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M. David LANNES École Normale Supérieure Examinateur
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Résumé

Cette thèse a pour objet l’étude du comportement asymptotique des solutions des
équations des fluides de grades 2 et 3. Dans le premier chapitre, on étudie les profils
asymptotiques au premier ordre des solutions des équations des fluides de grade 2 sur
R3. On démontre que les solutions des équations des fluides de grade 2 convergent vers
des solutions particulières et explicites des équations de la chaleur, lorsque le temps tend
vers l’infini. Ce résultat montre en particulier que les fluides de grade 2 se comportent
asymptotiquement comme les fluides newtoniens régis par les équations de Navier-Stokes.
Pour cette étude, on utilise les variables d’échelles (ou variables autosimilaires), et on
effectue des estimations d’énergies dans divers espaces fonctionnels, en particulier dans
des espaces de Sobolev à poids polynomiaux. La description des profils asymptotiques
est obtenue sous des conditions de petitesse sur les données initiales de l’équation.

Le second chapitre de cette thèse traite des profils asymptotiques à l’ordre 1 des
solutions des équations des fluides de grade 3 dans R2. À l’instar des résultats du premier
chapitre, on obtient ici aussi la convergence des solutions de ces équations vers des
solutions explicites des équations de la chaleur. Les outils utilisés pour cette étude sont
semblables à ceux utilisés pour les fluides de grade 2 dans R3, à savoir les variables
autosimilaires et des estimations d’énergies. Dans ce cas aussi, on conclut que les fluides
de grade 3 se comportent asymptotiquement comme les fluides newtoniens.

Dans le dernier chapitre, on étudie l’existence d’un attracteur pour les équations des
fluides de grade 3 en dimension 2 avec des conditions périodiques. On considère donc
les solutions faibles de ces équations à données initiales dans l’espace de Sobolev H1.
Ces solutions faibles définissent un semi-groupe généralisé. Ensuite, on montre que les
solutions à données initiales dans H2 possèdent un attracteur global pour la topologie
H1. Pour ce travail, on utilise un schéma de Galerkin, des estimations a priori et une
méthode de monotonie. Les principales difficultés que l’on rencontre sont liées au peu de
régularité des données initiales et au fait que l’on ne sait par si les solutions des équations
des fluides de grade 3 à données H1 sont uniques.

Mots-clés : mécanique des fluides, dynamique des équations aux dérivées partielles, fluides
de grade 2, fluides de grade 3, profils asymptotiques.



Abstract

This thesis is devoted to the study of the asymptotic behaviour of the solutions of the
second and third grades fluids equations. In the first chapter, we study the asymptotic
profiles to the first order of the solutions of the second grade fluids equations in R3.
We show that these solutions behave asymptotically (when the time goes to infinity)
like explicit solutions to the heat equations. This result shows in particular that the
asymptotic behaviour of the fluids of grade 2 is the same as the one of the Newtonian
fluids, modelized by the classical Navier-Stokes equations. For this study, we use scaled
variables (also called self-similar variables), and we perform energy estimates in several
functions spaces, including weighted Sobolev spaces. Notice that the first order asymp-
totic expansion that we obtain holds under smallness assumptions on the initial data.

In the second chapter of this thesis, we study the asymptotic profiles to the first order
of the solutions of the third grade fluids equations in R2. As in the previous chapter, we
establish the convergence of these solutions to explicit solutions to the heat equations.
The methods that we use are very similar to the ones used in the case of the second grade
fluids equations on R3, namely scaled variables and energy estimates. We also conclude
that the fluids of grade 3 behave asymptotically in time like Newtonian fluids.

The last chapter is devoted to the study of the existence of an attractor for the third
grade fluids equations in dimension 2 with periodic boundary conditions. We consider
the weak solutions of these equations with initial data in H1. These weak solutions define
a generalized semiflow on H1. Then, we show that the solutions with initial data in H2

admit a global attractor for the H1−topology. To this end, we use a Galerkin method,
a priori estimates and a monotonicity method. The main difficulties come from the lack
of regularity on the solutions and from the fact that these solutions are not known to be
unique.

Key words : fluid mechanics, dynamics of partial differential equations, second grade
fluids, third grade fluids, asymptotic profiles.
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le bon goût de partager la même ville que moi et Aurélien pour sa Chti attitude. Un
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du sas, Lionel pour avoir assuré mon marketing, Lucie et Clément pour un motif que je
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Chapitre 1. Introduction

Chapitre 1

Introduction

L’objet de cette thèse est l’étude des comportements asymptotiques des solutions
des équations des fluides de grades 2 et 3. Ces équations régissent une large classe de
fluides dits non-newtoniens, dont les comportements ne pourraient pas être décrits par
les équations classiques de Navier-Stokes, adaptées aux fluides newtoniens. L’intérêt de
l’étude des fluides non-newtoniens est lié au fait que l’on trouve très souvent de tels fluides
dans la nature ou dans l’industrie et que de nombreuses applications en découlent. Par
exemple, certaines huiles utilisées dans l’industrie sont des fluides non-newtoniens, mais
il existe également des exemples plus évidents, tels que du sable mouillé ou du fromage
fondu. Dans ce premier chapitre, on introduit les équations de mouvement de ces fluides,
en rappelant rapidement leur modélisation. Ensuite, nous parlerons plus en détail du
comportement asymptotique des solutions de ces équations, sous deux aspects différents.
Dans le cadre d’un fluide de grade 2 ou 3 remplissant tout l’espace R2 ou R3, on étudiera
la convergence vers des solutions particulières appelées solutions autosimilaires. Dans
le cadre d’un fluide de grade 3 sur un domaine périodique de R2, on s’intéressera à la
convergence vers un domaine compact de l’espace dans lequel vivent les solutions de ces
équations.

1 Équations du mouvement

Nous commençons par rappeler succinctement la modélisation des équations bien
connues de Navier-Stokes, qui concernent les fluides newtoniens. Ces équations ont été
introduites il y a bien longtemps et sont l’objet d’une littérature mathématique très
fournie.
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Chapitre 1. Introduction

1.1 Fluides newtoniens et équations de Navier-Stokes

Soit Ω un domaine fixe de R2 ou R3, rempli par un fluide incompressible évoluant au
cours du temps t dans ce domaine. Afin de modéliser ce fluide, on définit les trajectoires
de chaque particule de fluide par la fonction

ψ : R+ × Rd −→ Rd,
(t, x) 7−→ ψ (t, x) ,

où ψ (t, x) représente la particule de fluide au temps t, qui était à la position x au temps
t = 0. On suppose que ψ est continûment différentiable en t et x, et on définit le champ
de vitesse u(t, x) qui représente la vitesse de la particule ψ(t, x). Formellement, ψ satisfait
l’équation différentielle

∂tψ (t, x) = u (t, ψ (t, x)) ,
ψ (0, x) = x.

Si l’on suppose que u est suffisamment régulier, le théorème de Cauchy-Lipschitz permet
par cette égalité de reconstituer ψ en supposant simplement u connu. Ainsi, on peut
modéliser de façon équivalente le mouvement du fluide par la position ψ de ses particules
ou par son champ de vitesses u. Dans cette thèse, nous privilégions la modélisation par
le champ de vecteurs vitesses (représentation eulérienne). Étant donné que le fluide que
l’on considère est incompressible, on a, pour tout t ≥ 0,∫

Ω

1dx =

∫
ψ(t,Ω)

1dx.

En effectuant formellement le changement de variable x = ψ (t, y), on obtient∫
Ω

1dx =

∫
Ω

|det (Jac (ψ (t, y)))| dy.

De plus, cette propriété se vérifie quel que soit le domaine Ω. En prenant des domaines
de plus en plus petits, on peut donc conclure que

|det (Jac (ψ (t, y)))| = 1,

et par continuité en t = 0, on en déduit que det (Jac (ψ (t, y))) = 1. En dérivant cette
égalité en temps, on a donc

∂t (det (Jac (ψ (t, y)))) = 0.

2
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Or, un calcul simple montre que ∂t (Jac (ψ (t, x))) = ∇u(t, x)Jac (ψ (t, x)), où ∇u est la
matrice définie par (∇u)i,j = ∂jui. Par application du théorème de Liouville, on obtient

0 = ∂t (det (Jac (ψ (t, y)))) = det (Jac (ψ (t, x))) Tr (∇u) = div u.

Le caractère incompressible du fluide se traduit donc par l’égalité

div u = 0. (1.1)

On note ρ = ρ(t, x) la densité du fluide que l’on considère. L’équation de conservation
de la masse, ou équation de continuité, nous donne

∂tρ+ div (ρu) = 0. (1.2)

Le fluide que l’on considère est supposé de densité uniforme en espace. Comme le fluide
est également supposé incompressible, la propriété (1.1) et l’équation (1.2) impliquent
que ∂tρ = 0, et la densité est donc constante à la fois en temps et en espace. On note,
v (t, ψ(t, x)) l’accélération de la particule ψ(t, x) au temps t. En particulier on a

v (t, ψ (t, x)) = ∂t (u (t, ψ (t, x))) = (∂tu+ u.∇u) (t, ψ (t, x)) ,

où (u.∇u)i =
d∑
j=1

uj∂jui.

L’équation de la conservation de quantité de mouvement (principe fondamental de la
dynamique) implique

ρ∂tu (t, ψ (t, x)) = ρ (∂tu+ u.∇u) (t, ψ (t, x)) = F + div σ, (1.3)

où σ ∈ Rd × Rd est le tenseur des contraintes et F la somme des forces extérieures qui
agissent sur le fluide. Le fluide que l’on modélise dans cette section est newtonien, ce
qui veut dire que le tenseur des contraintes que l’on considère est une fonction affine du
gradient du champ de vitesses u, on suppose donc

σ = −PId+ µA,

où P est la pression du fluide, µ est la viscosité dynamique du fluide et A est le tenseur
des déformations de u, donné par Ai,j = ∂jui + ∂iuj. En revenant à l’équation (1.3)
que l’on divise par la constante ρ, on obtient le système bien connu des équations de
Navier-Stokes

∂tu− ν∆u+ u.∇u+∇p = f, (1.4)

3
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où ν =
µ

ρ
est la viscosité cinématique, p =

P

ρ
et f =

F

ρ
.

Le système d’équations (1.4) sert à modéliser des fluides tels que l’eau, l’air ou encore
de nombreux gaz. Il existe énormément de travaux traitant de ces équations, dont les
premiers résultats d’existence remontent aux années 1930 (voir par exemple [51] ou [32]).

1.2 Équations des fluides de grade 2

Introduites bien après les équations de Navier-Stokes, les équations des fluides de
grade 2 modélisent une classe de fluides plus générale que celle des fluides newtoniens.
La modélisation diffère de celle des équations de Navier-Stokes par le choix du tenseur
des contraintes, qui n’est plus linéaire par rapport au gradient de la vitesse. Nous ne
donnons que peu de détails sur la modélisation de ces fluides, mais on peut trouver plus
de précisions et de justifications physiques dans l’article de J. Dunn et R. Fosdick [24] ou
encore dans [59] et [62]. Les fluides de grade 2 appartiennent à une classe particulière de
fluides non-newtoniens, à savoir les fluides différentiels de Rivlin-Ericksen, décrits dans
[59]. Il convient de préciser que tous les fluides non-newtoniens ne sont pas des fluides
différentiels, et que par conséquent on se restreint ici à une certaine classe de fluides non-
newtoniens. Selon ce modèle, on définit les fluides de grade n pour lesquels le tenseur
des contraintes est de la forme

σ = −PId+Q (A1, A2, ...An) ,

où Q est un polynôme de degré n et Ak est le kè tenseur de Rivlin-Ericksen, donné par
la relation de récurrence

A1 = ∇u+ (∇u)t ,

Ak = ∂tAk−1 + u.∇Ak−1 + (∇u)tAk−1 + Ak−1∇u.

Pour les fluides de grade 2, le tenseur des contraintes σ de l’équation (1.3) s’écrit sous la
forme

σ = −PId+ µA1 + α1A2 + α2A
2
1,

où µ est la viscosité dynamique, α1 et α2 sont deux réels et A1 et A2 sont les deux
premiers tenseurs de Rivlin-Ericksen. Dans cette thèse, on considérera les équations des
fluides de grade 2 telles qu’elles sont posées par J. Dunn et L. Fosdick. En particulier,
des considérations physiques venant de la thermodynamique permettent de supposer

α1 + α2 = 0 et µ ≥ 0.

4
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En revenant à l’équation (1.3) et en posant α = α1, on obtient le système d’équations
des fluides de grade 2

∂t (u− α∆u)− ν∆u+ rot (u− α∆u) ∧ u+∇p = f, (1.5)

où ∧ est le produit vectoriel classique de R3.

En dimension 2, on fait la convention que u est un vecteur de R3 dont la troisième
composante est nulle, u = (u1, u2, 0). Ainsi, le rotationnel de u s’écrit

rot u = ∇∧ u = (0, 0, ∂1u2 − ∂2u1) ,

ce qui permet de définir le système (1.5) en dimension 2.

1.3 Équations des fluides de grade 3

Une autre classe de fluides étudiée dans le cadre de cette thèse est la classe des fluides
de grade 3. Ces fluides font eux aussi partie de la classe des fluides différentiels. Dans
les résultats sur les fluides de grade 3 présentés dans cette thèse, on prendra en compte
le modèle introduit en 1980 par R. Fosdick et K. Rajagopal dans [31]. Dans cet article,
une étude thermodynamique amène à considérer le tenseur

σ = −PId+ µA1 + α1A2 + α2A
2
1 + β |A1|2A1,

où µ est la viscosité dynamique, α1, α2 et β sont des nombres réels et

|A1| =

(
d∑

i,j=1

(
Ai,j1

)2

)1/2

.

De plus, des considérations physiques permettent de justifier le fait que

ν ≥ 0, α1 ≥ 0, β ≥ 0 et |α1 + α2| ≤
√

24νβ. (1.6)

En revenant à l’équation (1.3), on obtient finalement l’équation

∂t (u− α1∆u)− ν∆u+ rot (u− α1∆u) ∧ u
− (α1 + α2)

(
A∆u+ 2div

(
(∇u)t∇u

))
− βdiv

(
|A|2A

)
+∇p = f,

(1.7)
où l’on a la convention u = (u1, u2, 0) en dimension 2.

5
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2 Comportements asymptotiques

Les résultats obtenus dans cette thèse décrivent les comportements asymptotiques
en temps des solutions des équations des fluides de grades 2 et 3. On s’intéressera prin-
cipalement à deux aspects différents de l’étude de comportements en grand temps, à
savoir l’étude des profils asymptotiques et l’étude de l’existence d’un attracteur pour les
systèmes des fluides de grades 2 et 3.

2.1 Profils asymptotiques

Une partie significative des résultats exposés dans cette thèse traite des profils asymp-
totiques des équations des fluides de grades 2 et 3. On considère un fluide de grade 2 ou
3 remplissant tout l’espace Rd et auquel aucune force extérieure n’est appliquée, ce qui
revient à prendre f = 0 dans les systèmes (1.5) et (1.7). Dans les deux cas et comme
on s’y attend, lorsqu’on laisse le temps s’écouler à l’infini, les fluides reviennent au repos
et les solutions de ces équations tendent vers 0. Étudier les profils asymptotiques de
ces équations, c’est en quelque sorte étudier la façon dont les solutions de ces dernières
tendent vers 0. Le but recherché dans cette démarche est de montrer que le système
d’équations que l’on considère se simplifie lorsque le temps devient grand, et est dominé
par un système linéaire dont les solutions sont bien connues. L’intérêt de ce type de
travaux réside dans le fait que, lorsque le temps est suffisamment grand, il devient per-
tinent d’approcher les solutions du système de départ par celles d’un système linéaire.
Considérons une solution u d’un système d’équations aux dérivées partielles dont on ne
connait pas explicitement la solution. Au premier ordre, l’idée générale est de décomposer
u sous la forme

u(t, x) = η(t)G(t, x) +R(t, x), (2.1)

où G est une fonction explicite, η est une fonction réelle dépendant du temps et de u et
R est un reste qui tend vers 0 plus rapidement que ηG lorsque le temps tend vers l’infini.
Dans la décomposition (2.1), l’intérêt semble limité par le fait que η dépende de u et
donc du système de départ. En vérité, dans les cas dont on parlera plus tard, on montrera
que η est solution d’une équation différentielle ordinaire dont la solution est explicite et
dépend seulement des données initiales de l’équation. Les travaux présentés dans cette
thèse portent sur les profils asymptotiques au premier ordre, c’est à dire que l’on obtient
la décomposition (2.1). Cependant, on peut aussi s’intéresser aux profils asymptotiques
à l’ordre supérieur, c’est-à-dire, pour n ∈ N, décomposer la solution sous la forme

u(t, x) =
n∑
k=1

ηk(t)Gk(t, x) +Rn(t, x), (2.2)
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où pour tout k, la fonction Gk est explicite, ηk satisfait une équation différentielle or-

dinaire que l’on sait résoudre et Rn tend vers 0 plus rapidement que
n∑
k=1

ηk(t)Gk(t, x).

Pour tout k, le produit ηkGk de la décomposition (2.2) est appelé profil asymptotique de
u à l’ordre k.

Afin d’illustrer l’idée générale des profils asymptotiques des solutions des fluides de grades
2 et 3, revenons au cas plus simple des fluides newtoniens en dimension 2. Ceci a été
étudié par T. Gallay et E. Wayne aux ordres 1 et 2 dans [36] et [39]. Le cas de la di-
mension 3 est traité dans [37]. On considère donc un fluide newtonien remplissant tout
l’espace R2 et u un champ de vecteurs à divergence nulle de R2, solution de l’équation
(1.4). Dans les chapitres 3 et 4, on sera amené à considérer non pas directement les
équations de mouvement (1.5) et (1.7) mais les équations satisfaites par le tourbillon
w = rot u. En dimension 2, on utilise la convention

rot u = ∂1u2 − ∂2u1.

En prenant le rotationnel du système d’équations de Navier-Stokes (1.4), et en remar-
quant que

rot (u.∇u) = u.∇w,

les équations du mouvement des fluides newtoniens en dimension 2 deviennent

∂tw −∆w + u.∇w = 0, (2.3)

où l’on a supposé ν = 1.

Cette nouvelle équation, où w est l’inconnue, est bien autonome. En effet, le champ de
vecteurs à divergence nulle u est reconstitué à partir de w par la loi de Biot-Savart, qui
est un outil assez classique en mécanique des fluides. En particulier, passer en tourbillon
dans les équations de Navier-Stokes permet de supposer que u n’est pas dans l’espace de
Lebesgue L2. Étant donné w une fonction de R2, on définit u par la formule

u(x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
w(y)dy,

où (x1, x2)⊥ = (−x2, x1).

