(R?). From Theorem 5.1, we know that W,
is bounded in L* ([y, +00), H%(2)) uniformly with respect to n. Consequently, there
exists W € L* ([r9,71] , H*(2)) such that

W., =W weakly in L? ([ro, 1], H*(2)), for all p > 2.

Looking at the system (4.1), we can see that 9,W., is bounded in L* ([o, 7], H*(2))
uniformly with respect to n. This implies that W, is equicontinuous in H'(Q). Indeed,

for 01,09 € [10,71], 02 > 01, we have
/ O, W, (s

S 02 — 01) Ha We, ( )HLOO ([ro,m1],H () *

||W5n(02) - Wan(gl ||H1

HY(Q)

Furthermore, for every 7 € [y, 7], the set |J f.,(7) is bounded in H?*(Q) and thus
neN
compact in H'(2). Using the Arzela-Ascoli theorem, we get

W., - W strongly in C° ([, 1], H'(Q)).
By interpolation, we can show that

W., =W in C°([r, 7], H*(Q)), forall s<2. (5.11)

This is enough to pass to the limit in the system (4.1) in the sense of distributions on
[10, 1] x 2 and to show that IV is a weak solution of the system (1.6). Since most of the
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terms of the equation (4.1) have already been studied in [47], we will just show that the
convergence holds for the term  —div curl (|4, ? A.,)  which does not appear in the
second grade fluids equations.

We consider ¢ € C§° ([0, 71] x Q). For all 7 € [y, 71|, we want to show that

/ /|A87L(T,X)|2AEH(T,X)OVQQD(T,X)dXdT—>
0 J

. (5.12)
/ /Q Alr, X)? A(r, X) o V2 (r, X)dX dr.

when n tends to infinity, where, for A, B € M;(R), we use the notation

2
Ao B = Z (Al,jBZ,j — AZ,jBl,j) .

=1

The term of the right hand side of (5.12) appears naturally via two integrations by
parts, when performing the L?—scalar product of —div curl (]A|2 A) with ¢. The strong
convergence of W, to W in C°([rg, 1], H'(Q2)) implies directly the identity (5.12). In-
deed, due to the continuous injection of H'(Q) into L3(Q), W., converges to W in
C ([r0, 1], L*(Q)). Furthermore, the inequality (2.13) implies

||A5n - A||L3 S ||W5n - W||L37

and consequently A. converges to A strongly in C° ([7o, 71|, L3(Q2)). This fact suffices
to show that the identity (5.12) occurs. Thus W is a global weak solution of (1.6) which
belongs to C° ([7y, +00) , H%(2)).

The fact that W satisfies the inequality (1.9) is a direct consequence of the weak conver-

gence of W,, to W. Indeed, for all 7 € 7y, +00), W, (7) is bounded in H?(2) uniformly
with respect to n and consequently we have

W., (1) = W(r), weakly in H*(2), for all 7 € |1y, +00).
Since W, satisfies the inequality (1.9), it implies that W also satisfies (1.9).
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5.3 Uniqueness

The aim of this part is to prove that the solution w of the system (1.2) obtained in
Section 5.2 is unique in L?*(2). Let w; and wy be two solutions of (1.2) with the same
initial data wy € H?(2). Let u; and uy be the divergence free vector fields obtained via
the Biot-Savart law respectively from w; and wy. We also define A; = Vu; + (Vui)t.
Applying the Biot-Savart law to the system (1.1), we can see that, for i = 1,2, the
divergence free vector field u; satisfies the system

Oy (u; — onAw;) — Au; + curl (u; — aqg Aw;) A w; — Bdiv (|Ai]2 Ai) + Vp; =0,
div u; = 0, (5.13)

Ujt=0 = U0,

where ug is obtained from w via the Biot-Savart law.

Notice that since w; belongs to Lo, (R*, H*(2)) and dyw; belongs to Ly, (R*, H'(R?)),

loc loc

the inequalities (2.11) and (2.13) imply in particular
u; € L2 (R, LP(R?)?), for all p> 2,

loc

Vu; € L2 (R, H2(R2)Y),

loc

Owu; € Lo, (RY, LP(R?)?), for all p > 2,

loc

9, Au; € Lo, (R, L2(R?)?).

loc

Consequently, the system (5.13) has a meaning in the sense of distributions.

We note w = wy; —wq, 4 = u; —us, L = L1 — Ly and A = A; — Ay. A short computation
shows that u satisfies the system

O (u — anAu) — Au + curl (u — g Au) Aug + curl (ug — a1Aug) Au
+8div (|As|* Ay) — Bdiv (|A[* Ay) + Vg =0,
divu =0,
U‘t:() =0.
(5.14)
Notice that, although u; and uy do not belong to L*(R?), the divergence free vector field
u does. Indeed, since w; and ws have the same initial data, for all ¢ > 0, we have

/ w(t,z)dx = 0.
R2

By application of the lemma 2.5, this fact implies that u belongs to L*(R?). Let ty > 0 be
a fixed positive time. We notice that both w; and ws are bounded in L™ ([0, to] , H%(2)).
More precisely, one has

146



Chapitre 4. Fluides de grade 3

sup (Jlur(t) e+ 02(8) gy ) < €.
t€[0,to)

Applying the lemma 2.3, it implies in particular

sup ([lui(t)[l s + [[Vui(t)l| oo + [[Aui(®)]lp4) < C, for i =1,2.

€[0,to
In order to show that u = 0, we now perform estimates on the H'—norm of u. The
uniqueness of the solutions of (5.13) has been shown in [10] for solutions with initial
data in H?(R?). In our case, the proof is slightly simpler, because the vector field u

belongs to H3*(R?)%. We consider the L?—inner product of (5.14) with u. First of all,
integrating by parts, we notice that

B(div (JA2]” Az — [A1]P A1) yu) = = (JAL? Ay — |As* As, A) |,

N e Sl e

T

(JA1]? + |Aa]?) |A]? da
RQ

g (|AL* = |A2?) (A1 + Ay) : Ada
]RQ

A~ @
+

(1A + | A2)") |A]* do

R2
15} 2
+ Z (|A1‘2 — ’A2|2) dz.
R2
Thus, using integrations by parts and the divergence free property of u, we have
1 B
300 (el + IVl + 19l + 5 [ (A + 4P 141 da

2
+§/ (|A1|2— |A2’2) dx:[1+[2,
R2

(5.15)

where
I = (curl (ug — a1Aug) Au,u);2,
I = (curlu Aug,u);s
I3 = —ay (curl Au A ug,u);o .

A short computation shows that I; vanishes. Indeed, we set w = uy — a;Auy and we
recall the notation u = (u!,u?,0) and curl w = (0,0, Oyws — Dow;). We have
I = (curlw A w,u), s
= — ((81w2 — 820.)1) U2, Ul)L2 + ((81&)2 — 82w1) ’LLl, UQ)
=0.