Pour peu que w soit suffisamment régulière (par exemple dans un espace Lp avec p < 2),
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u est bien définie et l’on a bien rot u = w et div u = 0.

L’existence de solutions à l’équation (2.3) a été très largement étudiée par le passé et il
existe notamment une classe de solutions particulières dites autosimilaires, c’est-à-dire
de la forme

(t, x) 7→ 1

1 + t
F

(
x√

1 + t

)
,

où F est une fonction réelle sur R2 et T une constante positive.

Afin d’obtenir une décomposition de w sous la forme (2.1), on procède à un changement
de variable qui revient à écrire les solutions de (2.3) dans les coordonnées de la fonction

F . On pose X =
x√

1 + t
et τ = ln(1 + t) et on définit W comme suit :

w(t, x) =
1

1 + t
W

(
ln(1 + t),

x√
1 + t

)
,

W (τ,X) = eτw
(
eτ − 1, eτ/2X

)
.

(2.4)

Dans ce nouveau système de variables, appelées variables d’échelles ou variables autosi-
milaires, W satisfait l’équation

∂τW − L(W ) + U.∇W = 0, (2.5)

où L(W ) = W + ∆W + X
2
.∇W .

L’idée est maintenant de décomposerW sur le spectre de L. Dans des espaces fonctionnels
bien choisis (en l’occurence des espaces de Lebesgue à poids), le spectre de cet opérateur
est entièrement connu, de même que les vecteurs propres associés aux valeurs propres
de ce dernier. Notamment, 0 est la plus grande valeur propre de L, de multiplicité 1. Le
vecteur qui lui est associé est appelé tourbillon d’Oseen et est donné par

G(X) =
1

4π
e−
|X|2
4 .

Ainsi, en supposant que W appartient à un espace bien choisi et en projetant W sur l’es-
pace propre associé à la valeur propre 0, on peut montrer queW satisfait la décomposition

W (τ,X) = η(τ)G(X) +R(τ,X),
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où η(τ) =

∫
R2

W (τ, x)dx et R(τ,X) tend vers 0 exponentiellement lorsque τ tend vers

l’infini. En intégrant en espace l’équation (2.3), on constate que

∂τη = 0.

De ce fait, on a l’égalité η(τ) = η =

∫
R2

W (0, x)dx. Étant donné que le changement de

variable (2.4) préserve la masse totale, on a

η =

∫
R2

w(0, x)dx.

En revenant dans les variables de départ, on obtient une décomposition de la forme (2.1),
dans notre cas

w(t, x) = η
1

1 + t
G

(
x√

1 + t

)
+ r(t, x),

où r(t, x) tend vers 0 de façon polynomiale lorsque t tend vers l’infini, plus rapidement

que 1
1+t
G
(

x√
1+t

)
. Il existe également des résultats sur les profils d’ordre supérieur pour

ces équations, en décomposant W sur les espaces propres de L associés aux valeurs
propres suivantes (voir [36]). On verra plus tard que l’étude des profils asymptotiques
à l’ordre supérieur requiert des restrictions sur les espaces fonctionnels dans lesquels on
considère les solutions.

2.2 Attracteurs

Un autre aspect du comportement asymptotique de solutions d’équations aux dérivées
partielles est l’étude de l’existence d’un attracteur. Dans cette thèse, ce sujet est abordé
au chapitre 4 pour les équations des fluides de grade 3 sur un domaine borné périodique
de R2, où la force f que l’on applique au système (1.7) est supposée constante au cours
du temps. On montre dans ce cas l’existence d’un attracteur pour une topologie plus
faible que celle dans laquelle les solutions sont définies. Pour cette étude, on associe
les solutions des équations des fluides de grade 3 à un système dynamique S(t) sur un
espace fonctionnel X de dimension infinie. L’étude asymptotique de ces solutions se fait
alors par l’intermédiaire de l’étude des propriétés du système dynamique. Le fait qu’un
système d’équations différentielles admette un attracteur global se traduit par le fait que
les solutions de ce système sont attirées vers un ensemble compact de X, invariant par
rapport au système dynamique S(t). D’un point de vue plus concret, cela veut dire que
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lorsqu’on laisse le temps s’écouler avec une force constante agissant sur le système, le
comportement du fluide se stabilise autour de cet ensemble invariant de solutions.

Considérons (X, d) un espace métrique donné et S(t) un système dynamique sur X.
Dans le cas d’un système dynamique associé aux solutions d’une équation d’évolution,
l’espace X est l’espace dans lequel sont les données initiales de ces solutions. Ainsi, étant
donné x0 ∈ X, S(t)x0 est la solution de donnée initiale x0, prise à l’instant t. Pour
un espace métrique donné (X, d), on définit la semi-distance sur les sous-espaces de X
donnée par

δX(A,B) = sup
b∈B

inf
a∈A

d (a, b) .

Cette semi-distance, qui n’est pas symétrique, va jouer un rôle important par la suite.
Elle mesure en quelque sorte ”à quel point l’ensemble A est inclus dans l’ensemble B”.
En particulier, si A ⊂ B, alors δX(A,B) = 0. Un attracteur global sur X pour le système
dynamique S(t) est un ensemble compact A de X, invariant par S(t) et tel que, pour
tout borné B de X et tout ε ≥ 0, il existe un temps tε = tε(B) ≥ 0 tel que, pour tout
t ≥ tε, on a

δX (S(t)B,A) ≤ ε. (2.6)

Généralement, et comme ce sera le cas dans les résultats présentés dans cette thèse,
le système dynamique associé aux solutions d’une équation aux dérivées partielles agit
sur un espace métrique de dimension infinie, typiquement un espace de fonctions. Ce
type d’étude a été initié notamment par les travaux de J. Hale J. Lasalle et M. Slemrod
(voir [44] et [43]). L’intérêt de montrer l’existence d’un attracteur pour les solutions d’un
système d’équations est lié à la nature de cet attracteur. La dynamique d’un système
au sein même de l’attracteur est une question importante de ce type d’étude. Existe-t-il
des points d’équilibre ? Y en a t-il plusieurs ? Existe-t-il des solutions périodiques ? L’at-
tracteur est-il plus régulier que l’espace dans lequel les solutions sont définies ? Chacune
des réponses à ces questions donne des informations sur le comportement asymptotique
des solutions du système. Par exemple, pour les équations des fluides de grade 2 sur un
domaine borné ou périodique de R2, l’existence d’un attracteur pour des données dans
les espaces de Sobolev W 3,p, avec 1 < p < +∞ est connue pour une force f indépendante
du temps dans W 1,p (voir [53], [57] ou [56]). De plus il a également été montré par M.
Paicu et G. Raugel que l’attracteur est de régularité W 3,p+m, où m est une constante
strictement positive, si l’on suppose que f est constante en temps dans l’espace W 1,p+m

(voir [56]).
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Chapitre 2

Historique des résultats et
contributions de la thèse

Dans le cadre de cette thèse, on s’intéresse aux comportements asymptotiques des
solutions de deux systèmes d’équations de fluides non-newtoniens, à savoir les équations
des fluides de grades 2 et 3. Dans ce chapitre, on donne un aperçu des résultats existants
pour ces différentes classes de fluides, et on détaille les contributions de cette thèse. Tout
d’abord, nous rappelons ce qui est connu pour les équations classiques de Navier-Stokes,
ce qui nous permettra ensuite de comparer avec les résultats obtenus pour les fluides de
grades 2 et 3.

1 Comportement asymptotique des fluides newto-

niens

Le cas des fluides newtoniens, régis par les équations de Navier-Stokes, a été très
largement étudié (voir par exemple [13], [27], [29], [36], [37], [38], [39], [14], [42], [49]).
Dans cette section, on considère le problème de Cauchy des équations de Navier-Stokes
en dimension d, où d ∈ {2, 3}, donné par

∂tu− ν∆u+ u.∇u+∇p = f,
div u = 0,
u|t=0 = u0,

(1.1)

où ν > 0 est la viscosité cinématique introduite dans le chapitre 1, p est la pression et f
la force extérieure agissant sur le fluide.
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Les résultats d’existence les plus connus pour ce système sont ceux de J. Leray [51] et
H. Fujita et T. Kato [32]. Sur l’espace entier Rd (ou sur un domaine borné de Rd avec
conditions de Dirichlet), J. Leray a démontré l’existence de solutions faibles globales en
temps à valeurs dans L2(Rd), dites solutions de Leray, pour une force f appartenant à
l’espace L2

(
R+, H−1(Rd)

)
. L’unicité de ces solutions est connue en dimension 2 mais

reste un problème ouvert en dimension 3. Des éléments de réponse sont apportés en
dimension 3 par le théorème de Fujita-Kato, qui montre l’existence de solutions fortes
dans les espaces de Sobolev homogènes. Pour s ∈ R, on définit la semi-norme

‖u‖Ḣs =
∥∥F̄ (|ξ|s û)

∥∥
L2 ,

où û est la transformée de Fourier de u et F̄ désigne la transformée de Fourier inverse.
On définit les espaces fonctionnels

V =
{
u ∈ C∞0 (Rd) : div u = 0

}
, et V̇ s = V‖.‖Ḣs .

Dans [32], il est montré que si la donnée u0 appartient à l’espace V̇
1
2 (R3) et la force f à

l’espace L2
(
R+, V̇ −

1
2 (R3)

)
, il existe alors une constante positive T et une solution forte

u au système (1.1), telles que

u ∈ C0
(

[0, T ] , V̇
1
2 (R3)

)
∩ L2

(
[0, T ] , V̇

3
2 (R3)

)
.

Cette solution est de plus unique et globale en temps si la donnée initiale et la force sont

suffisamment petites dans V̇
1
2 (R3) et L2

(
R+, V̇ −

1
2 (R3)

)
respectivement. L’existence de

solutions globales dans V̇
1
2 (R3) pour des données grandes est aujourd’hui encore un

problème ouvert.

1.1 Profils asymptotiques

Il existe de nombreux travaux traitant du comportement asymptotique des solutions
des équations de Navier-Stokes, et nous considérons ici la description des profils asymp-
totiques des solutions de ces équations. Nous nous intéressons dans un premier temps au
cas de la dimension 2.
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Profils asymptotiques en dimension 2

On considère un fluide newtonien remplissant l’espace R2 tout entier et auquel on
n’applique pas de force extérieure. Pour étudier les profils asymptotiques des équations
de Navier-Stokes, on s’intéresse aux équations du tourbillon w = rot u = ∂1u2 − ∂2u1,
données par

∂tw −∆w + u.∇w = 0,
div u = 0,
w|t=0 = w0,

(1.2)

où l’on a supposé ν = 1 et le champ de vecteurs u est reconstruit à partir de w par la
loi de Biot-Savart bidimensionnelle, donnée par

u(x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
w(y)dy. (1.3)

Cette étude se fait pour des solutions du système (1.2) à valeurs dans des espaces de
Lebesgue à poids. On verra plus tard que ces espaces apparaissent naturellement lorsque
l’on considère les variables d’échelles dont on a parlé dans l’introduction de cette thèse.
Pour m ∈ N, on définit

L2(m) =
{
u ∈ L2(R2) :

(
1 + |x|2

)m/2
u ∈ L2(R2)

}
,

équipé de la norme

‖u‖L2(m) =
∥∥∥(1 + |x|2

)m/2
u
∥∥∥
L2
. (1.4)

Il a été montré en 2002 par T. Gallay et E. Wayne dans [36] que si les données initiales
sont suffisamment petites dans L2(m), les solutions de (1.2) convergent, à une constante
dépendant des données initiales près, vers une solution autosimilaire de l’équation de la
chaleur

∂tu−∆u = 0. (1.5)

Cette solution particulière est définie par

(t, x) 7−→ 1

1 + t
G

(
x√

1 + t

)
, (1.6)

où G est le tourbillon d’Oseen, donné par

G(x) =
1

4π
e−
|x|2
4 . (1.7)
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Ce résultat s’obtient en effectuant le changement de variables X =
x√

1 + t
et τ = ln(1+t)

et en définissant W et U comme suit :

w(t, x) =
1

1 + t
W

(
ln(1 + t),

x√
1 + t

)
,

u(t, x) =
1√

1 + t
U

(
ln(1 + t),

x√
1 + t

)
.

(1.8)

Ces nouvelles variables s’appellent variables d’échelles ou variables autosimilaires, qui
ont été initialement introduites pour étudier les comportements asymptotiques de so-
lutions d’équations paraboliques, et en particulier leur convergence vers des solutions
autosimilaires (voir [25], [26], [33] ou [48]). Nous verrons que ces variables permettent
aussi de traiter le comportement asymptotique de solutions d’équations qui ne sont pas
paraboliques. En revenant à l’équation (1.2), on peut vérifier que W satisfait

∂τW − LW + U.∇W = 0, (1.9)

où LW = W + ∆W + X
2
.∇W .

Une étude du spectre de L sur L2(m) montre que celui-ci est la réunion du spectre discret

σd =
{
−k

2
: k ∈ {0, ...,m− 2}

}
,

et du spectre continu

σc =
{
λ ∈ C : Re(λ) ≤ −m−1

2

}
.

En particulier, si m ≥ 2, la valeur propre 0 est simple et isolée, et G en est un vecteur
propre. De plus, il est facile de vérifier que G est solution de (1.9). On décompose W
comme suit :

W = ηG+R,

où η est une constante dépendant de W . Une étude plus détaillée du supplémentaire

de l’espace propre associé à la valeur propre 0 montre que η =

∫
R2

W (τ,X)dX. En

intégrant en espace l’égalité (1.9), on constate que η est constant au cours du temps et

donc η =

∫
R2

W (0, X)dX. De plus, cette quantité est conservée par le changement de

variable (1.6), et on a donc η =

∫
R2

w0(x)dx.
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En utilisant des arguments provenant de l’étude des systèmes dynamiques, T. Gallay et
E. Wayne ont ensuite montré que R tend exponentiellement vers 0 lorsque le temps τ tend
vers l’infini. Pour m ≥ 2, les auteurs ont montré, en reprenant notamment les travaux
de X. Chen, J. Hale et B. Tan dans [16], l’existence d’une sous-variété Wc localement
invariante par le flot associé à (1.9) sur L2(m). Leurs résultats montrent de plus que le
comportement des solutions de (1.9) sur cette variété est déterminé par leurs projections
sur les espaces propres associés aux valeurs propres isolées de L. Ensuite, toujours en
s’appuyant sur des résultats de [16], ils ont montré que, si les données initiales sont
suffisamment petites dans L2(m), les solutions de (1.9) tendent vers cette sous-variété
lorsque le temps tend vers l’infini. En particulier, si m = 2, ils ont montré qu’il existe
une constante positive r0 telle que les solutions de (1.9) tendent vers

W loc
c =

{
AG : A ∈ R, |A| ‖G‖L2(2) < r0

}
,

qui est en fait la restriction de Wc à un voisinage de l’origine. Ce résultat est énoncé
dans le théorème suivant, que l’on retrouve dans [36].

Théorème 1.1 Soit 0 < µ < 1
2

une constante fixée. Il existe r > 0 telle que, pour
toute donnée initiale W0 ∈ L2(2) avec ‖W0‖L2(2) ≤ r, il existe une unique solution

W ∈ C0 (R+, L2(2)) de (1.9) avec W (0) = W0 et une constante positive C telles que,
pour tout τ ≥ 0,

‖W (τ)− ηG‖L2(2) ≤ Ce−µτ , (1.10)

où η =

∫
R2

W0(X)dX =

∫
R2

w0(x)dx.

Dans les variables de départ, on obtient le théorème suivant, qui est un corollaire du
théorème 1.1.

Théorème 1.2 Soit 0 < µ < 1
2

une constante fixée. Il existe r > 0 telle que, pour
toute donnée initiale w0 ∈ L2(2) avec ‖w0‖L2(2) ≤ r, il existe une unique solution w ∈
C0 (R+, L2(2)) de (1.2). De plus, pour tout 1 ≤ p ≤ 2, il existe une constante positive Cp
telle que, pour tout t ≥ 0,∥∥∥∥w(t)− η

1 + t
G

(
.√

1 + t

)∥∥∥∥
Lp
≤ Cp

(1 + t)1+µ− 1
p

, (1.11)

où η =

∫
R2

w0(x)dx. Si u est le champ de vitesses obtenu à partir de w par la loi de

Biot-Savart, alors, pour tout 1 < q < ∞, il existe une constante positive Cq telle que,
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pour tout t ≥ 0, ∥∥∥∥u(t)− η√
1 + t

V

(
.√

1 + t

)∥∥∥∥
Lq
≤ Cq

(1 + t)
1
2

+µ− 1
q

, (1.12)

où V est le champ de vecteur obtenu à partir de G par la loi de Biot-Savart.

La restriction µ < 1
2

vient du fait que la seconde valeur propre isolée de L est −1
2
. Pour

obtenir un meilleur taux de convergence, il est nécessaire de faire une étude des profils
à l’ordre deux, ce qui revient à décomposer W sur les espaces propres associés aux deux
premières valeurs propres de L. Pour une étude à l’ordre 2, il faut de plus considérer un
espace à poids polynomial de degré supérieur à 2, afin d’obtenir deux valeurs propres
isolées dans le spectre de L. Les profils asymptotiques à l’ordre 2 du système (1.2) sont
également détaillés dans [36]. En 2005, T. Gallay et E. Wayne ont montré dans [38] que
La condition de petitesse des théorèmes 1.1 et 1.2 sur les données initiales n’est pas
nécessaire. De plus, il est montré que le taux optimal 1

2
est atteint pour toute donnée

dans L2(m), où m > 2. Dans un cadre fonctionnel différent, on peut aussi trouver des
résultats similaires dans l’article plus ancien de Y. Giga et T. Kambe [42].

Profils asymptotiques en dimension 3

Considérons à présent un fluide newtonien remplissant tout l’espace R3. En posant
w = rot u = ∇∧ u, les équations du tourbillon en dimension 3 sont données par

∂tw −∆w + u.∇w − w.∇u = 0,
div u = div w = 0,
w|t=0 = w0,

(1.13)

où l’on a supposé ν = 1 et où u est obtenu en appliquant la loi de Biot-Savart tridimen-
sionnelle à w, donnée par

u(x) = − 1

4π

∫
R3

(x− y)

|x− y|3
∧ w(y)dy. (1.14)

Contrairement au cas de la dimension 2, w est un vecteur de R3 à divergence nulle. Ici
encore, on travaille dans des espaces de Lebesgue à poids. Les solutions de (1.13) étant
des vecteurs à divergence nulle, il est naturel de définir, pour m ∈ N,

L2(m) = {u ∈ L2(m)3 : div u = 0} ,
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où L2(m) est donné par (1.4), en remplaçant R2 par R3.