L2
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Due to the boundedness of u; in L*(R?), applying Hélder inequalities we obtain

Iy < [ [[Vul| [[u]
< Olaa) (Jull” + e [[Vu]*) -

Using [57, Lemma A.1], we check that
thCa{/ MMHHVUHUMM—FCQ{/ Vo | |Vl da.
R2 R2

Using Holder inequalities, the Gagliardo-Nirenberg inequality and the Young inequality
ab < ia“ + 364/3, we obtain

Iy < Cay ||ull pa [|Aus| 1o [ V|| + Cay [V | oo || V]|
< Cay ||Vl [|u] '/ + Cay | Vaul)?
< C(ar) (JJulf® + aq |Vul?) .

Going back to (5.15), we get
L0 (lull® + o [ VulP?) < ’ ? 5.16
50 (lull” + al[Vul") < C(a) (Jull” + a [ Vul[) (5.16)

Integrating in time this inequality between 0 and ¢ € [0, ¢y] and applying the Gronwall
lemma, we finally obtain

lu@®)]]* + a||[Vu@)|? =0, forall ¢el0,t).

Since t, is arbitrary, we conclude that w = 0 on R*. Consequently u is unique and so is
w. Thus, the system (1.2) has a unique global solution in the space CY (RT, H?(2)).
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II. Attractor for the third grade
fluids equations in dimension 2

1 Introduction

In this article, we study the asymptotic behaviour of solutions of third grade fluids
equations in the periodic domain T? = [—, ]*. This class of non Newtonian fluids, which
is a particular case of fluids of grade n (or Rivlin Ericksen fluids), has been introduced
from the mathematical point of view by Fosdick and Rajagopal in 1980 (see [31] and
[59]). Since one can find many non Newtonian fluids in the nature, the understanding of
their behaviours is important. For instance, one can find non-Newtonian fluids in a lot
of oils used in industry, or even in the day-life, for examples melted cheese or wet sand.
The third grade fluids equations are given by

O (u— o Au) — vAu + curl (u — a1 Au) Au— (g + ag) (AAu + div (LLY))
—Bdiv (|A*A) + Vp = f,
divu =0,
Ujt=0 = Uo,
(1.1)
where u is a vector field of R? or R?, v > 0 is the cinematic viscosity, p is the pressure
of the fluid, depending on u, a; € R, ap € R, § > 0, (L)l.’j = Oju; and A= L+ L*. For

d d
matrices A, B € My4(R), we use the notation |A|* = Z A7 and A: B = Z A; ;B ;.

3,j=1 3,j=1

Notice that if we consider § = 0 and as = —aq, one recovers the second grade fluids
equations, which is another class of non-Newtonian fluids, introduced earlier in 1974 by
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J. Dunn and R. Fosdick (see [24]). If we assume oy = as = = 0, one recovers the
classical Navier-Stokes equations, which modelize Newtonian fluids.

The equations of third grade fluids have been studied in various cases, in open domains
of R? or R? (see [1], [9], [5] or [61]) or in the whole spaces R? and R? (see [10], [11] or [55]).
On a bounded set of R? or R3, Amrouche and Cioranescu have shown the existence and
uniqueness of local solutions to (1.1) in the Sobolev space H? with Dirichlet boundary
conditions (see [1]). For this study, they made the restriction

a1 + ] < /2405, (1.2)

which comes from physical considerations. The proof of their result is based on a Galerkin
method associated to the eigenspaces of the operator curl (Id — aA). Later, in [9],
Bresch and Lemoine introduced a more general class of solutions belonging to the space
L= ([0,T],W?*P(Q)?), with p > 3 and T > 0, for initial data in W?P(Q)? and forcing
term in L? (R*, LP(Q)3). This result is obtained without assumption on the parameters
by using the Schauder’s fixed point theorem, and shows additionally that the solutions
are global in time if the initial data are small enough in W?2?(Q2)3. In the whole space
R? or R?, Busuioc and Iftimie established the existence of global weak solutions in the
Sobolev space H? (see [10]), using Friedrich’s method and a priori estimates in H?.
Furthermore, they showed the uniqueness property in dimension 2 and the propagation
of the regularity if the data are in H3. Later, Paicu established the existence of global
weak solutions in the Sobolev space H' (see [55]), considering additional restrictions on
the parameters oy, oy and f. The methods used in [55] are slightly different from the
ones used in [10]. The proof of Paicu involves also a Friedrich’s scheme, but the final step
which shows that the approximate solutions converge to a solution of (1.1) is achieved
through a monotonicity method, that we will use in the present paper. Moreover, it is
shown that these weak solutions satisfy an energy equality, which will be useful in the
present paper.

In this paper, we are interested in the asymptotic behaviour of weak H'—solutions of
third grade fluids equations with periodic conditions. In order to study these asymptotics,
we will associate a dynamical system 7T'(¢) to the solutions of (1.1), as it has been made
for the second grade fluids equations or the Navier-Stokes equations. On a bounded
set ) of R? with homogeneous boundary conditions, Ladyzhenskaya has shown that
the solutions of the Navier-Stokes equations with initial data in the functions space
H = {ue L*(Q)*:divu = 0,ypo = 0} define a dynamical system in H (see [49] and
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[50]). The same result has been shown by Moise, Rosa and Wang for the second grade
fluids equations on the space H¥*N H (see [53]). In our case, the situation is slightly more
complicated. Indeed, since the solutions of (1.1) are not known to be unique in H', we
cannot associate a classical dynamical system to the H!'—weak solutions. To overcome
this difficulty, we show that the set of the weak H'—solutions of (1.1) is a generalized
semiflow for the H'—topology, according to the definition of Ball (see [3] and [4]). In [3,
Theorem 3.3], J. Ball gives a useful theorem that shows the existence of a compact global
attractor, provided that the generalized semiflow is point-dissipative and asymptotically
compact. This result is the analogue of a theorem shown by Hale, Lasalle and Slemrod in
[44] for classical dynamical systems (see also [43]). For the second grade fluids equations,
the existence of a compact global attractor has been shown by Moire, Rosa and Wang on
a bounded or periodic domain of R? for solutions with initial data in H?3, assuming that
the forcing term is constant in time and belongs to H! (see [53]). This result is obtained
through an energy equality method, which show that the dynamical system associated to
the solutions of the second grade fluids equations is point dissipative and asymptotically
compact. In the case of the torus of dimension 2, Paicu, Rekalo and Raugel proved that
this attractor belongs to a more regular space than H? (see [57]). Indeed, they proved
that there exists § > 0 such that if the forcing term is in H'*°, then the attractor is
bounded in H3*°. They also extended the regularity results to the case of solutions with
initial data in W?3P(T?), where 1 < p < 4+o00 and W*? denotes the Sobolev space of order
s associated to the L9-norm (see [56]). To obtain this result, they considered Lagrangian
coordinates.

In this paper, using the works of Paicu [55] and Busuioc and Iftimie [10], we will show
that the weak solutions of (1.1) in dimension 2 with periodic boundary conditions and
initial data in H? admit a compact global attractor for the H!—topology. This result
is obviously weaker than the ones obtained for the second grade fluids equations, and
is mainly due to the fact that, under restrictions on the parameters «y, v and 3, the
H?—solutions of (1.1) admit a bounded absorbing set in H?.

In the two dimensional case, combining results that we can find in [10] and [1], one can
show that the system (1.1) is equivalent to

Oy (u — aAu) — vAu + u.Vu — adiv (u.VA+ L'A+ AL) — div (\A[2 A)+Vp=,
divu =0,
Ujt=0 = U0,

(1.3)

where o = aj.
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Notice that, in this new system, the constant oy disappeared. This phenomenon is due
to the divergence free property of u and is very particular to the dimension 2. The proofs
of the results of this paper clearly take advantage of this fact.

The plan of this paper is as follows. In the section 2, we establish the existence
of weak solutions to (1.3) with initial data in H'(T?)? and forcing term in L?(T?)?
which is independent of the time. We will also recall the energy equality satisfied by
these solutions, which has a particular form in dimension 2. In the section 3, we recall
some definitions about the generalized semiflows and then show that the set of the weak
solutions of (1.3) with initial data in H' is a generalized semiflow for the H'—topology.
Furthermore, we show that this generalized semiflow admits a bounded absorbing set.
Finally, we show in the section 4 that the set of the weak solutions of (1.3) with initial
data in H? admits in some sense a compact global attractor for the H'—topology. More
precisely, we will show that the bounded sets of H? are attracted in the topology of H*!
by an invariant bounded set of H?2.

2 Existence of weak solutions and energy equality

In this section, we show that the proof of the existence of global H! solutions to (1.3)
given by Paicu in [55] for the whole space R? extends to the case of T?. To this end, we
define the functions spaces

H = {u € L*(T*)? : divu = 0, /T2 u(z)dr = 0} , and V =H'(T**NH.
In particular, every u € V satisfies the Poincaré inequality
lullze < [[Vul7s - (2.1)
One defines also, for s > 0, the functions space
V* = H*(T?)’NH,
and V°, the dual space of V?*.

Like for the case of a fluid filling the whole space R?, we show next that, given initial
data in V, there exist weak solutions to (1.3) belonging to the space
loc

Xoo = L% (RY, V) N L, (RE, W (T2)°).
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Although this result has not been written, it is almost shown in [55], and only a few
details differ between the periodic and the whole space cases.

In order to define the weak solutions of (1.3), we introduce the space
Xr = L% ([0,7], V) 0 LA ([0, 7], WH(T2)),
its dual space X7 and the operator R : X7 — X, given by
R(u) = —vAu — adiv (L'A+ AL) — Bdiv (JA]* A).

. . . . /
This non-linear operator is continuous from X7 to X, and

(R(u), U>X’T,XT = /0 [1/ (Vu(s),Vo(s)) 2 + ((LtA + AL) (s), Vv(s))L2

+B (JA(s)]” A(s), Vu(s)) . | ds.

Furthermore, assuming that the parameter « is small compared to the product v, we
have the following monotonicity result.
Lemma 2.1 Assume that |a| < /8vf. Then R is monotone, that is

<R(u> - R<U)= U= U)X'T,XT 20, (2'2)
for all u,v € Xrp.

The proof of this lemma is given in [12].

We now give the definition of a weak solution of (1.3).

Definition 2.1 Letup € V and f € H.

We say that uw € C° (R*, V)N LL . (RT, WH(T?)?) is a weak solution of (1.3) with initial

datum g if, for all T > 0 and ¢ € C* ([0, T],V?), the following equality holds:
T
(u(T),o(T) = alp(T)) 2 + (R(u), 0) x x, + / (u(s).-Vu(s), (s)) 2 ds

-« 22: O/OT /T2 uy(8) A" (8)0x0jp4(s)dxds

i,5,k=1
T

= (uo, p(0) — aAp(0)) 2 +/0 (u(s), Ok ((s) — alp(s))) o d8+/0 (f,¢(s)) 2 ds.
(2.3)
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Remark 2.1 If u is a weak solutions of (1.3), then the equality
O (u — aAu) —vAu+uNVu—adiv (L'A+ AL + u.VA) - Bdiv (|A|2 A)+Vp=f (24)
occurs in the sense of distributions.

For later use, we define an equivalent norm to the classical H'—norm, that is
2 2 2
[ullpy = llullz: +a [Vl .

We establish now a weak existence result for the system (1.3), when (uo, f) belongs to
V' x L?*(T?)2. This result comes nearly directly from the existence result of Paicu in the
whole space R?, but there are some details to adapt to the case of periodic boundary
conditions.

Theorem 2.1 Assume thatv >0, 5> 0 and |a| < /8B and let ug € V and f € H be
given. There exists a solution u to the system (1.3) such that

ueC) (R, V)NL,, (RY, W(T?) and Ow e Ly, (RY, H).

loc

In addition, for every weak solution of (1.3) in the sense of Definition 2.3 and all t >
s >0, the following energy equality holds

1 t /8 t 1 t

3 10Ol +v [ 19u@do+ 5 [ 1A dr = 5 u(s) iy + [ (o), do
(2.5)

The proof of this theorem is very similar to the one in [55]. We only need to do a few

changes. In particular, we need a technical lemma, which is the analogue the lemma

obtained in [23, lemma II.1] on the whole space R?. For n € N and v a function of R?
we define the linear operator

keZz2

where v, = / v(x)e”**dz is the classical Fourier coefficient of v associated to k, and
T2

v € C§° (R, [0,1]) is a smooth function such that
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It is well-known that, for all p > 2, J, is well defined on LP(T?) and, for all v € LP(T?),
one has

Jo(v) — v, in LP(T?).

n—oo

Furthermore, .J, is self-adjoint with respect to the classical L?-scalar product and com-
mutes with derivatives

The lemma which enables to prove Theorem 2.1 is the following.