T. Gallay et E. Wayne ont montré en 2002 dans [37] que, pour peu que les données
initiales soient petites dans un espace L2(m) bien choisi, les solutions de (1.13) convergent
vers des champs de vecteurs de R3 dont chaque composante est une solution particulière
des équations de la chaleur (1.5). Afin de préciser la nature de ces solutions limites, on
pose

p1(x) =
1

2

 0
−x2

x3

 , p2(x) =
1

2

 x3

0
−x1

 , p3(x) =
1

2

 −x2

x1

0

 ,

et on définit la fonction gaussienne

J(x) =
1

(4π)3/2
e−
|x|2
4 .

Si w est une solution de (1.13) de donnée w0 suffisamment petite dans L2(m), elle
converge alors lorsque le temps tend vers l’infini vers

(t, x) 7−→
3∑
i=1

bi

(1 + t)2fi

(
x√

1 + t

)
, (1.15)

où
fi(x) = pi(x)J(x), (1.16)

et

bi =

∫
R3

pi(x).w0(x).

A l’instar du cas de la dimension 2, ce résultat est obtenu via le changement de variables
(1.8). En dimension 3, un rapide calcul montre que le champ de vecteur W défini par
(1.8) satisfait l’égalité

∂τW − LW + U.∇W −W.∇U = 0, (1.17)

où LW = W + ∆W + X
2
.∇W .

Une étude détaillée du spectre de L sur L2(m), que l’on peut trouver dans [37], montre
que celui-ci est la réunion du spectre discret

σd =

{
−1

2
(k + 1) : k ∈ N∗

}
, (1.18)
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et du spectre continu

σc =

{
λ ∈ C : Re(λ) ≤ 1

4
− m

2

}
. (1.19)

On constate que plus m est grand, et plus le spectre continu est décalé sur la gauche. Si
m est assez grand, −1 est une valeur propre isolée de L, de multiplicité 3, et la famille
de vecteurs {f1, f2, f3} est une base de l’espace propre associé. On décompose ensuite W
sur le spectre de L, c’est-à-dire comme suit :

W (τ) =
3∑
i=1

βi(τ)fi +R(τ),

où βi ∈ R et R(τ) est un reste dans le supplémentaire W de l’espace propre associé à
la valeur propre −1. Dans [37], il est montré, par une description de W et un calcul sur

les solutions de (1.17), que βi(τ) = e−τ
∫
R2

pi(X).W (0, X) dX. Dans [37], il est montré

le théorème suivant.

Théorème 1.3 Soit 1 < µ ≤ 3
2

une constante fixée et m > 2µ + 1
2
. Il existe r > 0 telle

que, pour toute donnée initiale W0 ∈ L2(m) avec ‖W0‖L2(m) ≤ r, il existe une unique

solution W ∈ C0 (R+,L2(m)) de (1.13) de donnée initiale W0 et une constante positive
C, telles que, pour tout τ ≥ 0,∥∥∥∥∥W (t)−

3∑
i=1

e−τbifi

∥∥∥∥∥
L2(m)

≤ Ce−µτ ‖w0‖L2(m) , (1.20)

où bi =

∫
R3

pi.W0dx.

En revenant dans les variables de départ, on obtient le théorème suivant.

Théorème 1.4 Soit 1 < µ ≤ 3
2

une constante fixée et m > 2µ + 1
2
. Il existe r > 0 telle

que, pour toute donnée initiale w0 ∈ L2(m) avec ‖w0‖L2(m) ≤ r, il existe une unique

solution w ∈ C0 (R+,L2(m)) de (1.13). De plus, pour tout 2 ≤ p ≤ ∞, il existe une
constante positive Cp telle que, pour tout t ≥ 0,∥∥∥∥∥w(t)−

3∑
i=1

bi

(1 + t)2fi

(
.√

1 + t

)∥∥∥∥∥
Lp

≤ Cp (1 + t)−1−µ− 3
2p ‖w0‖L2(m) , (1.21)
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où bi =

∫
R3

pi.w0dx. Si u est le champ de vecteurs obtenu en appliquant la loi de Biot-

Savart à w, alors, pour tout 2 ≤ q ≤ ∞, il existe une constante positive Cq telle que,
pour tout t ≥ 0,∥∥∥∥∥u(t)−

3∑
i=1

bi

(1 + t)
3
2

vi

(
.√

1 + t

)∥∥∥∥∥
Lq

≤ Cq (1 + t)−
1
2
−µ− 3

2q ‖w0‖L2(m) , (1.22)

où vi est obtenu en appliquant la loi de Biot-Savart (1.14) à fi.

Comme pour le cas de la dimension 2, le taux optimal que l’on peut considérer pour une
décomposition au premier ordre est lié à la seconde valeur propre du spectre discret de
L. Pour décrire les profils asymptotiques des solutions de (1.13) à un ordre supérieur, il
est nécessaire de travailler dans des espaces à poids pour lesquels le spectre de L admet
au moins deux valeurs propres isolées. On constate d’après (1.19), que prendre un poids
polynomial grand permet de repousser la partie réelle du spectre continu de L sur la
gauche, et d’obtenir ainsi des valeurs propres isolées. Le développement asymptotique
des solutions de (1.13) est décrit jusqu’à l’ordre 2 dans [37], en travaillant dans un espace
L2(m), pour m > 7

2
.

1.2 Attracteurs

Dans le cas de nombreuses équations d’évolution autonomes, on peut définir un
système dynamique ou semiflot S(t) qui, à la donnée initiale u0, associe la solution
u(t) ≡ S(t)u0 de l’équation considérée.

Définition 1.1 Un système dynamique S(t) (ou semi-groupe continu) sur un espace
métrique X est une famille d’opérateurs continus {S(t) : X → X, t ∈ R+} satisfaisant
les propriétés suivantes :

(H1) S(0) = Id et S(t) ◦ S(s) = S(t+ s), pour tout t, s ≥ 0.

(H2) Pour tout t ∈ R+, S(t) est un opérateur continu sur X.

(H3) L’application t ∈ R+ → S(t)u est continue à valeurs dans X.

Si les propriétés ci-dessus sont vérifiées pour t ∈ R, on parle de groupe continu.

Selon cette définition, si les solutions d’un système d’équations aux dérivées partielles
sont associées à un système dynamique S(t) sur un espace métrique X, S(t)x est la
solution de donnée initiale x prise au temps t. Afin de définir précisément ce qu’est un
attracteur pour un système dynamique S(t), nous définissons la semi-distance sur les
sous-ensembles d’un espace métrique (X, d) comme suit :
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δX(A,B) = sup
b∈B

inf
a∈A

d(a, b).

Nous avons également besoin de la définition suivante.

Définition 1.2 Soit (X, d) un espace métrique et S(t) un système dynamique sur X.

1. On dit que l’ensemble A attire l’ensemble B si lim
t→+∞

δX(S(t)B,A) = 0.

2. On dit que A est invariant par S(t) si S(t)A = A, pour tout t ≥ 0.

3. On dit que A est un attracteur global de S, si A est compact, invariant par S et attire
tous les bornés de X.

Sur un ouvert borné Ω de R2 avec conditions de Dirichlet, O. Ladyzhenskaya a montré que
les solutions des équations de Navier-Stokes dansH =

{
u ∈ L2(Ω)2 : div u = 0, u|∂Ω = 0

}
permettent de définir un système dynamique S(t) sur H ; quand les données initiales sont
petites (voir [49]). De plus, elle a montré que le système dynamique S(t) régularise en
temps fini, c’est à dire que pour tout t > 0, S(t) envoie H dans H ∩H1(Ω)2 et que, dans
le cas de données petites, il admet un attracteur local sur H. Ce résultat a ensuite été
amélioré (voir [2] ou [50]) en un résultat d’existence d’attracteur global sur H, au sens de
la définition 1.2. Il est montré de plus dans [50] que la régularité de l’attracteur A n’est
limitée que par la régularité de la force extérieure f et que S(t) est un groupe continu
sur A. On a le théorème d’existence d’un attracteur global suivant.

Théorème 1.5 Soit f ∈ H et ν > 0. La famille d’opérateurs {S(t) : H → H} qui à une
donnée u0 associent u(t) la solution de (1.1) de donnée u0 au temps t est un semi-groupe
continu sur H. De plus, S(t) admet un attracteur global compact donné par

A =

{⋂
t≥0

S(t)B : B borné de H

}
.

En dimension 3, si la force f est petite, on peut montrer l’existence d’un attracteur local
(voir par exemple [17]). Citons aussi les travaux de C. Foias et R. Temam, qui ont montré
l’existence d’un attracteur dans un sens faible sur un domaine périodique T3 de R3, pour
des solutions à valeurs dans L2(T3) (voir [28] et [30]). Ce résultat montre l’existence d’un
attracteur pour la topologie faible de L2 (voir aussi [60]).

2 Fluides de grade 2

Cette section traite du comportement asymptotique des solutions des équations des
fluides de grade 2. On commence par rappeler quelques résultats connus sur l’existence de
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solutions à ce système, puis rappellera ce que l’on sait sur le comportement asymptotique
de ces solutions. Dans le cadre de cette thèse, deux résultats sont exposés en lien avec ce
sujet. Les travaux exposés dans le chapitre 3 donnent une description au premier ordre
des profils asymptotiques des solutions des équations des fluides de grade 2 en dimension
3. Le chapitre 4, bien que consacré à l’étude des fluides de grade 3, apporte quelques
précisions sur le comportement des fluides de grade 2 en dimension 2. On considère donc,
pour un champ de vecteur u ∈ Rd, où d = 1, 2, le problème de Cauchy suivant

∂t (u− α∆u)− ν∆u+ rot (u− α∆u) ∧ u+∇p = f,
div u = 0,
u|t=0 = u0,

(2.1)

où ν > 0 est la viscosité, α ≥ 0, p est la pression et f est la force extérieure appliquée
au fluide. Si la dimension de l’espace est 2, on fait la convention u = (u1, u2, 0) et
rot u = (0, 0, ∂1u2 − ∂2u1).

2.1 Résultats d’existence

Le premier résultat d’existence est celui obtenu par D. Cioranescu et O. El Hacène
sur un ouvert borné Ω de R2 ou R3, en considérant des conditions de Dirichlet sur le
bord de Ω, c’est-à-dire u|∂Ω = 0. (voir [19]). Pour cette étude, ils ont considéré les espaces
fonctionnels

V =
{
u ∈ H1(Ω)d : div u = 0, u|∂Ω = 0

}
, (2.2)

et, pour s ≥ 1,
V s = V ∩Hs(Ω)d. (2.3)

Dans cet article, les auteurs ont construit des solutions faibles dans l’espace fonctionnel
V 3 en considérant une force f à valeurs dans V 1. En dimension 2, le résultat qu’ils
obtiennent est global en temps, alors que dans le cas de la dimension 3, l’existence n’est
que locale en temps. Dans les deux cas, les solutions sont uniques. En dimension 2, on a
le théorème suivant.

Théorème 2.1 Soit Ω un ouvert borné de R2 dont le bord est régulier. Soit T une
constante positive donnée, f ∈ L2 ((0, T ) , V ) et u0 ∈ V 3 donnés, il existe une unique
solution faible u au système (2.1) telle que

u ∈ L∞ ((0, T ) , V 3) et ∂tu ∈ L∞
(

(0, T ) , (V 3)
′
)
,

où (V 3)
′

est l’espace dual de V 3.
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En dimension 3, l’énoncé est le même, mais la solution n’existe que sur un intervalle
[0, T ∗], où T ∗ ≤ T . Ce théorème est obtenu par une méthode de Galerkin, c’est-à-dire la
construction d’une suite un de solutions approchées à valeurs dans des espaces fonction-
nels de dimensions finies. Dans ce cas, un est à valeurs dans l’espace vectoriel engendré
par les n fonctions propres du produit scalaire associé à l’opérateur rot (Id− α∆). En
passant à la limite lorsque n tend vers l’infini, on montre ensuite que un converge vers
un certain u, qui est l’unique solution faible de (2.1). En particulier, on peut voir que
le théorème ci-dessus est vrai pour une force f ∈ V ne dépendant pas du temps. En
dimension 2, ce résultat a été amélioré par I. Moise, R. Rosa et X. Wang dans [53],
qui ont montré que les solutions données par ce théorème sont continues en temps. En
dimension 2 ou 3, G. Galdi, M. Grobbelaar Van Dalsen et N. Sauer on montré l’existence
de solutions fortes dans l’espace V m, avec m ≥ 5, qui sont de plus globales si les données
initiales sont supposées petites dans V m (voir [35]). Finalement, D. Cioranescu et V.
Girault ont montré dans [18] le théorème suivant.

Théorème 2.2 Soit Ω un ouvert borné de R3 dont le bord est régulier et m ≥ 3. Soit
f ∈ L2 (R+, V m−2) et u0 ∈ V m donnés, il existe T ∗ ∈ [0,+∞] et une unique solution
faible u au système (2.1) telle que

u ∈ L∞ ((0, T ∗) , V m) et ∂tu ∈ L∞ ((0, T ∗) , V m−2) ,

De plus, il existe R > 0 tel que, si ‖u0‖H3 ≤ R, alors T ∗ = +∞. Si m ≥ 4, alors u est
une solution classique de (2.1).

En dimension 3, une extension de ces deux théorème est donnée par D. Bresch et J.
Lemoine dans [8]. En effet, pour une force f à valeurs dans Lr(Ω)3 avec r > 3, les
auteurs ont montré l’existence de solutions locales dans l’espace V 1 ∩ W 2,r(Ω)3. Plus
précisément, ils ont démontré le théorème d’existence suivant.

Théorème 2.3 Soit Ω un ouvert borné de R3, α > 0 et f ∈ Lr ([0, T ]× Ω)3, avec r > 3.
Il existe T ∗, 0 < T ∗ ≤ T et une unique solution au système (2.1) tels que

u ∈ C0 ([0, T ∗] , V 1 ∩W 2,r(Ω)3) et ∂tu ∈ L∞ ([0, T ∗] , V 1 ∩W 1,r(Ω)3).

Si de plus f ∈ L∞ (R+, Lr(Ω)3), il existe trois constantes positives r1 = r1(r,Ω), r2 =
r2(α, ν, r,Ω) et r3 = r3(α, ν, r,Ω) telles que si

α ≥ r1,
‖f‖L∞(R+,Lr(Ω)3) ≤ r2,

‖u0 −∆u0‖Lr ≤ r3,
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alors T ∗ = +∞ et l’on a

u ∈ C0
b (R+, V 1 ∩W 2,r(Ω)3) et ∂tu ∈ L∞ (R+, V 1 ∩W 1,r(Ω)3).

Le démonstration de ce théorème repose sur un théorème de point fixe de Schauder. On
peut trouver d’autres résultats d’existence pour les équations des fluides de grade 2 dans
[5], [7], [18], [20], [21], [34], [52] ou [54].

2.2 Dynamique des fluides de grade 2

On rappelle dans cette section quelques résultats sur le comportement asymptotique
des solutions des équations des fluides de grade 2. Pour ces équations, il existe des
résultats qui concernent l’existence d’un attracteur (voir [53], [57] ou [56]) et un article
traitant des profils asymptotiques des solutions de ces équations (voir [47]).

Profils asymptotiques

Les profils asymptotiques des solutions des équations des fluides de grade 2 ont été
étudiés en dimension 2 par B. Jaffal-Mourtada dans [47] pour un fluide de grade 2 rem-
plissant tout l’espace R2. Comme pour le cas des équations de Navier-Stokes, le système
auquel on s’intéresse ici est celui satisfait par le tourbillon w = rot u. En dimension 2,
ces équations sont données par

∂t (w − α∆w)−∆w + u.∇ (w − α∆w) = 0,
w|t=0 = w0,

(2.4)

où u est reconstitué par la loi de Biot-Savart (1.3).

Dans [47], il est montré que les profils asymptotiques des solutions des équations des
fluides de grade 2 sont les mêmes que ceux décrits par T. Gallay et E. Wayne (voir [36]).
En effet, les solutions des équations des fluides de grade 2 convergent elles aussi vers les
solutions autosimilaires des équations de la chaleur données par (1.6). Pour cette étude,
l’auteur a été amenée à considérer des espaces de Sobolev d’ordre 2 à poids, définis, pour
m ∈ N, par

H2(m) = {u ∈ L2(m) : ∂nu ∈ L2(m), n ∈ N2, |n| ≤ 2} .

Comme pour le cas des équations de Navier-Stokes, ce résultat s’obtient en considérant
des variables autosimilaires comparables à celles définies par (1.8), mais en prenant X =
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x√
t+ T

et τ = ln(t + T ), pour une constante positive T fixée. Cette constante T est

introduite pour pouvoir traiter le problème indépendamment de la taille de α. En posant

w(t, x) =
1

t+ T
W

(
ln(t+ T ),

x√
t+ T

)
,

u(t, x) =
1√
t+ T

U

(
ln(t+ T ),

x√
t+ T

)
,

(2.5)

un calcul simple montre que W satisfait le système d’équations

∂τ (W − αe−τ∆W )− L(W ) + U.∇ (W − αe−τ∆W )
+αe−τ∆W + αe−τ X

2
.∇∆W = 0,

W|τ=ln(T ) = W0,
(2.6)

où W0(X) = Tw0

(√
TX

)
et L(W ) = W + ∆W + X

2
.∇W .

Le système (2.6) est initialisé au temps τ = ln(T ), qui est arbitraire puisque T l’est. En
prenant T suffisamment grand, on peut donc considérer αe−τ aussi petit que l’on veut.
Comme pour le cas des fluides newtoniens, on considère la décomposition

W (τ) = ηG+R,

où η =

∫
R2

W0(X)dX =

∫
R2

w0(x)dx et G est le tourbillon d’Oseen donné par (1.7), qui

est un vecteur propre de L associé à la valeur propre 0.

En effectuant des estimations d’énergies sur R dans divers espaces fonctionnels, dont des
espaces de Sobolev à poids, B. Jaffal-Mourtada a montré le théorème suivant.

Théorème 2.4 Il existe trois constantes positives T , θ, 0 < θ < 1
2

et γ = γ(T ) telles
que, pour tout W0 ∈ H2(2) avec ‖W0‖H2(2) ≤ γ, il existe une unique solution W ∈
C0 ([ln(T ),+∞) , H2(2)) au système (2.6) telle que,∥∥(1− αe−τ∆) (W (τ)− ηG)

∥∥
L2(2)

≤ Ce−
θ
2
τ , (2.7)

où η =

∫
R2

W0(X)dX =

∫
R2

w0(x)dx, C est une constante positive et G est le tourbillon

d’Oseen, donné par (1.7).

En revenant dans les variables de départ, on obtient le théorème suivant, qui est un
corollaire du théorème 2.4.
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Théorème 2.5 Il existe trois constantes positives T , θ, 0 < θ < 1
2

et γ = γ(T )
telles que, pour tout w0 ∈ H2(2) avec ‖w0‖H2(2) ≤ γ, il existe une unique solution

w ∈ C0 (R+, H2(2)) au système (2.4) telle que, pour tout 1 ≤ p ≤ 2,∥∥∥∥(1− α∆)w(t)− η

t+ T
G

(
.√
t+ T

)∥∥∥∥
Lp
≤ Cp (t+ T )−1− θ

2
+ 1
p , (2.8)

où Cp est une constante positive, η =

∫
R2

w0(x)dx et G est donné par (1.7). Si u est le

champ de vitesses obtenu en appliquant la loi de Biot-Savart (1.3) à w, alors, pour tout
1 ≤ q ≤ 2, ∥∥∥∥(1− α∆)u(t)− η

t+ T
V

(
.√
t+ T

)∥∥∥∥
Lq
≤ Cq (t+ T )−

1
2
− θ

2
+ 1
q , (2.9)

où Cq est une constante positive et V est le champ de vitesses obtenu en appliquant la
loi de Biot-Savart (1.3) à G.

Il est à noter que le taux de convergence n’est ici pas optimal, et est nécessairement plus
petit que 1

4
. Pour les raisons spectrales expliquées précédemment, le taux optimal est 1

2
.

Dans le chapitre 4, qui porte sur les fluides de grade 3, on donnera une amélioration de
ce résultat, en montrant que l’on peut prendre un taux de convergence aussi proche du
taux optimal que souhaité, pourvu que les données initiales soient suffisamment petites
dans H2(2). D’un point de vue concret, en comparant ce résultat avec les théorèmes 1.1
et 1.2, ce résultat montre que les fluides de grade 2 se comportent asymptotiquement
comme les fluides newtoniens.

Attracteurs en dimension 2

Sur un domaine borné de R2, l’existence d’un attracteur global pour les équations
des fluides de grade 2 (2.1) est connue dans l’espace fonctionnel V 3. Les résultats que
l’on présente ici sont vrais également pour un domaine périodique T2 = [−π, π]2 de R2,
en définissant

Hper =
{
u ∈ L2(T2)2 : div u = 0,

∫
T2 udx = 0

}
,

et en remplaçant V s par

V s
per = Hper ∩Hs(T2)2.
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Sur un domaine borné ou périodique de R2, le théorème 2.1 assure l’existence de solu-
tions globales dans V 3 au système (2.1) pour une force f ∈ V indépendante du temps.
Le théorème suivant, démontré par I. Moise, R. Rosa et X. Wang dans [53], montre
l’existence d’un attracteur pour les équations des fluides de grade 2 sur V 3.

Théorème 2.6 Soit Ω ∈ R2 un ouvert borné, simplement connexe de bord connexe
régulier, et soient ν > 0, α > 0 et f ∈ H1(Ω)2. Si S(t)u0 = u(t) est l’unique solution
de (2.1) de donnée initiale u0, alors S(t) est un groupe continu sur V 3. De plus, S(t)
possède un attracteur global dans V 3.

La méthode utilisée pour obtenir ce résultat s’appuie sur des égalités d’énergies satisfaites
par les solutions de (2.1). Une partie des résultats du chapitre 4 s’appuie sur cette
méthode. Dans le cas des conditions périodiques, il est de plus montré dans [57] que si la
force est à valeurs dans Vper ∩H1+m(T2)2, où m est une constante positive, alors il existe
une constante positive δ tel que l’attracteur A appartient à l’espace V 3

per ∩H3+δ(T2)2.

Sur un domaine périodique, M. Paicu, G. Raugel ont étendu ce résultat à l’espace de
Sobolev W 3,p(T2)2, avec 1 < p <∞, où W s,q désigne l’espace de Sobolev d’ordre s associé
à la norme Lq (voir [56]). La méthode utilisée dans ce cas est différente de celle de [53],
et repose entre autres sur un changement de variables en coordonnées lagrangiennes.

2.3 Contributions de la thèse

Dans le cadre de cette thèse, une description des profils asymptotiques à l’ordre 1 pour
les équations des fluides de grade 2 sur R3 est donnée dans le chapitre 3. En reprenant
la méthode utilisée par B. Jaffal-Mourtada pour montrer les théorèmes 2.4 et 2.5, on
obtient un résultat similaire en dimension 3, qui montre que les solutions des équations
des fluides de grade 3 convergent vers les solutions autosimilaires des équations de la
chaleur données par (1.15). La conclusion que l’on peut en faire est qu’en dimension 3,
le comportement asymptotique des fluides de grade 2 est comparable à celui des fluides
newtoniens. Le système que l’on considère pour ce travail est celui satisfait pour le
tourbillon w = rot u. En dimension 3, ce système est donné par

∂t (w − α∆w)−∆w + u.∇ (w − α∆w)− (w − α∆w) .∇u = 0,
div w = div u = 0,
w|t=0 = w0,

(2.10)

où u est reconstitué par la loi de Biot-Savart tridimensionnelle (1.14).
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Afin d’énoncer le théorème démontré dans le chapitre 3, on définit l’espace de fonctions
dans lequel les solutions sont définies. Pour m ∈ N, on pose

H2(m) = {u ∈ L2(m) : ∂αu ∈ L2(m), |α| ≤ 2} .

Le résultat que l’on obtient se montre de la même façon que le théorème 2.4. En

considérant le changement de variables X =
x√
t+ T

et τ = ln(t + T ) et en définissant

W par la relation (2.5), on obtient le système

∂τ (W − αe−τ∆W )− L(W ) + U.∇ (W − αe−τ∆W )− (W − αe−τ∆W ) .∇U
+αe−τ∆W + αe−τ X

2
.∇∆W = 0,

div W = div U = 0,
W|τ=ln(T ) = W0,

(2.11)
où W0(X) = Tw0(

√
TX) et L(W ) = W + ∆W + X

2
.∇W .

Encore une fois, on décompose W sur le spectre de L. En dimension 3, la première valeur
propre de L est −1, et une base de l’espace propre associé est {f1, f2, f3}, donnée par
(1.16). On décompose W comme suit :

W (τ) = e−τ
3∑
i=1

bifi +R(τ),

où pi =

∫
R3

pi(X).W (τ,X)dX =

∫
R3

pi(X).W0(X)dX.

En effectuant notamment des estimations d’énergies dans divers espaces fonctionnels, on
montrera dans le chapitre 3 le théorème suivant.

Théorème 2.7 Soit θ, 0 < θ < 3
2

une constante positive fixée et W0 ∈ H2(4). Il existe
γ0 = γ0(α) > 0 et T0 = T0(α) ≥ 1 tels que, si T ≥ T0 et s’il existe γ ≤ γ0 tel que
W0 ∈ H2(4) satisfait l’inégalité

‖W0‖2
L2(4) + ‖∇W0‖2

L2 +αe−τ0 ‖∆W0‖2
L2 +α2e−2τ0

∥∥|X|4 ∆W0

∥∥2

L2 ≤ γ

(
3

2
− θ
)2

, (2.12)

où τ0 = log(T ),

alors il existe une unique solution W ∈ C0 ([τ0,+∞) ,H2(4)) au système (2.11) et une
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constante positive C = C(θ, α, γ, T0) tels que∥∥∥∥∥(Id− αe−τ∆)
(
W (τ)− e−τ

3∑
i=1

bifi

)∥∥∥∥∥
L2(4)

≤ Ce−θτ , (2.13)

où bi =

∫
R3

pi(X).W0(X)dX.

L’espace H2(4) dans lequel on travaille est choisi pour pouvoir considérer un taux de
convergence aussi proche que souhaité du taux optimal. Comme expliqué plus tôt, le
taux de convergence que l’on obtient est lié à la seconde valeur propre discrète du spectre
de L sur l’espace L2(m). Dans notre cas, cette valeur propre est −3

2
et on choisi donc m

suffisamment grand pour que la partie réelle du spectre continu soit repoussée au delà
de −3

2
. D’après (1.18), le m minimal que l’on doit prendre est donc 7

2
. Pour des raisons

pratiques, on préfère travailler dans L2(4). Dans les variables de départ, le théorème 2.7
donne le résultat suivant.

Théorème 2.8 Soit θ, 0 < θ < 3
2

une constante positive fixée et w0 ∈ H2(4). Il existe
γ0 = γ0(α) > 0 et T0 = T0(α) ≥ 1 tels que, pour tout T ≥ T0, 0 < γ ≤ γ0 et w0

satisfaisant la condition

T 1/2 ‖w0‖2
L2 + T−7/2

∥∥|x|4w0

∥∥2

L2 + T 3/2 ‖∇w0‖2
L2

+αT 3/2 ‖∆w0‖2
L2 + α2T−3/2

∥∥|x|4 ∆w0

∥∥2

L2 ≤ γ
(

3
2
− θ
)2
,

(2.14)

il existe une unique solution w ∈ C0 ([0,+∞) ,H2(4)) au système (2.10) et, pour tout
1 ≤ p ≤ 2, l’inégalité suivante est satisfaite :∥∥∥∥∥(Id− α∆)

(
w(t)−

3∑
i=1

bi

(t+ T )2fi

(
.√
t+ T

))∥∥∥∥∥
Lp

≤ C (t+ T )−1−θ+ 3
2p , (2.15)

où C = C(θ, α, γ, T0, p) est une constante positive.

De plus, il existe une constante positive C = C(θ, α, γ, T0) telle que∥∥∥∥∥|x|4 (Id− α∆)

(
w(t)−

3∑
i=1

bi

(t+ T )2fi

(
.√
t+ T

))∥∥∥∥∥
L2

≤ C (t+ T )
1
4
−θ , (2.16)

où bi =
1

T

∫
R3

pi(x).w0(x)dx et fi est donné par (1.15).

En particulier, en comparant avec le théorème 1.4, on constate que l’on obtient le même
taux de convergence dans les espaces de Lebesgue classiques que celui obtenu pour les
équations de Navier-Stokes.
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3 Fluides de grade 3

Une partie significative de cette thèse traite du comportement asymptotique des
solutions des équations des fluides de grade 3. La littérature mathématique consacrée
à cette classe de fluides est plus restreinte que celle consacrée aux fluides de grade 2,
et sans comparaison par rapport à celle consacrée aux équations de Navier-Stokes. S’il
existe plusieurs théorèmes d’existence de solutions, l’asymptotique n’est que très peu
étudiée. Dans cette section, on considère le système d’équations des fluides de grade 3,
donné par

∂t (u− α1∆u)− ν∆u+ rot (u− α1∆u) ∧ u− (α1 + α2) (A∆u+ 2div (LtL))

−βdiv
(
|A|2A

)
+∇p = f,

div u = 0,
u|t=0 = u0.

(3.1)
où u ∈ Rd, ν ≥ 0 est la viscosité α1 ≥ 0, α2 ∈ R, β ≥ 0, p est la pression du fluide et f
la force extérieure appliquée au fluide.

3.1 Résultats d’existence

Sur un ouvert borné régulier Ω de R2 ou R3, C. Amrouche et D. Cioranescu ont
montré en 1997 l’existence locale de solutions pour des données dans l’espace V 3, défini
par (2.3). Pour une donnée u0 ∈ V 3 et une force f ∈ L2 ([0, T ] , V 1), ils ont montré qu’il
existe un temps positif T ∗, 0 < T ∗ ≤ T et une solution u au système (3.1) tels que

u ∈ L∞ ([0, T ∗] , V 3) et ∂tu ∈ L2 ([0, T ∗] , V 1).

Pour ce travail, qui s’appuie sur un schéma de Galerkin, les auteurs on supposé la condi-
tion suivante, justifiée par des considérations physiques :

|α1 + α2| ≤
√

24νβ. (3.2)

Les solutions obtenues sont de plus uniques (voir [1]). En dimension 3, une classe plus
générale de solutions a été introduite par D. Bresch et J. Lemoine dans [9], à savoir des
solutions dont les données initiales appartiennent à l’espace V 1 ∩W 2,r(Ω)3, où r > 3,
pour une force extérieure à valeurs dans W 1,r(Ω)3. En utilisant le théorème de point
fixe de Schauder, les auteurs ont montré dans ce cas l’existence de solutions locales aux
équations des fluides de grade 3 dans l’espace C0([0, T ] , V 1 ∩ W 2,r(Ω)3). De plus, les
solutions obtenues sont uniques et les auteurs ne considèrent pas la restriction (3.2).
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Il est également montré dans [9] que les solutions sont globales sous des conditions de
petitesse sur les données initiales et la force extérieure. Il existe aussi d’autres résultats
d’existence sur un ouvert borné (voir [6], [11] ou [61]).

Dans le cas d’un fluide de grade 3 remplissant tout l’espace R2 ou R3, V. Busuioc et
D. Iftimie ont montré dans [10] en 2004 l’existence de solutions faibles globales dans
l’espace de Sobolev H2(Rd), pour une force f ∈ L∞loc

(
R+, L2(Rd)d

)
. Plus précisément, ils

ont démontré le théorème suivant.

Théorème 3.1 Considérons l’équation (3.1) sur Rd, d = 2, 3, avec
f ∈ L∞loc

(
R+, L2(Rd)d

)
, u0 ∈ H2(Rd)d, div u0 = 0. Il existe une solution globale u telle

que u ∈ C0
w

(
R+, H2(Rd)d

)
∩ C0

(
R+, Hs(Rd)d

)
, pour tout 0 ≤ s < 2. De plus, si d = 2,

cette solution est unique.

Ce théorème s’obtient par un schéma de Friedrich et des estimations a priori dansH2(Rd).
Le même théorème peut être démontré sur un tore de R2 ou R3. En 2008, une nouvelle
classe plus générale de solutions a été introduite par M. Paicu dans [55]. En reprenant une
partie des résultats de [10] et en considérant des restrictions sur la taille des paramètres
α1 et α2, il a démontré l’existence de solutions faibles globales dans l’espace H1(Rd),

lorsque la force f est à valeurs dans H−1 + W−1, 4
3 , où W−1, 4

3 est le dual de l’espace de
Sobolev W 1,4. De plus, ces solutions satisfont une égalité d’énergie dont on se servira
dans le chapitre 4. Le théorème obtenu par M. Paicu est le suivant.

Théorème 3.2 Soit u0 ∈ H1(Rd)d tel que div u0 = 0 et f = f1 + f2,

où f1 ∈ L∞loc
(
R+, H−1(Rd)d

)
et f2 ∈ L4/3

loc

(
R+,W−1, 4

3 (Rd)d
)

. Si les paramètres α1, α2, ν

et β satisfont les conditions suivantes :

– d = 2 : ν ≥ 0, β > 0 et |α1| ≤
√

8νβ,
– d = 3 : ν ≥ 0, β > 0, 3α2

1 + 4 (α1 + α2)2 ≤ 24νβ,

alors il existe une solution faible globale u au système (3.1), telle que

u ∈ C0
(
R+, H1(Rd)d

)
∩ L4

loc

(
R+,W 1,4(Rd)d

)
.

Dans le théorème ci-dessus, l’unicité n’est pas connue en général, et on verra plus tard que
cela jouera un rôle important pour montrer l’existence d’un attracteur pour les solutions
H1. En effet, on ne pourra pas associer les solutions des équations des fluides de grade 3
données dans ce théorème à un système dynamique au sens classique.
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3.2 Contributions de la thèse

Dans le cadre de cette thèse, deux résultats nouveaux sur les équations des fluides de
grade 3 sont démontrés. Le premier concerne les profils asymptotiques des solutions de
ces équations, pour un fluide remplissant tout l’espace R2. Le second montre l’existence
d’un attracteur dans la topologie H1 pour un fluide défini sur un tore de R2, pour des
solutions plus régulières que H1.

Profils asymptotiques sur R2

Dans le chapitre 4, on donne une description des profils asymptotiques au premier
ordre des solutions des équations des fluides de grade 3 considérés sur l’espace entier
R3. On montre, à l’instar des fluides newtoniens et de grade 2, que les solutions des
équations des fluides de grade 3 convergent lorsque le temps tend vers l’infini vers les
solutions autosimilaires des équations de la chaleur données par (1.6). Ce résultat est
obtenu sous une condition de petitesse sur les données initiales, que l’on retrouve aussi
pour le cas des fluides de grade 2 mais pas pour les équations de Navier-Stokes. Les
équations que l’on considère pour ce travail sont les équations satisfaites par le tourbillon
w = rot u = ∂1u2 − ∂2u1, données par

∂t (w − α∆w)−∆w + u.∇ (w − α∆w)− βrot div
(
|A|2A

)
= 0,

w|t=0 = w0,
(3.3)

où u est reconstitué par la loi de Biot-Savart bidimensionnelle (1.3).

Remarquons que la constante α2 n’apparait plus dans ce système d’équations. En effet,
en dimension 2, on peut montrer que le terme avec la constante multiplicative α2 du
système (3.1) est un terme gradient qui par conséquent n’intervient pas dans le com-
portement des solutions. Ce phénomène est très spécifique à la dimension 2 et n’existe
pas en dimension 3. On peut d’ailleurs constater que les conditions sur les paramètres
du théorème 3.2 en dimension 2 ne portent pas sur α2. Par conséquent, pour l’étude
des profils asymptotiques, la différence entre les équations des fluides de grade 3 et les
équations des fluides de grade 2 vient du terme cubique βdiv

(
|A|2A

)
.

Comme pour le cas des fluides newtoniens ou de grade 2, pour étudier les profils asymp-
totiques des solutions de (3.3), on considère les variables d’échelles. Pour T fixé, on
définit W par le changement de variables (2.5) et, par un calcul simple, on montre que
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W satisfait le système d’équations

∂τ (W − αe−τ∆W )− L(W ) + U.∇ (W − αe−τ∆W )

+αe−τ∆W + αe−τ X
2
.∇∆W − βe−2τ rot div

(
|A|2A

)
= 0,

W|τ=ln(T ) = W0,
(3.4)

où W0(X) = Tw0(
√
TX) et L(W ) = W + ∆W + X

2
.∇W .

De la même manière que pour les fluides de grade 2, en décomposant W sur le spectre
de L et en effectuant des estimations d’énergies dans divers espaces fonctionnels, on
montrera le théorème suivant.