Lemma 2.2 1) Let u € W'4(T?)? and v € L*(T?), then one has
Jn(u.Vv) — u.VJ,(v) = 0 in L*(T?) when n — +00.
2) Let T >0, ue€ L*([0,T], W' (T?)?) and v € L* ([0, T] L*(T?)), then one has
Jo(u.Vv) —u.VJ,(v) = 0 in L? ([0, T], L*(T?)) when n — +oo.
This lemma is obtained by following step by step the proof of [23, lemma I1.1] given by
R. Di Perna and P. -L. Lions and enables to show the existence of weak solutions of (1.3),

following the steps of [55, Theorem 1]. The proof of the energy equality is also given in
[55]. Indeed, it is shown that, for all £ > s > 0 and every weak solution u, one has

1 t ﬁ t
3 10Ol +v [ 19u@) G do + 5 [ AL do
S S t

%a/:/w tr (4%(0)) dxdaz%“u(s)”?i,é—%/ (f;u(0)) -

(2.6)
Actually, using the divergence free property of u, one obtains

2
tr(A%) = > AFARIAY
1,7,k=1
_ Al,lAl,lAl,l + A2’2A2’2A2’2 4 3A1,2A1,2A1,1 4 3A1,2A1,2A2,2
=0.

Thus, in dimension 2, the energy equality (2.5) holds. This phenomenon is very particular
to the dimension 2 and does not occur in dimension 3.

Remark 2.2 Notice that the fact that u belongs to L}, (RY, W4(T?)?) is a consequence

loc

of the fact that u belongs to L2, (RT, V) and A belongs to L} . (R*, L*(T?)?). According

loc loc
to the Korn inequality and the continuous injection of H'(T?) into L*(T?), it implies
that u belongs to L}  (RT, W14(T?)?).
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3 Generalized semiflow

Since the weak solutions of (1.3) are not known to be unique in general, there are
new difficulties which do not occur for the second grade fluids equations or the Navier-
Stokes equations. In fact, we cannot associate a classical dynamical system to the weak
solutions of (1.3). However, we will see that these solutions define a generalized semiflow
on V', according to the definition of J. Ball (see [3] or [4]). Furthermore, using again the
results of Ball, we are able to show the existence of a compact attractor in V' for weak
solutions of (1.3) with initial data in a bounded set of V2. In this section, we will also
assume additional restrictions on the parameters «, $ and v. Hereafter, we assume that

la] < \/8vp,
so that Lemma 2.2 and Theorem 2.1 hold.

First of all, we recall some definitions about generalized semiflows and their asymptotic
behaviour. In what follows, X denotes a metric space.

Definition 3.1 A generalized semiflow G on X is a family of maps ¢ : [0,+00) — X
(called solutions) satisfying the hypotheses:
(H1) (Ezistence) For each z € X there ezists at least one ¢ € G with ¢(0) = z.
(H2) (Translates of solutions are solutions) If p € G and T > 0, then ¢™ € G,
where " (t) = p(t +7), t€[0,+00).
(H3) (Concatenation) If ¢,1p € G, t > 0, with ¥(0) = p(t) then 0 € G, where

_[elr), for 0<T<H,
0(r) = { w(r —t), for t<r.

(H4) (Upper-semicontinuity with respect to initial data) If p; € G with ¢;(0) — z then
there exist a subsequence @,, of ¢; and p € G with ¢(0) = 2z such that ¢, (t) — ¢(t)
for each t > 0.

We will see later that the set of the solutions of (1.3) is a generalized semiflow on V. For
a generalized semiflow GG, we state the definition below.

Definition 3.2 Let G be a generalized semiflow on X. A complete orbit is a map ¢ :
R — X such that for any s € R, ¢* € G. If p is a complete orbit, we define the a-limit

of v, given by

alp) = {z € X : there exists a sequence t; — —oo such that o(t;) — z} :

Jj—00
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Let E C X, the w-limit set of E is the set given by
w(l) ={z € X : there exist p; € G with ¢;(0) € E,;(0) bounded,

and a sequence t; € RY, t; — 400, such that p;(t;) — Z} :
J]—00

If G is a generalized semiflow on a metric space (X, d), we note 2% the space of all the
subsets of X and we define the application T'(t) : 2% — 2% such that, for £ C X,

Tt E ={¢t): ¢ € G,0(0) € E}. (3.1)
We also define the semi-distance dx on the subsets of X, given by, for £, F' C X,
dx (E,F) =supinf d (e, f).

ecE JE€F
Notice that dx is not symmetric, that is the reason why it is not a distance on 2%.

Definition 3.3 Let G be a generalized semiflow on X.

1. G s point-dissipative if there exists a bounded set B C X such that, for all p € G,
there exists T > 0 such that p(t) € B, for allt > T.

2. G is asymptotically compact if for any sequence ¢; € G such that ¢;(0) is bounded,
and any sequence t; such that, t; — +o0o, the sequence @;(t;) has a convergent
subsequence.

3. The subset A C X attracts the subset B C X if dx (T'(t)B, A) — 0 when t — +o0.
4. The subset A C X is positively invariant if T(t)A C A, for all t > 0.

5. The subset A C X 1is quasi-invariant if, for each z € A, there exists a complete
orbit ¢ € G such that (0) = z and p(t) € A, for allt € R.

6. The subset A C X is invariant if T(t)A = A, for all t > 0.

7. The subset A C X is a compact global attractor if A is compact, invariant and
attracts the bounded sets of X.

For later use, we also introduce the following definition.

Definition 3.4 Let G be a generalized semiflow on a metric space X. We say that
B C X is a bounded absorbing set of G if B is bounded and, for all bounded set E C X,
there exists T = T(E) > 0 such that,

THE C X, forallt >T.
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In particular, every generalized semiflow which admits a bounded absorbing set is point
dissipative. We can now state the main result of this section, which shows that the set
of the weak solutions of (1.3) is a generalized semiflow on V. Using the energy equality
(2.5), one can also show that this generalized semiflow is point-dissipative. In what
follows, W denotes the set of weak solutions of (1.3) in V, that is,

W={ueC'(R",V)NL;

bO(RY, WEA(T?)?) : w is a weak solution of (1.3)} .
The main theorem of this section is the following.

Theorem 3.1 Assume thatv >0, >0, a > 0 and a < \/8vS. The set W of the weak
solutions of (1.3) is a generalized semiflow on V', which admits a bounded absorbing set.

Proof: The property (H1) has already been shown in Theorem 2.1. The properties
(H2) and (H3) are easy to check by using the definition of weak solutions. It remains
to show the property (H4). Let u; be a sequence of V' such that ug; — u strongly in
V. We note B the positive constant such that

2
ol < B.

Let u; € CY (R, V)N LE,. (RT, WH4(T?)?) be the weak solutions of (1.3) with initial

data ug j. Due to the energy equality (2.5), one has, for all t € R and j € N,

t t t
sy + 20 [ IV s +5 [ 1A ds = ol +2 [ (Frus(s)) s
0 0 0
(3.2)
where A; = A(u;).
Using Cauchy-Schwartz and Poincaré inequalities, we check that
t t
2 [ (Fousds <€ [ 171 1905(6) s
0 0
! Ct
<v [ IV @)ads+ SIS,
0
where C' is a positive constant independent of the parameters.