Théorème 3.3 Soit θ, 0 < θ <
1

2
une constante positive. Il existe deux constantes

positives γ0 = γ0(α1, β) et T0 = T0(α1, β) ≥ 1 telles que, pour tout T ≥ T0, 0 < γ ≤ γ0

et W0 ∈ H2(2) satisfaisant la condition

‖W0‖2
H1 +α1e

−τ0 ‖∆W0‖2
L2 +

∥∥|X|2W0

∥∥2

L2 +α2
1e
−2τ0

∥∥|X|2 ∆W0

∥∥2

L2 ≤ γ

(
1

2
− θ
)6

, (3.5)

où τ0 = ln(T ),

il existe une unique solution W ∈ C0 ([τ0,+∞) , H2(2)) au système (2.6) et une constante
positive C = C(α1, β, θ, γ) telles que, pour tout τ ≥ τ0,∥∥(1− α1e

−τ∆
)

(W (τ)− ηG)
∥∥
L2(2)

≤ Ce−θτ , (3.6)

où η =

∫
R2

W0(X)dX.

Dans ce théorème, remarquons que l’on peut choisir le taux de convergence aussi proche
du taux optimal −1

2
que souhaité, à condition de considérer des données suffisamment

petites dans H2(2). Étant donné que les fluides de grade 2 sont un cas particulier des
fluides de grade 3, le théorème 3.3 apporte donc une amélioration au théorème 2.4, où le
taux de convergence considéré était au mieux 1

4
. Dans les variables de départ, le théorème

3.3 donne le résultat suivant.

Théorème 3.4 Soit θ, 0 < θ < 1
2

une constante positive. Il existe deux constantes
positives γ0 = γ0(α1, β) et T0 = T0(α1, β) ≥ 1 telles que, pour tout T ≥ T0, 0 < γ ≤ γ0
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et w0 ∈ H2(2) satisfaisant la condition

T ‖w0‖2
L2+T

2 ‖∇w0‖2
L2+

1

T

∥∥|x|2w0

∥∥2

L2+α1T
3 ‖∆w0‖2

L2+
α2

1

T

∥∥|x|2 ∆w0

∥∥2

L2 ≤ γ

(
1

2
− θ
)6

,

(3.7)
il existe une unique solution w ∈ C0 ([0,+∞) , H2(2)) de (3.3) telle que, pour tout 1 ≤
p ≤ 2 et tout t ≥ 0,∥∥∥∥(1− α1∆)

(
w(t)− η

t+ T
G

(
.√
t+ T

))∥∥∥∥
Lp
≤ C (t+ T )−1+ 1

p
−θ ,

où C = C(p, α1, β, θ, γ) est une constante positive,

et il existe une constante positive C = C(α1, β, θ, γ) telle que, pour tout t ≥ 0,∥∥∥∥|x|2 (1− α1∆)

(
w(t)− η

t+ T
G

(
.√
t+ T

))∥∥∥∥
L2

≤ C (t+ T )
1
2
−θ ,

où η =

∫
R2

w0(x)dx et G est le vortex d’Oseen, donné par (1.7).

Comme pour le cas des fluides de grade 2, on peut là aussi conclure que les fluides de
grade 3 se comportent asymptotiquement comme les fluides newtoniens régis par les
équations de Navier-Stokes, du moins au premier ordre.

Attracteur

Il n’existe pas aujourd’hui de résultat traitant de l’existence d’un attracteur pour les
équations des fluides de grade 3. Dans le chapitre 4, on montre l’existence d’un attracteur
dans un sens plus faible que celui de la définition 1.2, pour un fluide sur le tore T2 et une
force f ∈ L2(T2)2 indépendante du temps. Pour ce travail, on s’appuie notamment sur
les travaux de M. Paicu sur les solutions faibles de (3.1) dans V 1. Une des difficultés vient
du fait que, dans ce cas, les solutions ne sont a priori pas uniques, et on ne peut donc
pas définir les solutions de (3.1) par l’intermédiaire d’un système dynamique classique,
tel que celui donné par la définition 1.1, la propriété (H2) n’étant pas vérifiée. Pour
contourner ce problème, on considère une version affaiblie des systèmes dynamiques, à
savoir les semi-groupes généralisés, introduits pas J. Ball (voir par exemple [3] et [4]).

Définition 3.1 Un semi-groupe généralisé G sur un espace métrique (X, d) est une fa-
mille de fonctions ϕ : R+ → X satisfaisant les hypothèses
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(H1) Pour tout z ∈ X, il existe au moins une fonction ϕ ∈ G telle que ϕ(0) = z.

(H2) Si ϕ ∈ G, alors, pour tout τ ≥ 0, ϕτ ∈ G, où ϕτ (t) = ϕ(t+ τ).

(H3) Si ϕ, ψ ∈ G et s’il existe τ ≥ 0 tel que ψ(0) = ϕ(τ), alors la fonction θ définie par

θ(t) =

{
ϕ(t), pour tout 0 ≤ t ≤ τ,
ψ(t− τ), pour tout t ≥ τ,

appartient à G.

(H4) Si ϕj ∈ G et ϕj(0)→ z, il existe une sous-suite ϕµ de ϕj et ϕ ∈ G avec ϕ(0) = z
tels que ϕµ(t)→ ϕ(t), pour tout t ≥ 0.

Cette définition ne prend notamment pas en compte le caractère unique des solutions
que l’on considère, et s’adapte donc bien au cadre des équations des fluides de grade 3 sur
V 1
per, dans lequel l’unicité des solutions n’est pas connue. Pour un semi-groupe généralisé
G, on peut définir une famille d’applications T (t), t ≥ 0 sur les ensembles de X. Cette
famille d’applications est celle de la définition 1.1 pour un système dynamique classique,
et est donnée par

T (t)x = {ϕ(t) : ϕ ∈ G,ϕ(0) = x} ,

où x est un élément de X, et par

T (t)E = {ϕ(t) : ϕ ∈ G,ϕ(0) ∈ E} ,

où E est un sous ensemble de X.

Dans ce cas, remarquons que T (t)x est un ensemble de X et non plus une seule solution
comme c’est le cas pour les systèmes dynamiques classiques. Pour un tel semi-groupe
généralisé G et une telle famille d’applications T (t), la notion d’attracteur est la même
que celle donnée dans la définition 1.2. Afin de rappeler quelques résultats sur les semi-
groupes généralisés, on introduit la définition suivante, qui est classique pour les systèmes
dynamiques.

Définition 3.2 Soit G un semi-groupe généralisé sur un espace métrique X.

1. On dit que G est dissipatif point par point s’il existe un ensemble borné B de X tel
que, pour tout ϕ ∈ G, il existe t0 ≥ 0 tel que ϕ(t) ∈ B, pour tout t ≥ t0.

2. On dit que G est asymptotiquement compact si, pour toute suite ϕj ∈ G avec ϕj(0)
borné et toute suite tj ∈ R+ telle que tj → +∞, on peut extraire de ϕj(tj) une
sous-suite convergente.
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Dans le cadre d’un semi-groupe généralisé G, J. Ball a montré dans [3] le théorème
suivant d’existence d’un attracteur suivant, qui est un théorème bien connu dans le cas
des systèmes dynamiques classiques.

Théorème 3.5 Un semi-groupe généralisé G sur un espace métrique X admet un at-
tracteur global si et seulement si G est dissipatif point par point et asymptotiquement
compact.

Ce théorème est l’analogue d’un autre théorème obtenu pour les systèmes dynamiques
classiques, et démontré la première fois dans [44]. Dans notre cas, s’il est possible de
démontrer que l’ensemble des solutions faibles de (3.1) dans V 1

per est un semi-groupe
généralisé dissipatif point par point, on ne sait pas à l’heure actuelle si ce semi-groupe
est asymptotiquement compact, et ce théorème ne peut donc s’appliquer en l’état. En
revanche, si l’on pouvait montrer que la propriété (H4) de la définition 3.1 était vérifiée
pour la topologie faible de H1, alors par une méthode d’égalité d’énergie telle que celle
exposée dans [53], on pourrait conclure à la compacité asymptotique. Dans le cadre de
cette thèse, nous montrerons un résultat plus faible, qui montre en un sens l’existence
d’un attracteur dans V s

per, où s > 1, pour la topologie H1.

Théorème 3.6 Si f ∈ L2(T2) est indépendante du temps, ν > 0, β > 0, α1 > 0 et
α1 <

√
8νβ, alors l’ensemble des solutions faibles de (3.1) sur T2 à données dans V 1

per

est un semi-groupe généralisé sur V 1
per. Si de plus α1 <

√
νβ, alors pour tout s > 1, il

existe un ensemble compact invariant As ⊂ V 1
per, qui attire tous les bornés de V s

per pour
la topologie H1.

Pour montrer que l’ensemble des solutions faibles de (3.1) est un semi-groupe généralisé
sur V 1

per, on se sert notamment de la méthode d’égalité d’énergie décrite dans [53] com-
binée à la méthode de monotonie utilisée par M. Paicu pour montrer le théorème 3.2.
Pour montrer que les bornés de V s

per sont attirés vers un compact As, on montre, en
s’appuyant entre autres sur les travaux de V. Busuioc et D. Iftimie, que ces solutions
restent bornées dans V s

per, pour peu que α1 <
√
νβ. En utilisant le caractère compact de

V s
per dans V 1

per et en reprenant la démonstration du théorème 3.5, on est ensuite à même
de conclure à l’existence d’un ensemble compact et invariant de V 1

per qui attire les bornés
de V s

per. De plus, on verra dans le chapitre 4 que si 1 < s ≤ 2, alors As est un ensemble
borné de V s

per.

Ce résultat est plus faible que le théorème 2.6 obtenu pour les fluides de grade 2, car
la convergence vers l’attracteur a lieu pour la topologie H1 alors que les données sont
supposées plus régulières que cet espace.
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Chapitre 3

Fluides de grade 2

Asymptotic profiles for the second
grade fluids equations on R3

1 Introduction

The equations of fluids of second grade have been introduced from a mathematical
point of view in 1974 by J. Dunn and R. Fosdick in [24] and since have been the topic of
many research works in mathematics. These fluids are a particular case of a large class
of non-Newtonian fluids, called fluids of differential type, or Rivlin-Ericksen fluids (see
[59]) which play an important role in the nature. For instance, some oils used in industry
or even fluids that we use every day, like wet sand or melted cheese are non-Newtonian
fluids. Given the vorticity ν > 0, the parameter α > 0 and an initial divergence free
vector field u0 of R2 or R3, the equations of motion of fluids of second grade are given
by

∂t (u− α∆u)− ν∆u+ curl (u− α∆u)× u+∇p = 0,
div u = 0,
u|t=0 = u0,

(1.1)

where × denotes the classical vectorial product on R3 and p is the pressure which depends
on u. In the two-dimensional case, we have used the convention that u = (u1, u2, 0) and
curl u = (0, 0, ∂1u2 − ∂2u1).
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Several existence and uniqueness results have been obtained for this system of equa-
tions, mainly on a bounded set Ω of R2 or R3 with Dirichlet or periodic boundary
conditions (see for instance [5], [8], [19], [20], [21], [22], [34], [54] or [52]). The first
existence and uniqueness result has been obtained by D. Cioranescu and O. El Hacène
in 1984 in [19]. They have shown, on a bounded set of Rd, d = 2, 3, with homogeneous
boundary conditions, that there exists a unique weak solution to (1.1) belonging to the
space L∞

(
[0, T ] , H3(Ω)d

)
, where T > 0 and Hs(Ω) denotes the Sobolev space of order s

(see [19]). Besides, this solution is global in time when the dimension is 2. This result is
based on a priori estimates and a Galerkin approximation with a basis of eigenfunctions
corresponding to the scalar product associated to the operator curl (u− α∆u). In the
same case, using the Schauder fixed point theorem, P. Galdi, M. Grobbelaar-Van Dalsen
and N. Sauer established the existence and uniqueness of classical solutions to (1.1) when
data belong to Hm, with m ≥ 5 (see [35]). They also have shown that these solutions
are global in time, provided that the initial data are small enough in Hm(Ω). Later,
D. Cioranescu and V. Girault improved the results of [19] and [35] and showed that the
local weak solutions belonging to H3(Ω) are actually global in time in dimension 3 if the
data are small enough and are strong solutions if the data belong to Hm, m ≥ 4 (see
[18]). Finally, D. Bresch and J. Lemoine have generalized the results of [35], [19] and [18]
in dimension 3 in establishing the existence and uniqueness of local solutions belonging
to the space W 2,r(Ω) with r > 3. Furthermore, they have shown that these solutions
are global in time if the initial data are small enough in W 2,r(Ω) (see [8]). In this work,
instead of applying a Galerkin approximation, the authors used Schauder’s fixed point
Theorem.

In the present paper, we are interested in the description of the asymptotic profiles
of the solutions of second grade fluids equations. In what follows, we consider a second
grade fluid which fills the whole space R3, without any forcing term applied to it. In
this case, if the initial data are small enough, the solutions of such a system tend to 0
when the time t goes to infinity. The aim of this study is to investigate the way that
these solutions go to 0. More precisely, we will show that the solutions of (1.1) behave
asymptotically like particular solutions to the heat equation, which are smooth and that
one can compute explicitly. In this article, we restrict ourselves to the study of the
first order asymptotic profile, that is to say that the speed of the convergence of the
solutions of (1.1) to explicit smooth functions is limited by spectral considerations. For
Navier-Stokes equations, there exist already several results that describe the asymptotic
profiles of the solutions. In dimension 2, T. Gallay and E. Wayne have shown in [36] that
the first order asymptotic profiles of the solutions of Navier-Stokes equations are given
up to a constant by a smooth Gaussian function that is called the Oseen Vortex sheet.
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Actually, the equations that they considered are the scalar vorticity equations, and not
Navier-Stokes equations themselves. This result initially held under restrictions on the
size of the data, but has been generalized to the case of any data in [38]. For this work,
the authors applied arguments that come from the study of dynamical systems. In fact,
they have shown the existence of a finite-dimensional manifold locally invariant by the
semiflow associated to the Navier-Stokes equations. Then, they proved that the solutions
of Navier-Stokes equations are locally attracted by this manifold, and consequently be-
have like the solutions on it. The study of the dynamics of Navier-Stokes equation onto
this manifold gave them the description of the first and second order asymptotic profiles.
In dimension 3, with similar methods, they have shown the same kind of results in [37],
under smallness assumptions on the size of the data. The asymptotic profiles of the
solutions of the equations of second grade fluids have been studied in dimension 2 by B.
Jaffal-Mourtada in [47]. She has shown, under smallness assumptions on the data, that
the first order asymptotic profiles of solutions to second grade fluids equations are given
up to a constant by the Oseen vortex sheet, as it is the case for Navier-Stokes equations
in R2. To obtain this result, the author performed energy estimates in various functions
spaces, notably weighted Sobolev spaces. The concrete interpretation of this result is
that, in dimension 2, the fluids of second grade behave asymptotically like Newtonian
fluids. The main aim of this article is to extend this observation to the dimension 3.

Actually, the system that we will solve in this article is not exactly (1.1) but the one
satisfied by the vorticity w = curl u. Assuming, for the sake of simplicity, that ν = 1,
considering initial vorticity data w0 and taking formally the curl of (1.1), we get the
vorticity system of equations

∂t (w − α∆w)−∆w + curl ((w − α∆w)× u) = 0,
div u = div w = 0,
w|t=0 = w0.

(1.2)

In this system, the divergence free vector field u is reconstructed from w via the Biot-
Savart law, which is a way to get a divergence free vector field from its given vorticity.
In the section 2, more details will be given about the Biot-Savart law and its properties.

In this article, we show that the solutions of the system (1.2) behave asymptotically
like vector fields whose components are self-similar solutions to the well known heat
equations, that is to say under the form

(t, x)→ 1

(t+ T )2F

(
x√
t+ T

)
,
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where F is a divergence free vector field of R3 and T is a positive constant.

We introduce now a powerful tool in the studying of asymptotics of solutions to
partial differential equations, that is scaled variables or self-similar variables. Let T be
a positive constant that we will always assume T ≥ 1 and w be a solution of (1.2). We

make the change of variable X =
x√
t+ T

and set τ = log(t + T ). By this way, one

defines W and U , given by

w (t, x) =
1

t+ T
W

(
log (t+ T ) ,

x√
t+ T

)
,

u (t, x) =
1√
t+ T

U

(
log (t+ T ) ,

x√
t+ T

)
.

(1.3)

Equivalently, we have the equalities

W (τ,X) = eτw
(
eτ − T, eτ/2X

)
,

U (τ,X) = eτ/2u
(
eτ − T, eτ/2X

)
.

(1.4)

Scaling variables have been initially introduced to study the asymptotic behaviours of
solutions of parabolic equations, and in particular to show the convergence to self-similar
solutions (see [25], [26], [33] or [48]). Actually, this tool is also efficient to study the long-
time behaviour of a lot of various equations, not necessarily parabolic ones. For instance,
T. Gallay and G. Raugel used them to describe the first and second order asymptotic
profiles of solutions to damped waved equations (see [40]) and to show the stability of
hyperbolic fronts (see [41]). Self-similar variables have been also used to investigate the
asymptotic profiles of the solutions of Navier-Stokes equations in [36], [37], [38] and [39]
and second grade fluids equations in dimension 2 in [47]. Assuming that w is a solution
of (1.2), a short computation shows that W is a solution of the system

∂τ (W − αe−τ∆W )− L(W ) + curl ((W − αe−τ∆W )× U)
+αe−τ∆W + αe−τ X

2
.∇∆W = 0,

div U = div W = 0,
W|τ=log(T ) = W0,

(1.5)

where L is the linear differential operator defined by

L(W ) = ∆W +W + X
2
.∇W .

In the first equality of the previous system, there are several terms which formally tend
to 0 when time goes to infinity. Actually, the main theorem of this article shows that the
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solutions of (1.5) converge when τ goes to infinity to particular solutions to the equality

∂τW∞ = L(W∞). (1.6)

More precisely, the aim of the present paper is to decompose W on the spectrum of
L on an appropriate space of functions and to show that the asymptotic behaviour of
W is dominated by the projection of W onto the eigenspace corresponding to the first
eigenvalue of L. Additionally, this projection satisfies the equality (1.6). We define now
the weighted Lebesgue spaces, which are suitable for the study of the spectrum of L.
For every m ∈ N, one defines L2(m), given by

L2(m) =
{
u ∈ L2(R3) :

(
1 + |x|2

)m/2
u ∈ L2(R3)

}
,

where |x| =

(
3∑
i=1

x2
i

)1/2

.

By the same way, for m ∈ N and n ≥ 2, we define the weighted Sobolev spaces by

H1(m) =
{
u ∈ L2(m) : ∂iu ∈ L2(m), i ∈ {1, 2, 3}

}
,

Hn(m) =
{
u ∈ L2(m) : ∂iu ∈ Hn−1(m), i ∈ {1, 2, 3}

}
.