Going back to (3.2), we get
2 ' 2 ' 4 Ct 2
[ D)y + v i IV (s)|2 ds + B i 145 (s)l[12 ds < B+ — || £I[7. - (3.3)
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Thus, u; is bounded in L2, (R*, V)N LE (R, WH4(T?)?) uniformly in j. Consequently,

there exists u € Lo, (RT, V)N L}, (RT, W4(T?)?) and a subsequence of u; (that we still

loc loc
note u;) such that

u; = u weak®in L (RT V),
u; = u weakly in L (RT, W4(T?)?).

loc

(3.4)

As explained in the remark 2.2, the last identity of (3.4) comes from Korn’s inequality
and the continuous injection of H'(T?) into L*(T?). Furthermore, using the equality
(2.4), we can check that dyu; is bounded in Lg% (RT, H), uniformly with respect to j.
This property implies that u; is equi-continuous in H. Indeed, one has, for all 0 < t; <5,

to

&gu](t)dt

s (t2) — () 2 < ‘

t1 L2

< [M 100l i
1

< ||8tujHL°°([t1,t2],L2) |t — ta].
Furthermore, for all t € R, the set |J u;(t) is bounded in V' and thus compact in H.
Using the classical Arzela-Ascoli thedjl"eel\in, we conclude that, for all fixed T € R,

u; —u strongly in  C°([0,T],H).
Consequently, the boundedness of ;(¢) in V' uniformly with respect to j obtained from
(3.3) and the strong convergence of u; to u in C°([0,T], H) for all T > 0 imply, by a
density argument,

u;(t) = u(t) weakly in V, forall teR™. (3.5)

Besides, using the boundedness property of w; in L ([0,7],V) and interpolation in-
equalities, it is easy to check that, for all 0 < s <1 and T € R*,

uj — u strongly in  CY([0,7],V*). (3.6)

We show now that u is a weak solution of (1.3). The proof of this point is obtained by
following the proof of Paicu to establish theorem 2.1, involving a monotonicity method.
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Let T be a fixed positive time and ¢ € C* ([0,T],V?). For all j € N, one has

(u;(T), o(T) = alp(T)) 2 + (R(w3), ©) ' x, +/ uj(s).-Vuy(s), ¢(s)) > ds

—a Z / /T? w; k(s (8)OkOypi(s)dxds

i,k,l=1

= (u0, (0) = alp(0)) > + /0 (u;(s), 01 (p(5) — @Qp(s))) 12 ds

+ [ e

(3.7)
Due to the identities (3.4), (3.5) and (3.6), it is quite easy to show that most of the terms
of the previous equality pass to the limit when j tends to infinity. The hard term that
we have to study more precisely is the term involving the operator R.

Due to the boundedness of u; in L ([0,7],V) N L* ([0, 7], W*(T?)?), one can check
that R(u;) is bounded in X7 uniformly in j. Consequently, there exists £ € X7 such
that

R(uj) — & weak* in X,

and thus, for all p € C* ([0,T],V?), one has

(u(T), $(T) = aBP(T)) 2 + {6, Pty + / (u(s).Fu(s), ¢(s)) . ds

/ / (8)OkOypi(s)dxds
ik =1 T2

— (0, (0) — aA(0) 1 + / (5,01 ((s) — alp(s))) 2 ds

" / (f, (), ds.
(3.8)

In order to show that u is a weak solution of (1.3), it remains to show that £ = R(u).
We establish this equality via a monotonicity method. Actually, it suffices to show that,
for all ¢ € X7, one has

<£ - R(¢)7 w>X X7 > 0. (39)
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Indeed, assume that the inequality (3.9) holds. Then, setting ) = u+ AV, with ¥ € X
and A > 0, we obtain, for all ¥ € X,

(€ — R(u+ A\V), \IJ>X/T7XT <0. (3.10)
We use now the continuity of R in Xt and let A go to 0. We get, for all ¥ € X,
(& — R(u), \IJ>X’T,XT <0. (3.11)
Replacing U by —WV in the inequality (3.11), we obtain, for all ¥ € X,
(€= R(u), W)y x, =0. (3.12)
In order to get (3.9), we write the decomposition

(€ — R(¥),u— ¢>X’T7XT = (R(u;) — R(¥), u; — w>x’T,XT + (R(u ) €7¢>X Xr
+(§ = R(¥),u; — U>X/T,XT + (& > ! — (R(u ) >X’T,XT :
(3.13)
Due to Lemma 2.2, the convergence of R(u;) to & in X} and the convergence of u; to u
in X7, it is clear that

(R(uj) — R(Y),u; — @/)>X x, =20, forall jeN
<R(u3> §, ¢>X X — 0, when j — +o0, (3.14)
(€ —R(Y),u u>XT:XT — 0, when j — +o0.

In order to finish to establish the property (3.9), we establish the inequality

liminf (€ u)yr ., — (R(w),u5) 0 x, ) =0,

J—+oo

To get this property, we show that we can apply the equalities (3.7) and (3.8) to re-
spectively ¢ = u; and ¢ = w. Since u and u; are not smooth enough to make this
operation, we consider n € N, apply (3.7) to J2(u;) and (3.8) to J2(u) and pass to
the limit when n — +o00. Applying J? to the equality (2.4) and recalling that u; and
u belong to CY (RT,V?) for all s < 1, it is quite easy to check that J2(u) and J?(u)
belong to C! (R*, V?). Since J, is self-adjoint with respect to the L2-scalar product, an
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integration by parts gives

3 I + 6 T200) g+ [ O 0l6)-T06)) )
v | " (n (uls) T A(S)) Vo u(5))) 1 ds
= (), T (u(0))) 12 + @ (T (1), VI (u(0)) ) — ;2 AN
[ O s

(3.15)
Since u;(t) — u(t) weakly in V for all t € RT and w; o = u;(0) — up in V, it is clear that
u(0) = ug. Thus, the equality (3.15) becomes

Il + (6 T2y, + /< (u(s).Vu(5)) . Jn (u(5)) 2 ds
/ ) T (u(s))) 2 ds

o)y + / (a(F). () .

(3.16)
Due to the convergence of J,,(u) to u in X7, one has obviously, when n tends to infinity,

17 (T [ = (D)1
<§aJ72L(U)>X’T,XT — (& U)X Xr

[ )Vt tatts > [ Gt (5)) 2 ds =0,

1 (o) 772 — ||u@||H;,

/0 (Ju(f), Jn(u(s))) 2 ds — /0 (f,u(s)) 2 ds

Lemma 2.2 and an integration by parts imply

lim a/o (Jn (u(s).VA(s)),Vdu(u(s)));.ds =

lim o /0 (u(s).V T (A(5)), VT (u(s))) 2 ds = 0.

n—-+o0o
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Thus, passing to the limit when n goes to infinity in the equality (3.16), we get
1 2 2 g
(€ )y = 5 (ol = (D)) + [ (Fu(s)) 0 ds (3.17)
0

Applying the same method to the equality (3.7), we obtain, for all j € N,

1

5 (ol = NIy ) + / Cap(e)eds. (319)

(R(uy), Uj)x’T,XT =
Furthermore, due to the fact that u;(T) — w(T") weakly in V', one has
2 o 2
(Tl < i inf s (D),

Consequently, using the fact that u; — u weakly in L? ([0, T], H) and making the differ-
ence between (3.17) and (3.18), we obtain

lim inf <(§,u)X/T’XT — (R(u;), uj>X,T7XT) > 0. (3.19)

Jj—+oo

Going back to the decomposition (3.13) and letting 7 go to infinity, the properties (3.19)
and (3.14) imply the inequality (3.9). Consequently, u is a weak solution of (1.3).

It remains to show that, for all ¢ € R*, u;(t) — u(t) strongly in V. From the inequality
(2.5) of Theorem 2.1, we have the energy equality

1 v [ B[
e + 5 | IVus(s)7ds+5 [ [ 4;(s)]|7ads =
2 a2 2

0 0

. t (3.20)
sl + [ () ds

Due the several convergences of u; to u given in (3.4), we conclude that
v [ 2 v [ 2
3 ), IVul)llzzds < Hminf o f {1V (s)l,. ds,

B[ 4 B[ 4
5 [ 1AL ds < timint 4,01 ds
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Thus, we pass to the limsup when j tends to infinity in (3.20). We take into account
the strong convergence of u; to u in C°([0,¢], H) given in (3.6) and get

1. B
s (lu0l) + 5 [ IvuEsds+ 5 [ 1AGIE ds

jrtoo ' (3.21)
< 3l + [ () ads

Since u is also a weak solution of (1.3), it satisfies the energy equality (2.5). One has

1 B t
S0l + 5 [ 19u) s ds + 5 [ 1AGE: ds = 5 ol + [ (o)

(3.22)
The difference between (3.21) and (3.22) implies

timsup ([lu; (D13, ) < ()l - (3.23)

J—+oo

Since u;(t) = u(t) in V, one has also
2 o 2
@)y < timint (Il (9)1;,)

and thus [Ju;(t)||5, — [[u(t)]|?: when j tends to infinity. From a classical functional
analysis result, it implies that u;(t) — u(t) strongly in V.

Bounded absorbing set

Finally, we show that WW admits a bounded absorbing set. This property comes nearly
directly from the energy equality (2.5). Let R > 0 and ug € V' be such that ||ug| ;1 < R.
Let w € CO(RT, V)N LL . (RY, WI4(T?)?) be a weak solution of (1.3) with initial datum

loc

ug. For n € N, we apply J, to the equality (2.4) and take the L?-inner product of it with
Jpu. Performing integrations by parts, one has

50 (1) + v IV T2 + (o (V0 a(u)
+2 (o (L' A+ AL) , Ju(A)) . + % (Jo (w.VA), Ju(A)) 2

2
ﬁ / |A| A) Jo(A)dz = (Jo(f), Jn(u)) e -
(3.24)
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Using Cauchy-Schwartz, Poincaré (2.1) and Young inequalities, we obtain

v 1
() n ()2 < 5 IV Tz + o (D2 (3.25)
Thus, from the inequality (3.24), using again the inequality (2.1) and setting M =
;, we obtain, for all t € RT and n € N,
4max(1, o)

30 (1@l 1) + (o (090, Tu(@) M 4+ 5 (J, (LA + AL)  To(4)) s

P (T A), (D) e+ 5 [ (1A 4) Ju(A)eMdr < oo I (I e
(3.26)

2 2 Jro

We integrate in time the above inequality between 0 and ¢ > 0 and get

% HJn(u(t))qué +/O (Jn (u(s).Vu(s)), Jn(u(s))) . e ME)ds

+%/0 (Jn (LtA + AL) (s), Jn(A(s)))L2 o~ M(t=s) g

«

+§/ (Jp (u(5).VA(5)), Ju(A(8))) 2 e M=) ds

B/ /1r2 (|A| A) (s)Jn (A(s))e M=) dzds
1 —Mt 1 2
<5l (uo) 171 € + 5y 19 (D2
(3.27)

Due to the boundedness of u in C°([0,¢],V) N L*([0,¢], W*(T?)?) and the properties
of J,, we have, when n goes to infinity,

/0 (Jn (u(5)-Vu(s)) , Jn(u(s))) 2 e M ds — /0 (u(s).Vu(s), u(s)) . e M9 ds
—0,

/ | n (LA + AL) (5), Jo(A(s)) 2 M7 Vds — /0 t /1r tr(4h)e M Vdrds = 0,
/ / (JA[* A) () Ju(A(s))e M deds—>/0 1A(s)[[ 44 e ME=9)gs.

Besides, Lemma 2.2 implies
t

nl_lgloo i (Jp (u(5).VA(8)) , Ju(A(8))) 2 e M=) ds =

lim (u(8).VJ, (A(8)) , Ju(A(8))) 12 e M=) ds = 0.

n—-+00 0

165



Chapitre 4. Fluides de grade 3

Thus, passing to the limit when n tends to infinity, we obtain from the inequality (3.27),
for all t € RT,

RQe—Mt
2

1 2 ! 4 — —s 1 2
SO+ [ 1AL s < ot . 328)

1 2
Consequently, for all £ > T" = max (O, i log (2%@&2)) , we have

1 2 ! 4 — —s 1 2
S0l + [ IAGL e s < S (3.0

1
and thus, for all t > T', u(t) belongs to the ball of center 0 and radius U [Fis
%

4  Attractor for V? solutions

In this section, we show that every bounded set of V2 is attracted by a compact
invariant set of V in the H!—topology. To obtain this result, we show that the solutions
of (1.3) with initial data in V? admit a bounded absorbing set in V2 provided that
the viscosity v and the parameters a and [ satisfy some suitable restrictions. This fact
will enable us to show the existence of an invariant bounded set of V2 that attracts all
the bounded sets of V2 in the H!—topology. We first recall the theorem of Busuioc
and Iftimie [10, Theorem 1], that establish the existence of weak solutions of (1.3) with
initial data in V2. In [10], this result has been proved in the case of the whole space R?
or R3, but it still holds in the case of periodic conditions. We state here only the two
dimensional case, but the same theorem holds in dimension 3, up to the fact that the
solutions in R3 are not known to be unique.