The incompressibility condition on the vector fields W and U makes natural to work on
the spaces

L2(m) = {u ∈ L2(m)3 : div u = 0} ,

H2(m) = {u ∈ H2(m)3 : div u = 0} ,

equipped with the norms

‖u‖L2(m) =
∥∥∥(1 + |x|2

)m
2 u
∥∥∥
L2
,

and

‖u‖H2(m) =
(
‖u‖2

L2(m) + ‖∇u‖2
L2(m) + ‖∇2u‖2

L2(m)

)1/2

.

In [37], T. Gallay and E. Wayne show that the spectrum of L on L2(m) is the union of
the discrete spectrum

σd(L) =
{
−1

2
(k + 1) , k ∈ N∗

}
,
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and the continuous one

σc(L) =
{
λ ∈ C : Re(λ) ≤ 1

4
− m

2

}
.

In order to describe the first order asymptotic profile of solutions of (1.5), we need to
have at least one isolated eigenvalue. Looking at σc(L), we notice that one can ”push”
the continuous spectrum to the left by choosing m large enough. For this reason, we
should work at least in the weighted space L2(3), where −1 is an isolated eigenvalue of
L. Actually, in order to be close to the optimal rate of convergence, we prefer working
in L2(4), where the discrete spectrum is σd(L) =

{
−1,−3

2

}
and the continuous one is

σc(L) =
{
λ ∈ C : Re(λ) ≤ −7

4

}
. The main aim of this article is to show that one can

decompose a solution W of (1.5) into the form

W (τ) = Ω(τ) +R(τ), (1.7)

where Ω is an eigenfunction of L associated to the eigenvalue −1 and R tends to 0 faster
than Ω into L2(4) when τ goes to infinity.

Since the first eigenvalue smaller than −1 is −3
2

, the best result that one expects is

R(τ) = O(e−
3τ
2 ) in L2(4).

Actually, the result that we obtain holds under smallness assumptions on the size of the
data in H2(4). Besides, provided that the initial data are small enough compared to the
parameters of the equations, one can be as close as wanted to the optimal rate.

2 First order asymptotics and preliminary results

Before stating the main theorem of this paper, we have describe the eigenspace of L
associated to the eigenvalue −1. In [37, appendix A], they show that the multiplicity of
the eigenvalue −1 is 3 and that a suitable basis {f1, f2, f3} of the associated eigenspace
E−1 is given by

fi = curl (Gei), i = 1, 2, 3, (2.1)

where G(X) =
1

(4π)3/2
e−
|X|2
4 and {e1, e2, e3} is the canonical basis of R3.

Through a short computation, we see that fi(X) = pi(X)G(X), i = 1, 2, 3, where
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p1(X) =
1

2

 0
−X3

X2

, p2(X) =
1

2

 X3

0
−X1

 and p3(X) =
1

2

 −X2

X1

0

.

In particular, the vector fields pi satisfy div pi = 0 and curl pi = ei. Integrating
by parts, we notice also that∫

R3

pi(X).fj(X)dX =

∫
R3

curl (pi(X)). (G(X)ej) dX = (ei.ej)

∫
R3

G(X)dX = δij. (2.2)

Furthermore, defining L∗ = ∆− X
2
.∇− 1

2
the formal adjoint of L, we check easily that

L∗pi = −pi.

With the basis {f1, f2, f3}, the decomposition (1.7) can be written

W (τ) =
3∑
i=1

βi(τ)fi +R(τ), (2.3)

where βi(τ) ∈ R.

As we can see in [37], L2(4) = E−1 ⊕W , where

W =

{
f ∈ L2(4) :

∫
R3

Xifj(X)dX = 0, i, j = 1, 2, 3

}
.

Consequently, one has to choose βi such that

∫
R3

XiRj(τ,X)dX = 0, for i, j ∈ {1, 2, 3}.
To this end, we set

βi(τ) =

∫
R3

pi(X).W (τ,X)dX.

In fact, assuming that W ∈ L2(4) and using the divergence free property of W , it is easy
to check that∫

R3

p1(X).W (X)dX =

∫
R3

X2W3(X)dX = −
∫
R3

X3W2(X)dX,∫
R3

p2(X).W (X)dX =

∫
R3

X3W1(X)dX = −
∫
R3

X1W3(X)dX,∫
R3

p3(X).W (X)dX =

∫
R3

X1W2(X)dX = −
∫
R3

X2W1(X)dX,

and thus, using (2.2) and the decomposition (2.3), we can conclude that
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∫
R3

XiRj(X)dX = 0, for all i, j ∈ {1, 2, 3}.

The next lemma gives more details about βi, and shows that the projection of W onto
E−1 is actually a solution of (1.6).

Lemma 2.1 Let W ∈ Co ([τ0, T ) ,H2(4)) be a solution of (1.5) and let

βi(τ) =

∫
R3

pi(X).W (τ,X)dX.

Then, for all τ ∈ [τ0, T ],
βi(τ) = bie

−τ , (2.4)

where bi =

∫
R3

pi(X).W0(X)dX.

Proof: The proof of this lemma is made formally, assuming that every quantity that
we consider is well defined. Actually, in the remaining of this article, we will work with
regularized solutions for which the next computations are rigorous. In order to get (2.4),
we only have to show that βi satisfies

∂τβi (τ) = −βi(τ). (2.5)

Performing the L2−scalar product of the first equality of (1.5) with pi, we obtain

∂τβi(τ) = αe−τ (pi, ∂τ∆W )L2 − αe−τ (pi,∆W )L2 + (pi,L(W ))L2

+ (pi, curl (U × (W − αe−τ∆W )))L2 − αe−τ
(
pi,∆W + X

2
.∇∆W

)
L2 .

(2.6)
Integrating several times by parts, it is easy to check that

αe−τ (pi, ∂τ∆W )L2 = αe−τ (pi,∆W )L2 = αe−τ
(
pi,∆W + X

2
.∇∆W

)
L2 = 0.

Thus we have

∂τβi(τ) = −βi(τ) +

∫
R3

ei.
(
U(X)×

(
W (X)− αe−τ∆W (X)

))
dX. (2.7)

It remains to show that the last term of the right hand size of (2.7) vanishes. Noticing
that W = curl U , an easy computation shows, for i ∈ {1, 2, 3},(
U(X)×

(
W (X)− αe−τ∆W (X)

))
i

=
1

2
∂i
(
|U |2

)
− U.∇Ui − αe−τ (U.∂i∆U − U.∇∆Ui) .

(2.8)
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Thus, using the divergence free property of U and integrating by parts, we get∫
R3

ei.
(
U(X)×

(
W (X)− αe−τ∆W (X)

))
dX = −αe−τ

∫
R3

U(X).∂i∆U(X)dX.

Another integration by parts yields∫
R3

ei.
(
U(X)×

(
W (X)− αe−τ∆W (X)

))
dX =

α

2
e−τ

∫
R3

∂i
(
|∇U(X)|2

)
dX = 0,

and thus we obtain (2.5).

�

We are now able to state the main theorem of this paper, which shows in particular that
the first order asymptotic profile of a solution W in H2(4) of (1.5) is the same as the
first order asymptotic profile obtained for Navier-Stokes equations.

Theorem 2.1 Let θ be a fixed constant such that 0 < θ < 3
2

and W0 ∈ H2(4). There
exist two positive constants γ0 = γ0(α) and T0 = T0(α) ≥ 1 such that if T ≥ T0 and there
exists a positive constant γ ≤ γ0 such that

‖W0‖2
L2(4) + ‖∇W0‖2

L2 + αe−τ0 ‖∆W0‖2
L2 + α2e−2τ0

∥∥|X|4 ∆W0

∥∥2

L2 ≤ γ

(
3

2
− θ
)2

, (2.9)

where τ0 = log(T ),

then there exist a unique solution W ∈ C0 ([τ0,+∞) ,H2(4)) to the system (1.5) and a
positive constant C = C(θ, α, γ, T0) such that∥∥∥∥∥(Id− αe−τ∆)

(
W (τ)− e−τ

3∑
i=1

bifi

)∥∥∥∥∥
L2(4)

≤ Ce−θτ , (2.10)

where bi =

∫
R3

pi(X).W0(X)dX.

In the classical variables, the theorem 2.1 gives the next corollary.

Corollary 2.1 Let θ be a constant such that 0 < θ < 3
2
, w0 ∈ H2(4) and

bi =
1

T

∫
R3

pi(x).w0(x)dx. There exists γ0 = γ0(α) > 0 and T0 = T0(α) ≥ 1 such that if

there exist T ≥ T0 and γ ≤ γ0 such that

T 1/2 ‖w0‖2
L2 + T−7/2

∥∥|x|4w0

∥∥2

L2 + T 3/2 ‖∇w0‖2
L2

+αT 3/2 ‖∆w0‖2
L2 + α2T−3/2

∥∥|x|4 ∆w0

∥∥2

L2 ≤ γ
(

3
2
− θ
)2
,

(2.11)
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then there exists a unique solution w ∈ C0 ([0,+∞) ,H2(4)) to the system (1.2) such
that, for all 1 ≤ p ≤ 2, there exists a positive constant C = C(θ, α, γ, T0, p) such that∥∥∥∥∥w(t)−

3∑
i=1

bi

(t+ T )2fi

(
x√
t+ T

)∥∥∥∥∥
Lp

≤ C (t+ T )−1−θ+ 3
2p , (2.12)

and there exists a positive constant C = C(θ, α, γ, T0) such that∥∥∥∥∥|x|4 (Id− α∆)

(
w(t)−

3∑
i=1

bi

(t+ T )2fi

(
x√
t+ T

))∥∥∥∥∥
L2

≤ C (t+ T )
1
4
−θ . (2.13)

Let u be the divergence free vector field obtained from w through the Biots-Savart law.
For all p ∈

[
3
2
, 6
]
, there exists a positive constant C = C(θ, α, γ, T0, p) such that∥∥∥∥∥u(t)−

3∑
i=1

bi

(t+ T )3/2
vi

(
x√
t+ T

)∥∥∥∥∥
Lp

≤ C (t+ T )−
1
2
−θ+ 1

p , (2.14)

where vi is obtained from fi via the Biots-Savart law.

We prove the theorem 2.1 in several steps. First, in section 3, we introduce a new
system that is close to (1.5), but which contains the regularizing term ε∆2W , with ε a
small positive constant that is devoted to tend to 0. Thanks to this regularizing term,
we are able, through a semi-group method, to show the existence of local solutions to
the regularized system. In a second time, in the section 4 we make energy estimates
on these approximate solutions, and show that these ones are global in time and satisfy
the inequality (2.10). Then, in section 5, we pass to the limit when ε tends to 0 and
show that the approximate solutions converge to a global solution of (1.5) which satisfies
(2.10). Finally, we show that this solution is unique.

Biot-Savart law:

Now, we recall some properties of the Biot-Savart law. Let w be a given divergence free
vector field of R3, the Biot-Savart law gives a divergence free vector field u such that
curl u = w. It is given by

u(x) = − 1

4π

∫
R3

(x− y)× w(y)

|x− y|3
dy. (2.15)
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In particular, passing into scaled variables preserves the Biot-Savart law. Indeed, if u
is obtained from w via the Biot-Savart law and W is w expressed into scaled variables,
then the divergence free vector field U obtained from W through the Biot-Savart law is
u expressed in scaled variables. The next lemma gives some estimates on vector fields
obtained by the Biot-Savart law, in various functions spaces.

Lemma 2.2 Let u be the velocity field obtained from w via the Biot-Savart law (2.15).

(a) Assume that 1 < p < 3, 3
2
< q <∞ and 1

q
= 1

p
− 1

3
. If w ∈ Lp(R3)3, then u ∈ Lq(R3)3,

and there exists C > 0 such that

‖u‖Lq ≤ C ‖w‖Lp . (2.16)

(b) Assume that 1 ≤ p < 3 < q ≤ ∞, and define η ∈ (0, 1) by the relation 1
3

= η
p

+ (1−η)
q

.

If w ∈ Lp(R3)3 ∩ Lq(R3)3, then u ∈ L∞(R3)3 and there exists C > 0 such that

‖u‖L∞ ≤ C ‖w‖ηLp ‖w‖
1−η
Lq . (2.17)

(c) Assume that 1 < p <∞. If w ∈ Lp(R3)3, then ∇u ∈ Lp(R3)9 and there exists C > 0
such that

‖∇u‖Lp ≤ C ‖w‖Lp . (2.18)

This lemma is proved in [37] and will be very useful when making estimates on solutions
of (1.5).

3 Approximate solutions

In this section, we introduce a new system that is close to (1.2), which contains the
regularizing term ε∆2w, where ε is a small positive constant. The reason to introduce
such a system is to get smooth solutions of the new system, for which we are able to make
estimates in H2(4) and obtain the inequality (2.10). In the section 5, we will pass to the
limit when ε goes to 0 and show that the limit of the solution of the regularized system
satisfies also the inequality (2.10). We introduce the following regularized system, given
by

∂t (wε − α∆wε) + ε∆2wε −∆wε + curl ((wε − α∆wε)× uε) = 0,
div uε = div wε = 0,
wε|t=0 = w0.

(3.1)

The next theorem shows that, for every w0 ∈ H2(4), there exists a unique local solution
to (3.1) belonging to H2(4), which is smooth enough to perform the estimates of the
section 4.
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Theorem 3.1 Let ε > 0 and w0 ∈ H2(4). There exists tε > 0 and a unique solution wε
to the system (3.1) defined on the time interval [0, tε) such that

wε ∈ C1 ((0, tε) ,H1(4)) ∩ C0 ((0, tε) ,H3(4)) .

Proof: To get this result, one defines wε,µ(t, x) = wε

(
t, x
µ

)
, where µ > 0. This change

of variables enables us to show the existence of solutions to the system (3.1) without
restrictions on the size of the parameter α. We define uε,µ obtained from wε,µ by the
Biot-Savart law (2.15). It is easy to check that uε,µ(t, x) = µuε(t,

x
µ
). In order to show the

existence of a unique solution to (3.1), we will prove that there exists a unique solution
to the system

∂t (wε,µ − αµ2∆wε,µ)− εµ4∆2wε,µ − µ2∆wε,µ + curl ((wε,µ − αµ2∆wε,µ)× uε,µ) = 0,
div wε,µ = div uε,µ = 0,
wε,µ|t=0 = w0(x

µ
) ∈ H2(4).

(3.2)
We define now zε(t, x) = q(x)wε,µ(t, x), where q(x) =

(
1 + |x|4

)
. In particular, if wε,µ ∈

L2(4), then zε ∈ H, where

H = {z ∈ L2(R3)3 : div (q−1z) = 0} .

For later use, we define also, for s ≥ 0,

Hs = H ∩Hs(R3)3, and H−s = (Hs)
′
,

where (Hs)
′

denotes the dual space of Hs.

We equip Hs with the classical Hs Sobolev norm, which makes Hs complete. From the
system (3.2), we deduce the following one, that we solve in zε,

∂τ
(
zε − αµ2∆zε − αµ2q∆q−1zε − 2αµ2q∇q−1.∇zε

)
+ εµ4∆2zε = F (x, zε) ,

div (q−1zε) = 0,
zε|t=0 (x) = z0(x) ∈ H2,

(3.3)

where

F (x, zε) = −εµ4q∆2
(
q−1zε

)
+ µ2q∆

(
q−1zε

)
+qcurl

(
uε,µ ×

(
q−1zε − µ2α1∆

(
q−1zε

)))
.
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The system (3.3) is actually autonomous. Indeed, one can recover uε,µ by the Biot-Savart
law (2.15) applied to q−1zε. To show the existence of solutions to (3.1) in H1(4), it suffices
to show the existence of solutions to (3.3) in H1, for data belonging to H2.

We set two linear differential operators B : D(B) = H1 → H−1 and D : D(D) = H →
H−1, given by

B = αµ2q∆q−1 + αµ2∆,
D = αµ2q∇q−1.∇.

Via Lax-Milgram theorem, we show now that if µ is sufficiently small with respect to α,
the operator (I −B −D) is invertible. In order to do that, we define the bilinear form
on H1 ×H1, given by

a(u, v) = (u, v)L2 + αµ2 (∇u,∇v)L2 − αµ2 (q∆q−1u, v)L2 − 2αµ2 (q∇q−1.∇u, v)L2 .

Since q∆q−1 and q∇q−1 are bounded on R3, the bilinear form a is continuous on H1. We
now show, taking µ small enough, that a is also coercive on H1. Indeed, integrating by
parts and using Hölder and Young inequalities, we have

a(u, u) ≥
(

1− αµ2 sup
x∈R3

(
q∆q−1

)
+ αµ2 inf

x∈R3

(
div

(
q∇q−1

)))
‖u‖2

L2 + αµ2 ‖∇u‖2
L2 .

Thus, if we take µ sufficiently small, we get

a(u, u) ≥ C(α, µ) ‖u‖2
H1 ,

where C(α, µ) is a positive constant depending on α and µ.

The classical Lax-Milgram theorem enables us to define (I −B −D)−1 from H−1 to H1.
We define the linear differential operator A : D(A) = H3 → H1 given by

A = εµ4 (I −B −D)−1 ∆2.

We can rewrite the system (3.3) as follows:

∂τzε + Azε = (I −B −D)−1 F (x, zε) ,
zε|t=0 = z0.

(3.4)

In order to show the existence of solutions to such a system, we use, like in [47], a semi-
group method. First, we show that −A generates an analytic semi-group on H1 which
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is equivalent as A is sectorial on H1. We decompose A as follows:

A = εµ4 (Id−B −D)−1 ∆2

= εµ4 (Id−B)−1 ∆2 + εµ4 (Id−B −D)−1D (Id−B)−1 ∆2

= J +R,

where

J = Id+ εµ4 (Id−B)−1 ∆2,

R = −Id+ εµ4 (Id−B −D)−1D (Id−B)−1 ∆2.

We first show that J is sectorial. We will see later that R satisfies properties that enable
to conclude that A is sectorial if J is sectorial. Taking µ sufficiently small compared to
α, it is easy, arguing like we did to invert (I −B −D), to show that (I −B)−1 is well
defined from H−1 to H1. Consequently, the operator J is well defined from H3 to H1.
We define now the bilinear form j on H2×H2 associated to J . To this end, we introduce
a H1−scalar product which is adapted to J . We define

〈u, v〉H1 = ((1− αµ2q∆q−1)u, v)L2 + αµ2 (∇u,∇v)L2 .

If µ is sufficiently small, 〈., .〉H1 is a scalar product on H1. In particular, if u ∈ H2 and
v ∈ H1, one has

〈u, v〉H1 = ((I −B)u, v)L2 .

Via this product, we define

j(u, v) = 〈u, v〉H1 + εµ4 (∆u,∆v) .