Theorem 4.1 Assume thatv > 0, o > 0 and 8 > 0. Let ug € V2 and f € H. There
exists a unique global solution u to the system (1.3) such that

u € L (R, V2) N C° (R, V?),

loc

for all s < 2.

Notice that this result holds without any restrictions on the size of the parameters «,
and v. Theorem 4.1 is proved by using Friedrich’s method and a priori estimates in H?.
The main theorem of this section is the following one.
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Theorem 4.2 Assume thatv >0, a >0, >0 and a < ? There exists a bounded

invariant set Ay of V' which attracts every bounded set of V? in the H'—topology.

v
To prove this theorem, we first show that, under the restriction a < ?ﬁ’ the set

Wy ={ue L (RT, V)N C°(RT,V?) : u is a weak solution of (1.3),u(0) € V?}

loc

admits a bounded absorbing set for the H2—topology.

Proposition 4.1 Assume that v >0, a >0, 8> 0 and a < 4/ % and f € H, the set
of the solutions of (1.3) with initial data in V? admits a bounded absorbing set in V2.

Proof: Let B be a bounded set of V2 and ug € B. There exists a positive constant
R such that B C B,(R), where B,(R) = {u € V?:||Vull,;» + a|Aul,. < R}. Let
consider the weak solution v € L2, (R, V?) N C° (RT, V*), s < 2, of (1.3) with initial
data ug € B. For n € N, we introduce the linear operator II,,, which is an analogue to

the operator J,, defined earlier. For u € L?(T?), it is given by

I, (u) = Z tge " FT,

Jk|<n

with 4, the Fourier coefficient of u corresponding to k € Z2.

For n € N, we also consider the regularized system of equations

O (up, — alAuy,) — vAIL, (u,) + PIL, (IL, (uy,). V1L, (uy,))
—alPIL, (div (LY A, + Ay Ly, + 11, (u,).VA,))
—BPIL, (div (|A.]*A,)) =PI, (f), (4.1)
div u,, =0,
Unji—o = I, (ug) € V2,

where L, = VII,(u,), A= L, + L!, and P is the classical Leray projector.

Via the classical Cauchy-Lipschitz Theorem, we can show that the system (4.1) is well-
posed in II,V? and admits a unique solution u, € C* ([0,t,),11,V?), where ¢, > 0. In
addition, since I12 = II,,, we see that IT,(u,) is also a solution of (4.1). Thus, due to the
fact that the solution of (4.1) is unique, one has II,,(u,) = u,.

167



Chapitre 4. Fluides de grade 3

Arguing like in [10], we can show that u, is global in time and converge up to a subse-
quence to a solution of the system (1.3) when n goes to infinity. Since the solutions of
(1.3) are unique, u,, converge to u. More precisely, one has

loc (R+ V2)
u,(t) — u(t), weaklyin V2 forall t>0,
u, — u, strongly in C°(RT, H*(T?)?), forall 0<s<2,

U, — u, weak™in L

We perform now the L?—inner product of the first line of (4.1) with —Aw,. Using
the fact that P and II, are self-adjoint for the L?—scalar product and the fact that
I1,u, = Pu, = u,, we notice that

B (P div (|4a* An) , Au,) o = B (div (|4al* An) , Auy)

= g |An|? A, A A, dx

2
— é/ |An|2|VAn|2dx+62/ (A, : 0;A,)dx
2 T2 =1 T2

Consequently, one has

1
300 (190l + @ N Aunlls) + 18l + 5 [ 14194, P da

(4.2)
WZ/ (A 04 de =T+ J+ K+ L

where

I = (. Vg, Ay);2,

J=—« (div (LZA,Z + AnLn) ,Aun)

K = —a(div (u,.VA,),Auy,);2,
=—(f,Auy) e .

L27

Using the divergence free property of u,,, a short computation implies
I = (1. Vi, Auy) ;2 = 0.
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We now compute J. Via some integrations by parts, we have
0 2
J=2 Y / (Bt f AR+ AL, 1) AAY dos
2 T ’ ’
/ ATk AFIA AV
T2

Using now the divergence free property of u,, it is quite simple to see that J vanishes.
Indeed, we obtain

2 2
« (67
=25 [ A AR AAY e+ Y / AZFARIA A2
J 2 p /'HQ n n n €z + 2 £ 2 n n n 2

2
+a) / ALFARZAAL2 1y,
TZ

k=1

= % / A}Lle}L’lAA}L’ldx—|—% / AP APNAL d
T2

’]TQ

+2 / AZ2AZ2A N4 4 o / AR AR AAZ
2 T2 2 T2
va [ (s a2 A
T2

Since AL = —A22 we obtain J = 0. It remains to estimate K and L. Integrating by

n

parts and using the divergence free property of u,, we get

K= g/ u, VA, : AA, dx
2 oo

2
3k=1

2
o .
=7 E /11‘2 Aﬁl’kajAn D OpAndr.

jk=1
Via a Fourier decomposition, we can see that

2
> 0AY

1,7,k=1

<16 HAunHLQ'

L2
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Using now Holder and Young inequalities, we obtain

K <Ada||Auy,||;- HA VA 2

< Bl + 25 [ A 1A

where p is a positive constant such that 0 < p < 5 which will be made more precise
later.

Likewise, we get
2 1 2
L < Al + o 11
Going back to (4.2), we finally have

1
300 (Il + a8 22) + (1~ 20 e -
8 2a° / 2 2 1 2 3
P20 [ AP I9AL de < — |IfI2
+(5 [ AP 19, P e < 111

1%
2 2
If a <4/ %, then there exists pg € (O, %) such that g _ Taking, pu = pyo, it
v
comes Ho
—3t (IVunl7e + a |Aun|l72) + Crv || Aug |72 < C I£11Z2 (4.4)
where C; and (5 are two positive constants.
Since u,, € V2, the Poincaré inequality implies
V| 2 < |Aun | -
Cyvt
Setting M = 1—V, the inequality (4.4) becomes
2max(a, 1)
1 1
50 ((IVunllzz + o [ Aun 72) €M) < o 1FI172 ™. (4.5)
1%

We integrate (4.5) in time between 0 and ¢t > 0, and we obtain

%(HVun(t)lliz+a||Aun(t)||2Lz) < 5 (VT (uo) 72 + o [ ATL (uo)[[72) €=

+N I £1I7
(4.6)
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where N is a positive constant depending on « and v, independent of ug. We pass now to
the lim inf when n tends to infinity in the inequality (4.6). Since u,(t) converge weakly
to u(t) in V2, we obtain

Va7 + o | Au(t)|72 < liminf (| Vu ()72 +on | A (0)]72)
< (IIVuoll7e + an [|Aug|72) e + 2N | f]72 -

Since ug € B,(R), we obtain

IVu(®)72 +allAu(t)|7. < R?e M + 2N ||f|. (4.7)
1 N|fI3 ,
We finally take g > i log (%) and obtain, for all ¢t > ¢,
IVu)llz: + a|Au)llz: < 3N | f]- (4.8)

Due the Poincaré inequality (2.1), it concludes the proof of this proposition.

Proof of Theorem 4.2

Let W be the generalized semiflow of the weak solutions of (1.3) in V, {T'(¢)},-, be
the family of operators associated to W given by (3.1) and W, be the set of solutions
with initial data in V2. Let B, be the bounded absorbing set of W, in V2. We define
the w-limit set A, of By for the topology of V, that is to say

Ay = w(By) = {z € V : there exist p; € W with ¢;(0) € By,

j—00

and a sequence t; € RT,¢; — 400, such that ¢;(t;) — 2 in V} )

We start by proving the following lemma, which describes A,. We also assume that

u>O,a>O,B>0anda<\/%.

Lemma 4.1 The set Ay is non-empty, contained in By and invariant by T.

Proof: Since B, is a bounded absorbing set for weak solutions with data in V2, every
ball that contains Bs is also a bounded absorbing set for these solutions. Thus, we can
assume that By is a ball of radius R > 0, By = {u € V*: ||ul| ;2 < R}. Let u; € Ws such
that u;(0) € By and t; such that t; — 400. Since By is bounded in V? and absorbs all
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the bounded sets of V2, it is clear that there exists jo, such that, for all j > jo, u;(¢;) is
bounded in V? uniformly with respect to j. Due to the compactness of V2 in V, there
exists z € V' and a subsequence of u;(t;) that converge to z in V. Consequently, A; is
non-empty.

The fact Aj is contained in Bs is a consequence of the definition of B,. Indeed, let
z € Ay. There exist u; € W, with w;(0) € By and t;, t; = +oo such that u;(¢;) — =
in the H'—topology. Furthermore, u;(t;) is bounded in V2 uniformly with respect to j,
and consequently there exists v € V2 such that, up to a subsequence,

u;(t;) — v weakly in V2,
Necessarily, v = z and thus z € V2. Furthermore, the weak convergence implies

2l < timint (1) < B (4.9)
Consequently, Ay C Bs.

It remains to show that Aj is invariant by 7. To show this property, we first show that
As is quasi-invariant and then use this property to show that it is actually invariant.
Let z € Ay = w(By) C By. There exists a sequence u; € W, and t; — +oo such that
uj(t;) = zin V. Due to the property (H2), u;j € W, with initial data w;(¢;). Letting
J go to infinity and applying the property (H4), there exists a subsequence of u;j (that
we still note uzj) and vy € W with vy(0) = 2z such that

ty +
. 0 3 . .
u(t) — wvo(t), forallteR (4.10)

Furthermore, the fact that z € By implies that vy € W,. Besides, from the definition of
By, it is clear that, if j is sufficiently large, u;j (t) = u;(t; +t) € By. Thus, the identity
(4.10) implies that vy(t) € Ay = w(By), for all t > 0.

We consider now uéjfl. We notice that uzjfl(()) = u;(t; — 1) which belongs to By if j
is sufficiently large and is consequently bounded in V2, uniformly with respect to j. By

the compactness of V2 in V, one can extract a convergent subsequence of u;(t; —1). By
the property (H4), up to a further subsequence, there exists v; € VW such that

uf "' (t) > vi(t), forall t € RT, (4.11)

Since u;(t; — 1) is bounded in V2 and converge to v1(0) in V, it is clear that v1(0) € V?

and consequently v; € W,. Furthermore, since u? _1(15) € By, then vi(t) € Ay, for all
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t > 0. Due to the identities (4.10) and (4.11), we deduce that v{ = vj.

By the same process, we construct for n € N, v, € W, such that v,(t) € A, for all
t € RT and v} = v,_;. Then, we define the complete orbit v € W, by

_f vp(t+n), te[-n—-1,-n],
Mﬂ_{vdm t>0.

By the concatenation property (H3), v is a complete orbit such that v(0) = z. Besides,
the properties of v, imply that v(t) € As, for all ¢ € R. Thus, A, is quasi-invariant.

We show now that Aj is actually invariant. Let to € Rt and v € T'(tg).As. According to
the definition of T', there exists z € Ay and w € W, such that w(0) = z and w(ty) = v.
Let ¢ € W5 be a complete orbit such that ¢(0) = z. By the concatenation property, we
define

t), t<0,
'Wﬂ:{ig,tzg

Then, we set ¥, (t) = ¥(t —n). In particular ¥,, € W and ¢, (to + n) = ¥(tg) = v. Fur-
thermore, due to the quasi-invariance of Az, 1,,(0) = 1)(—n) € Ay C B,. Consequently,
v € w(By) and thus T'(ty).Ax C A, that is to say that A, is positively invariant.

Reversely, the quasi-invariance of As implies that As C T'(t).As, for allt € RT. In fact, let
z € Ay and @ be a complete orbit in Ay such that ¢(0) = z. Defining ¢y, (t) = o(t — to),
we see that ¢y (to) = 2. Thus, one has z € T(ty)ps,(0). Since ¢ (0) € As, then
z € T(tg)As and A, is consequently invariant.

OJ

To finish the proof of Theorem 4.2, we show by a contradiction argument that the set
Ay attracts By for the H'—topology. Since every bounded set of V2 is absorbed by Bj,
it would imply that every bounded set of V2 is attracted by As,.

Lemma 4.2 The set Ay attracts all the bounded sets of V2 in the H'—topology.

Proof: The proof of this lemma is nearly obvious, and is obtained through a contradic-
tion argument. Let By be the bounded absorbing set of W,. Assume by contradiction
that Ay does not attract B,. Then, there exist € > 0, u; € W, with initial data in B
and t;, t; — +o00, such that

inj lu;(t;) — 2|l ;p > e, forall jeN. (4.12)
ZEA2
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Since B, is a bounded absorbing set in the H?—topology, there exists j, € N such that
u;(t;) € Ba, for all j > jo. Consequently, for all j > jo, u;j(t;) is bounded in V?
uniformly with respect to j. Due to the compactness of V2 in V, there exists z € V
and a subsequence of u;(t;) (that we still note w;(¢;)) such that w;(t;) — z for the H'—-
topology. Furthermore, the fact that u;(0) € By implies that z € Aj,, which contradicts
(4.12). Consequently A, attracts By in the H'—topology.

Let B be a bounded set of V2. There exists ty > 0 such that T'(¢t)B C By, for all t > t.
Since A, attracts Bs, it attracts also T'(t) B for all ¢ > t,, and consequently B.

O

The lemmas 4.1 and 4.2 imply Theorem 4.2.
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