In particular, if u ∈ H3 and v ∈ H1, one has

j(u, v) = 〈Ju, v〉H1 .

The bilinear form j is obviously continuous on H2 × H2. Furthermore, if µ is small
enough, it is also coercive on H2. Indeed,

j(u, u) ≥ C(α, µ) ‖u‖2
H1 + εµ4 ‖∆u‖2

L2

≥ C(α, µ, ε) ‖u‖2
H2 .

Thus j is continuous and coercive on H2 and consequently J is sectorial on H1, that is
equivalent to say that −J generates an analytic semi-group on H1. Furthermore, we can
check that R is continuous from H2 to H1, and we have
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‖Ru‖H1 ≤ C(α, µ, ε) ‖u‖H2 .

Using the coerciveness of j, we get, for all u ∈ H3,

‖Ru‖2
H1 ≤ C(α, µ, ε)j(u, u)
≤ C(α, µ, ε) 〈Ju, u〉H1

≤ C ‖Ju‖H1 ‖u‖H1 .
(3.5)

Applying the Young inequality, we obtain, for all δ > 0

‖Ru‖2
H1 ≤ δ ‖Ju‖2

H1 + C ‖u‖2
H1 , for all u ∈ H3.

From a classical result that we can find in the book of D. Henry [46], it implies that
J +R is sectorial on H1.

To achieve this proof, we check that A−1F (x, v) is locally Lipschitz in v ∈ H1 on the
bounded sets of H2. According to [58, section 6.3] and [46, chapter 3], we finally get
Theorem 3.1.

�

4 Energy estimates

In this section, we perform energy estimates on the solution of (3.1) given by Theorem
3.1. We consider a fixed positive constant θ such that 0 < θ < 3

2
, which is the rate of

convergence of Theorem 2.1. Let T be a positive constant which will be made more
precise later and that we assume, without loss of generality, to be such that T ≥ 1. We
consider Wε the divergence free vector field obtained from wε via the change of variables
(1.4). According to Theorem 5.1, there exists a maximal time τε such that Wε belongs to
C1 ([τ0, τε) ,H1(4)) ∩ C0 ([τ0, τε) ,H3(4)), where τ0 = ln(T ). A short computation shows
that Wε is the solution of the system

∂τ (Wε − αe−τ∆Wε) + εe−τ∆2Wε − L(Wε) + curl ((Wε − αe−τ∆Wε)× Uε)
+αe−τ∆Wε + αe−τ X

2
.∇∆Wε = 0,

div Uε = div Wε = 0,
Wε|τ=τ0 = W0,

(4.1)

where we recall that

L(Wε) = Wε + ∆Wε + X
2
.∇Wε.
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In this section, we obtain several energy estimates in various functions spaces. More
precisely, assuming that T is large enough and W0 is small enough in H2(4), we show
that the solution of (4.1) stays bounded in time in those energy spaces and is consequently
global in time. In addition, we obtain the inequality (2.10) for Wε.

We define Ω∞ =
3∑
i=1

bifi, where bi =

∫
R3

pi(X).W0(X)dX, and {f1, f2, f3} is the basis of

the eigenspace of L associated to the eigenvalue −1, given by (2.1). The decomposition
(2.3) becomes

Wε(τ) = e−τΩ∞ +Rε(τ). (4.2)

A short computation shows that Rε satisfies the equality

∂τ (Rε − αe−τ∆Rε) + εe−τ∆2Rε − L(Rε) + curl ((Wε − αe−τ∆Wε)× Uε)

+αe−τ∆Rε + αe−τ X
2
.∇∆Rε + 3αe−2τ∆Ω∞ + εe−2τ∆2Ω∞ = 0.

(4.3)
In this section, we assume that W0 satisfies the condition (2.9) for some positive constant
γ. Let M be a positive constant such that M ≥ 2 which will be made more precise later.
We define τ ∗ε the largest positive time such that, for all τ ∈ [τ0, τ

∗
ε ),

‖Wε(τ)‖2
L2(4) + ‖∇Wε(τ)‖2

L2 + αe−τ ‖∆Wε(τ)‖2
L2

+α2e−2τ
∥∥|X|4 ∆Wε(τ)

∥∥2

L2 ≤Mγ

(
3

2
− θ
)2

.
(4.4)

Since Rε belongs to C0 ([τ0, τ
∗
ε ) ,H2(4)), the time τ ∗ε is well defined. The next lemma

gives two inequalities on ∇Wε and Rε.

Lemma 4.1 Let Rε ∈ C0 ([τ0, τ
∗
ε ) ,H2(4)) satisfying the condition (4.4), there exists a

positive constant C such that, for all τ ∈ [τ0, τ
∗
ε ),

αe−τ
∥∥|X|4∇Wε(τ)

∥∥2

L2 ≤ CMγ

(
3

2
− θ
)2

. (4.5)

Let Rε = Wε − e−τΩ∞. There exists a positive constant C such that, for all τ ∈ [τ0, τ
∗
ε ),

|b|2 + ‖Rε(τ)‖2
L2(4) + ‖∇Rε(τ)‖2

L2 + αe−τ ‖∆Rε(τ)‖2
L2

+α2e−2τ
∥∥|X|4 ∆Rε(τ)

∥∥2

L2 ≤ CMγ
(

3
2
− θ
)2
.

(4.6)
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Proof: The proof of the inequality (4.5) comes from an integration by parts. In fact,
applying Hölder inequalities, one has

∥∥|X|4∇Wε

∥∥2

L2 =

∫
R3

|X|8 |∇Wε|2 dX.

= −
∫
R3

|X|8 ∆Wε.WεdX − 8

∫
R3

|X|6X.∇Wε.WεdX

= −
∫
R3

|X|8 ∆Wε.WεdX + 36

∫
R3

|X|6 (Wε)
2 dX

≤
∥∥|X|4 ∆Wε

∥∥
L2

∥∥|X|4Wε

∥∥
L2 + 36

∥∥|X|4Wε

∥∥3/4

L2 ‖Wε‖1/4

L2 .

Due to the inequality (4.4), we obtain (4.5). To prove the inequality (4.6), we notice
that , for all i ∈ {1, 2, 3},

|bi| ≤
∫
R2

|X| |W0| dX

≤

(∫
R2

1(
1 + |X|2

)3dX

)1/2(∫
R2

(
1 + |X|2

)3 |X|2 |W0|2DX
)1/2

≤ C ‖W0‖L2(4) .

Thus, recalling that Rε = Wε − e−τ
3∑
i=1

bifi and taking into account (2.9), we obtain

(4.6).

�

For sake of simplicity, we will assume in this section that γ ≤ 1 and
(

3
2
− θ
)
≤ 1.

4.1 Estimates in H−(θ+2)(R3)

In this section, we perform an estimate of Rε in the space H−(θ+2)(R3) on the time
interval [τ0, τ

∗
ε ). This operation is motivated by the H1 estimate that we establish later.

Indeed, in the H1 estimate, we obtain terms involving the L2 norm of Rε that we cannot
absorb directly. To overcome this problem, we look for an estimate in the homogeneous
Sobolev space Ḣ−(θ+2)(R3). Combined with the next ones, it gives an estimate in the
classical Sobolev space H−(θ+2)(R3). To this end, we define, for s ∈ R, the operator
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(−∆)−s u = F̄
(

1

|ξ|4s
û

)
,

where û is the Fourier transform of u, given by

û(ξ) =

∫
R3

e−ix.ξu(x)dx,

and F̄ is the inverse Fourier transform.

In this section, given 0 ≤ θ < 3
2
, we apply the linear operator (−∆)−( θ2+1) to (4.3) and

then make the L2-inner product of it with (−∆)−( θ2+1)Rε. We are allowed to consider

(−∆)−( θ2+1)Rε by the lemma

Lemma 4.2 Let u ∈ L2(4) such that

∫
R3

u(x)dx = 0.

1. If

∫
R3

xiu(x)dx = 0 for every i ∈ {1, 2, 3}, then, for all 0 ≤ s < 7
4
, (−∆)−s u ∈

L2(R3) and there exists a positive constant C such that∥∥(−∆)−s u
∥∥
L2 ≤

C√
7− 4s

‖u‖L2(4) . (4.7)

2. For all 0 ≤ s < 7
4
, (−∆)−s∇u ∈ L2(R3)3 and there exists a positive constant C

such that ∥∥(−∆)−s∇u
∥∥
L2 ≤

C√
7− 4s

‖u‖L2(3) . (4.8)

Proof: Using Fourier variables, we get∥∥(−∆)−s u
∥∥2

L2 =
1

(2π)3

∫
R2

1

|ξ|4s
|û(ξ)|2 dξ

≤ 1

(2π)3

∫
|ξ|≤1

1

|ξ|4s
|û(ξ)|2 dξ + ‖u‖2

L2 .

We note I =
1

(2π)3

∫
|ξ|≤1

1

|ξ|4s
|û(ξ)|2 dξ. Using the fact that û(0) =

∫
R3

u(x)dx = 0 and

the Cauchy-Schwartz inequality on (0, 1), we have

I =
1

(2π)3

∫
|ξ|≤1

1

|ξ|4s

∣∣∣∣∫ 1

0

ξ.∇û(σξ)dσ

∣∣∣∣2 dξ
≤ C

∫
|ξ|≤1

1

|ξ|4s−2

∫ 1

0

|∇û(σξ)|2 dσdξ.
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Then, due to the fact that ∂jû(0) = i

∫
R2

xju(x)dx = 0, we get

I ≤ C

∫
|ξ|≤1

1

|ξ|4s−2

∫ 1

0

(
3∑

i,j=1

∣∣∣∣∫ 1

0

ξj∂i∂jû(rσξ)dr

∣∣∣∣2
)
dσdξ

≤ C

∫
|ξ|≤1

1

|ξ|4s−4

∫ 1

0

∫ 1

0

∣∣∇2û(rσξ)
∣∣2 drdσdξ.

Finally, the continuous injection of H2(R3) into L∞(R3) gives

I ≤ C

7− 4s

∥∥∇2û
∥∥2

L∞

≤ C

7− 4s

∥∥∇2û
∥∥2

H2

≤ C

7− 4s
‖u‖2

L2(4) ,

and thus the inequality (4.7) is shown.

To get (4.8), using Fourier variables, we have∥∥(−∆)−s∇u
∥∥2

L2 =
1

(2π)3

∫
|ξ|≤1

1

|ξ|4s−2 |û(ξ)|2 dξ + ‖u‖2
L2

=
1

(2π)3

∫
|ξ|≤1

1

|ξ|4s−2

∣∣∣∣∫ 1

0

ξ.∇û(sξ)ds

∣∣∣∣2 dξ + ‖u‖2
L2

≤ 1

(2π)3

∫
|ξ|≤1

1

|ξ|4s−4

∣∣∣∣∫ 1

0

|∇û(sξ)| ds
∣∣∣∣2 dξ + ‖u‖2

L2 .

Using now Hölder inequalities, the fact that 4s − 4 < 3 and the continuous injection of
H2(R3) into L∞(R3), we have

∥∥(−∆)−s∇u
∥∥2

L2 ≤ C

∫ 1

0

∫
|ξ|≤1

1

|ξ|4s−4 |∇û(sξ)|2 dξds+ ‖u‖2
L2

≤ C

(∫
|ξ|≤1

1

|ξ|4s−4dξ

)
‖∇û‖2

L∞ + ‖u‖2
L2

≤ C

7− 4s
‖u‖2

L2(3) + ‖u‖2
L2 .
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�

In order to apply the lemma 4.2 to the non linear terms of the equation (4.3), we state
the following lemma.

Lemma 4.3 Let w ∈ H2(4) and u obtained from w via the Biot-Savart law (2.15). For
all C ∈ R, we have ∫

R3

(w(x)− C∆w(x))× u(x)dx = 0. (4.9)

Proof: In order to show this equality, we just have to consider (2.8). An integration by
parts gives directly (4.3).

�

Lemma 4.4 Let u belongs to H2(4) and s such that 0 ≤ s < 7
4
, then u satisfies the

equalities

1.
(
(−∆)−s L(u), (−∆)−s u

)
L2 = −

∥∥∥(−∆)
1
2
−s u

∥∥∥2

L2
−
(
s− 1

4

) ∥∥(−∆)−s u
∥∥2

L2.

2.
(
(−∆)−s

(
x
2
.∇∆u

)
, (−∆)−s u

)
L2 =

(
s+ 5

4

) ∥∥∥(−∆)
1
2
−s u

∥∥∥2

L2
.

This lemma is easily obtained with a few integrations by parts, when passing into Fourier
variables.

In this section, to simplify the notations, we note R instead of Rε, W instead of Wε

and U instead of Uε. We also note U∞, the divergence free vector field obtained from Ω∞
via the Biot-Savart law and K the divergence free vector field obtained from R via the
Biot-Savart law. We assume also, without loss of generality, that T is sufficiently large
so that αe−τ0 ≤ 1, where we recall that τ0 = log(T ). We define the energy functional

E0(τ) =
1

2

(∥∥∥(−∆)−( θ2+1)R
∥∥∥2

L2
+ αe−τ

∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2

)
.

The next lemma gives a H−(θ+2) which is necessary to obtain a good rate of convergence
in the theorem 2.1. Actually, the space H−(θ+2) is chosen to get the rate of convergence
θ.

Lemma 4.5 Let W ∈ C1 ((τ0, τε) ,H1(4)) ∩ C0 ((τ0, τε) ,H3(4)) be the solution of (4.1).
There exist two positive constant γ0 and T0 such that, if T ≥ T0 and Wε satisfy the
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condition (4.4) for some γ such that 0 < γ ≤ γ0, then there exists a positive constant C
such that

∂τE0 + 2θE0 +
1

2

∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2
≤

CMγ
(∥∥|X|4R∥∥2

L2 + ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2(4)

)
+ CMγe−4τ .

(4.10)

Proof: To prove this lemma, we apply the operator (−∆)−( θ2+1) to (4.3) and make the

L2−inner product of it with (−∆)−( θ2+1)R. Applying Lemma 4.4 and through some easy
computations, one has

1

2
∂τ

(∥∥∥(−∆)−( θ2+1)R
∥∥∥2

L2
+ αe−τ

∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2

)
+ εe−τ

∥∥∥(−∆)−
θ
2 R
∥∥∥2

L2

+

(
θ

2
+

3

4

)∥∥∥(−∆)−( θ2+1)R
∥∥∥2

L2
+

(
1 +

(
θ

2
+

3

4

)
αe−τ

)∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2
= I1 + I2,

(4.11)
where

I1 =
(

(−∆)−( θ2+1) (curl
(
U ×∇

(
W − αe−τ∆W

)))
, (−∆)−( θ2+1)R

)
L2
,

I2 = e−2τ
(

(−∆)−( θ2+1) (−α∆Ω∞ − ε∆2Ω∞
)
, (−∆)−( θ2+1)R

)
L2
.

We start with the estimate of the easiest term, that is I2. Using Cauchy-Schwartz
inequality, we get

I2 ≤ αe−2τ
∥∥∥(−∆)−

θ
2 Ω∞

∥∥∥
L2

∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2

+ εe−2τ
∥∥∥(−∆)1− θ

2 Ω∞

∥∥∥
L2

∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2
.

Using Lemma 4.2 and taking into account the good regularity of Ω∞ and the inequality
(4.6), one has

I2 ≤ Ce−2τ ‖Ω∞‖H2(4)

∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2

≤ µ
∥∥∥(−∆)−( θ2+1)R

∥∥∥2

L2
+
C |b|2

µ
e−4τ

≤ µ
∥∥∥(−∆)−( θ2+1)R

∥∥∥2

L2
+
CMγ

(
3
2
− θ
)2

µ
e−4τ ,

(4.12)

where µ is a positive constant that will be made more precise later.
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It remains to bound I1. Using Cauchy-Schwartz inequality and the lemmas 4.3 and 4.2,
we obtain

I1 ≤ C
∥∥∥(−∆)−( θ2+1)∇

(
U ×

(
W − αe−τ∆W

))∥∥∥
L2

∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2

≤ C(
3
2
− θ
)1/2

∥∥U (W − αe−τ∆W)∥∥
L2(4)

∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2

≤ C(
3
2
− θ
)1/2
‖U‖L∞

∥∥W − αe−τ∆W∥∥
L2(4)

∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2
.

The inequality (2.17) of the lemma 2.2 with p = 2, q = 6 and η = 1
2

and the continuous
injection of H1(R3) into L6(R3) yield

I1 ≤
C(

3
2
− θ
)1/2
‖W‖1/2

L2 ‖W‖1/2

L6

∥∥W − αe−τ∆W∥∥
L2(4)

∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2

≤ C(
3
2
− θ
)1/2
‖W‖H1

(
‖W‖L2(4) + αe−τ ‖∆W‖L2(4)

)∥∥∥(−∆)−( θ2+1)R
∥∥∥
L2

≤ µ
∥∥∥(−∆)−( θ2+1)R

∥∥∥2

L2

+
C

µ
(

3
2
− θ
) (‖W‖2

L2 + ‖∇W‖2
L2

) (
‖W‖2

L2(4) + α2e−2τ ‖∆W‖2
L2(4)

)
.

We use now the decomposition (4.2) to get

I1 ≤ µ
∥∥∥(−∆)−( θ2+1)R

∥∥∥2

L2

+
C

µ
(

3
2
− θ
) (‖R‖2

L2 + ‖∇R‖2
L2

) (
‖W‖2

L2(4) + α2e−2τ ‖∆W‖2
L2(4)

)
+

Ce−2τ

µ
(

3
2
− θ
) (‖Ω∞‖2

L2 + ‖∇Ω∞‖2
L2

) (
‖R‖2

L2(4) + α2e−2τ ‖∆R‖2
L2(4)

)
+

Ce−4τ

µ
(

3
2
− θ
) (‖Ω∞‖2

L2 + ‖∇Ω∞‖2
L2

) (
‖Ω∞‖2

L2(4) + α2e−2τ ‖∆Ω∞‖2
L2(4)

)
.
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Finally, using the inequalities (4.4) and (4.6) we get

I1 ≤ µ
∥∥∥(−∆)−( θ2+1)R

∥∥∥2

L2
+
CM

(
3
2
− θ
)
γe−4τ

µ

+
CMγ

(
3
2
− θ
)

µ

(
‖R‖2

L2(4) + ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2(4)

)
.

(4.13)

Combining (4.11), (4.12) and (4.13), it comes

1

2
∂τ

(∥∥∥(−∆)−( θ2+1)R
∥∥∥2

L2
+ αe−τ

∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2

)
+ εe−τ

∥∥∥(−∆)−
θ
2 R
∥∥∥2

L2

+

(
θ +

1

2

(
3

2
− θ − 2µ

))∥∥∥(−∆)−( θ2+1)R
∥∥∥2

L2

+

(
1 +

(
θ

2
+

3

4

)
αe−τ

)∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2

≤
CMγ

(
3
2
− θ
)

µ

(
‖R‖2

L2(4) + ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2(4)

)
+
CM

(
3
2
− θ
)
γe−4τ

µ
.

(4.14)

We set µ =
3
2
− θ
2

, and we obtain

∂τE0 + 2θE0 +
∥∥∥(−∆)−( θ+1

2 )R
∥∥∥2

L2
≤

CMγ
(
‖R‖2

L2(4) + ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2(4)

)
+ CMγe−4τ .

(4.15)

Furthermore, using Fourier variables and Hölder inequalities, we see that

‖R‖2
L2 =

1

(2π)3

∫
R3

∣∣∣R̂(ξ)
∣∣∣2 dξ

≤ 1

(2π)3

∫
R3

|ξ|
2(1+θ)
2+θ

∣∣∣R̂(ξ)
∣∣∣ 2(1+θ)2+θ 1

|ξ|
2(1+θ)
2+θ

∣∣∣R̂(ξ)
∣∣∣ 2
2+θ

dξ

≤

(
1

(2π)3

∫
R3

1

|ξ|2(θ+1)

∣∣∣R̂(ξ)
∣∣∣2 dξ) 1+θ

2+θ (
1

(2π)3

∫
R3

|ξ|2
∣∣∣R̂(ξ)

∣∣∣2 dξ) 1
2+θ

≤
∥∥∥(−∆)−( θ+1

2 )R
∥∥∥ 2(1+θ)

2+θ

L2
‖∇R‖

2
2+θ

L2 .

Using a convexity inequality, it is easy to see that
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‖R‖2
L2 ≤

1

η
2+θ
1+θ

(
1 + θ

2 + θ

)∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2
+
η2+θ

2 + θ
‖∇R‖2

L2 ,

for all 0 < η ≤ 1.

Via a short computation, using the fact that 0 < θ < 3
2

and 0 < η ≤ 1, one obtains

‖R‖2
L2 ≤

5

7η2

∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2
+
η2

2
‖∇R‖2

L2 . (4.16)

Applying (4.16) with η = 1 and taking γ small enough, the inequality (4.15) becomes

∂τE0 + 2θE0 +
1

2

∥∥∥(−∆)−( θ+1
2 )R

∥∥∥2

L2
≤

CMγ
(∥∥|X|4R∥∥2

L2 + ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2(4)

)
+ CMγe−4τ .

(4.17)

�

4.2 Estimates in H1(R3)

This section is devoted to the H1 estimate of the solutions of (4.3) under the condition
(4.4). In particular, we see in this section that the previous estimate in Ḣ−(1+θ) enables
to absorb the terms involving the L2-norm of R. To obtain this H1 estimate, we make
the L2-scalar product of (4.3) with R. We define the energy functional

E1(τ) =
1

2

(
‖R‖2

L2 + αe−τ ‖∇R‖2
L2

)
.

The estimate of R in the Sobolev space H1(R3) is given by the next lemma.

Lemma 4.6 Let W ∈ C1 ((τ0, τε) ,H1(4)) ∩ C0 ((τ0, τε) ,H3(4)) be the solution of (4.1).
There exist two positive constants γ0 and T0 such that, if T ≥ T0 and W satisfy the
condition (4.4) for some γ such that 0 < γ ≤ γ0, then there exists a positive constant C
such that, for all τ ∈ [τ0, τ

∗
ε ),

∂τE1 + 3E1 +
1

2
‖∇R‖2

L2 ≤
7

4
‖R‖2

L2 + CM2γ

(
3

2
− θ
)2

e−4τ

+CMγ

(
3

2
− θ
)2 (
‖R‖2

L2 + α2e−2τ ‖∆R‖2
L2

)
.

(4.18)
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Proof: We make the L2−scalar product of (4.3) with R. Integrating several times by
parts, we obtain

1

2
∂τ
(
‖R‖2

L2 + αe−τ ‖∇R‖2
L2

)
+ ε ‖∆R‖2

L2 +
(

1− α

4
e−τ
)
‖∇R‖2

L2 −
1

4
‖R‖2

L2 = I1 + I2,

(4.19)
where

I1 = (curl (U × (W − αe−τ∆W )) , R)L2 ,

I2 = e−2τ (−α∆Ω∞ − ε∆2Ω∞, R)L2 .

As usual, because of the good regularity of Ω∞, the easiest term to estimate is I2.
Integrating by parts, one has

I2 = e−2τ (α∇Ω∞ + ε∇∆Ω∞,∇R)L2 .

Using Hölder and Young inequalities and the inequality (4.6), we get

I2 ≤ e−2τ (α ‖∇Ω∞‖L2 + ε ‖∇∆Ω∞‖L2) ‖∇R‖L2

≤ C |b| (α + ε) e−2τ ‖∇R‖L2

≤ µ ‖∇R‖2
L2 +

CMγ
(

3
2
− θ
)2

µ
e−4τ ,

(4.20)

where µ is a positive constant that will be made more precise later.

The last remaining term will be estimated by the same way, using the divergence free
property of U . Integrating by parts, we obtain

I1 =
(
U ×

(
W − αe−τ∆W

)
, curl R

)
L2 .

We decompose I1 as the sum of three terms

I1 = I1
1 + I2

1 + I3
1 ,

where

I1
1 =

(
K ×

(
W − αe−τ∆W

)
, curl R

)
L2 ,

I2
1 = e−τ

(
V∞ ×

(
R− αe−τ∆R

)
, curl R

)
L2 ,

I3
1 = e−2τ

(
V∞ ×

(
Ω∞ − αe−τ∆Ω∞

)
, curl R

)
L2 .
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Hölder inequalities lead to

I1
1 ≤ C

(
‖KW‖L2 + αe−τ ‖K∆W‖L2

)
‖∇R‖L2

≤ C ‖K‖L∞
(
‖W‖L2 + αe−τ ‖∆W‖L2

)
‖∇R‖L2 .

Applying the inequality (2.17) with p = 2, q = 6 and η = 1
2

and using the continuous
injection of H1(R3) into L6(R3), one gets

I1
1 ≤ C ‖R‖1/2

L2 ‖R‖1/2

L6

(
‖W‖L2 + αe−τ ‖∆W‖L2

)
‖∇R‖L2

≤ C ‖R‖1/2

L2 ‖R‖1/2

H1

(
‖W‖L2 + αe−τ ‖∆W‖L2

)
‖∇R‖L2 .

Then, we use Young inequality and the inequality (4.4). We obtain

I1
1 ≤ µ ‖∇R‖2

L2 +
C

µ

(
‖W‖2

L2 + α2e−2τ ‖∆W‖2
L2

) (
‖R‖2

L2 + ‖∇R‖2
L2

)
≤ µ ‖∇R‖2

L2 +
CMγ

(
3
2
− θ
)2

µ

(
‖R‖2

L2 + ‖∇R‖2
L2

)
.

Hölder inequalities yield

I2
1 ≤ Ce−τ ‖V∞‖L∞

(
‖R‖L2 + αe−τ ‖∆R‖L2

)
‖∇R‖L2 .

Applying the inequality (2.17) of the lemma 2.2 with p = 2, q = 6 and η = 1
2
, and the

inequality (4.6), we get

I2
1 ≤ Ce−τ ‖Ω∞‖1/2

L2 ‖Ω∞‖1/2

L6

(
‖R‖L2 + αe−τ ‖∆R‖L2

)
‖∇R‖L2

≤ C |b| e−τ
(
‖R‖L2 + αe−τ ‖∆R‖L2

)
‖∇R‖L2

≤ µ ‖∇R‖2
L2 +

CMγ
(

3
2
− θ
)2

µ

(
‖R‖2

L2 + α2e−2τ ‖∆R‖2
L2

)
.

It remains to estimate I3
1 . By the same computations, we get

I3
1 ≤ µ ‖∇R‖2

L2 +
C

µ
e−4τ ‖V∞‖2

L∞

(
‖Ω∞‖2

L2 + α2e−2τ ‖∆Ω∞‖2
L2

)
≤ µ ‖∇R‖2

L2 +
C

µ
e−4τ ‖Ω∞‖L2 ‖Ω∞‖L6

(
‖Ω∞‖2

L2 + α2e−2τ ‖∆Ω∞‖2
L2

)
≤ µ ‖∇R‖2

L2 +
CM2γ2

(
3
2
− θ
)4

µ
e−4τ .
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In particular, we have shown that

I1 ≤ 3µ ‖∇R‖2
L2 +

CM2γ2
(

3
2
− θ
)4

µ
e−4τ

+
CMγ

(
3
2
− θ
)2

µ

(
‖R‖2

L2 + ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2

)
.

(4.21)

Thus, due to the inequalities (4.20) and (4.21), the inequality (4.19) becomes

∂τE1 + 3E1 +

(
1− 4µ− 7α

4
e−τ
)
‖∇R‖2

L2 ≤
7

4
‖R‖2

L2 +
CM2γ

(
3
2
− θ
)2

µ
e−4τ

+
CMγ

(
3
2
− θ
)2

µ

(
‖R‖2

L2 + ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2

)
.

(4.22)
Taking γ0 and µ small enough and T = eτ0 large enough, we obtain

∂τE1 + 3E1 +
1

2
‖∇R‖2

L2 ≤
7

4
‖R‖2

L2 + CMγ

(
3

2
− θ
)2 (
‖R‖2

L2 + α2e−2τ ‖∆R‖2
L2

)
+CM2γ

(
3

2
− θ
)2

e−4τ .

(4.23)

�

Using the interpolation inequality (4.16), we get

∂τE1 + 3E1 +
1

2
‖∇R‖2

L2 ≤
7

4

(
5

7η2

∥∥∥(−∆)−( 1+θ
2 )R

∥∥∥2

L2
+
η2

2
‖∇R‖2

L2

)
+CMγ

(
3
2
− θ
)2
(∥∥∥(−∆)−( 1+θ

2 )R
∥∥∥2

L2
+ ‖∇R‖2

L2 + α2e−2τ ‖∆R‖2
L2

)
+CM2γ

(
3

2
− θ
)2

e−4τ ,

(4.24)
where 0 < η ≤ 1.
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Taking η =
√

2
7

and γ sufficiently small, we get

∂τE1 + 3E1 +
1

4
‖∇R‖2

L2 ≤

(
35

8
+ CMγ

(
3

2
− θ
)2
)∥∥∥(−∆)−( 1+θ

2 )R
∥∥∥2

L2

+CMγ
(

3
2
− θ
)2
(∥∥∥(−∆)−( 1+θ

2 )R
∥∥∥2

L2
+ α2e−2τ ‖∆R‖2

L2

)
+ CM2γ

(
3
2
− θ
)2
e−4τ .

(4.25)
Using the two energies E0 and E1, we define

E2 = 6E0 + E1.

Combining the inequalities (4.10) and (4.25) and setting γ sufficiently small, we check
that

∂E2(τ) + 2θE2(τ) +
∥∥∥(−∆)−( 1+θ

2 )R
∥∥∥2

L2
+

1

4
‖∇R‖2

L2 ≤

CMγ
(∥∥|X|4R∥∥2

L2 + α2e−2τ ‖∆R‖2
L2

)
+ CM2γe−4τ .

(4.26)

4.3 Estimates in H2(R3)

In this part, we perform an H2 estimate for the solution R of (4.3) under the smallness
assumption (4.4). To this end, we make the L2−scalar product of (4.3) with −∆R. We
define the functional

E3(τ) = 1
2

(
‖∇R‖2

L2 + αe−τ ‖∆R‖2
L2

)
.

The next lemma gives an estimate in the space H2(R3).

Lemma 4.7 Let W ∈ C1 ((τ0, τε) ,H1(4)) ∩ C0 ((τ0, τε) ,H3(4)) be the solution of (4.1).
There exist two positive constants γ0 and T0 such that, if T ≥ T0 and W satisfy the
condition (4.4) for some positive constant γ such that γ ≤ γ0, then there exists C > 0
such that, for all τ ∈ [τ0, τ

∗
ε ),

∂τE3 + 3E3 +
1

2
‖∆R‖2

L2 ≤
9

4
‖∇R‖2

L2 + CMγ

(
3

2
− θ
)2 (
‖R‖2

L2 + ‖∇R‖2
L2

)
+CM2γ

(
3

2
− θ
)2

e−
7τ
2 .

(4.27)
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Proof: The proof of Lemma 4.7 is made through the L2-scalar product of (4.3) with
−∆R. First of all, we remark that

curl
((
W − αe−τ∆W

)
× U

)
= U.∇

(
W − αe−τ∆W

)
−
(
W − αe−τ∆W

)
.∇U.

Making some computations that we let to the reader involving integrations by parts and
the divergence free property of U , we obtain

∂τ
(
‖∇R‖2

L2 + αe−τ ‖∆R‖2
L2

)
+

(
1− 3α

4
e−τ
)
‖∆R‖2

L2 =
3

4
‖∇R‖2

L2 +I1 +I2 +I3, (4.28)

where

I1 = (−U.∇ (W − αe−τ∆W ) ,∆R)L2 ,

I2 = ((W − αe−τ∆W ) .∇U,∆R)L2 ,

I3 = e−2τ (α∆Ω∞ + ε∆2Ω∞,∆R)L2 .

Like in the previous estimates, the easiest term is I3. Indeed, using Hölder and Young
inequalities and the inequality (4.6), one has

I3 ≤ e−2τ
(
α ‖∆Ω∞‖L2 + ε

∥∥∆2Ω∞
∥∥
L2

)
‖∆R‖L2

≤ µ ‖∆R‖2 +
CMγ

(
3
2
− θ
)2

µ
e−4τ ,

(4.29)

where µ is a positive constant which will be made more precise later.

We now look for an estimate of I1. We decompose it as follows:

I1 = I1
1 + I2

1 + I3
1 ,

where

I1
1 = e−τ

(
K.∇

(
Ω∞ − αe−τ∆Ω∞

)
,∆R

)
L2 ,

I2
1 = e−2τ

(
V∞.∇

(
Ω∞ − αe−τ∆Ω∞

)
,∆R

)
L2 ,

I3
1 =

(
U.∇

(
R− αe−τ∆R

)
,∆R

)
L2 .
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Due to the smoothness of Ω∞ and the inequality (2.17), we get

I1
1 ≤ e−τ ‖K‖L∞

(
‖∇Ω∞‖L2 + αe−τ ‖∇∆Ω∞‖L2

)
‖∆R‖L2

≤ C |b| e−τ ‖R‖1/2

L2 ‖R‖1/2

L6 ‖∆R‖L2 .

The continuous injection of H1(R3) into L6(R3), Young inequality and the inequality
(4.6) yield

I1
1 ≤ C |b| e−τ ‖R‖H1 ‖∆R‖L2

≤ µ ‖∆R‖2
L2 +

CMγ
(

3
2
− θ
)2

µ
e−2τ

(
‖R‖2

L2 + ‖∇R‖2
L2

)
.

Doing the same computations, we get

I2
1 ≤ µ ‖∆R‖2

L2 +
CM2γ2

(
3
2
− θ
)4

µ
e−4τ .

The divergence free property of U and an integration by parts imply

I3
1 = (U.∇R,∆R)L2 .

Thus, using Hölder and Young inequalities, the lemma 2.2 and the inequality (4.4), we
obtain,

I3
1 ≤ ‖U‖L∞ ‖∇R‖L2 ‖∆R‖L2

≤ C ‖W‖1/2

L2 ‖W‖1/2

L6 ‖∇R‖L2 ‖∆R‖L2

≤ C ‖W‖H1 ‖∇R‖L2 ‖∆R‖L2

≤ µ ‖∆R‖2
L2 +

CMγ
(

3
2
− θ
)2

µ
‖∇R‖2

L2 .

Consequently, we have shown that

I1 ≤ 3µ ‖∆R‖2
L2 +

CMγ
(

3
2
− θ
)2

µ

(
‖R‖2

L2 + ‖∇R‖2
L2

)
+
CM2γ2

(
3
2
− θ
)4

µ
e−4τ . (4.30)

It remains to estimate I2. We set

I2 = I1
2 + I2

2 ,

where
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I1
2 = − (W.∇U,∆R)L2 ,

I2
2 = αe−τ (∆W.∇U,∆R)L2 .

Recalling that W = e−τΩ∞ + R and using Hölder and Young inequalities and the in-
equality (2.18) with p = 4, one has

I1
2 ≤ ‖W‖L4 ‖∇U‖L4 ‖∆R‖L2

≤ C ‖W‖2
L4 ‖∆R‖L2

≤ µ ‖∆R‖2
L2 +

C

µ
‖W‖4

L4

≤ µ ‖∆R‖2
L2 +

C

µ

(
e−4τ ‖Ω∞‖4

L4 + ‖R‖4
L4

)
.

The condition (4.6) and the continuous injection of H1(R3) into L4(R3) yield

I1
2 ≤ µ ‖∆R‖2

L2 +
CM2γ2

(
3
2
− θ
)4

µ
e−4τ +

C

µ
‖R‖4

H1

≤ µ ‖∆R‖2
L2 +

CM2γ2
(

3
2
− θ
)4

µ
e−4τ +

CMγ
(

3
2
− θ
)2

µ

(
‖R‖2

L2 + ‖∇R‖2
L2

)
.

Using the inequality (2.17) with p = 2, q = 6 and η = 1
2

and the continuous injection of
H1(R3) into L6(R3), we obtain

I2
2 ≤ αe−τ

(
‖∆R‖L2 + e−τ ‖∆Ω∞‖L2

)
‖∇U‖L∞ ‖∆R‖L2

≤ Cαe−τ
(
‖∆R‖L2 + e−τ ‖∆Ω∞‖L2

)
‖∇W‖1/2

L2 ‖∇W‖1/2

L6 ‖∆R‖L2

≤ Cαe−τ
(
‖∆R‖L2 + e−τ ‖∆Ω∞‖L2

)
‖∇W‖1/2

L2 ‖W‖1/2

H2 ‖∆R‖L2 .

We set δ = Mγ
(

3
2
− θ
)2

. Taking into account the inequalities (4.6) and (4.4), it comes,

I2
2 ≤ Cδ1/2e−

3τ
4

(
‖∆R‖L2 + δ1/2e−τ

)
‖∆R‖L2

≤ Cδ1/2e−
3τ
4 ‖∆R‖2

L2 + Cδe−
7τ
4 ‖∆R‖L2

≤ C
(
δ1/2e−

3τ
4 + δ

)
‖∆R‖2

L2 + Cδe−
7τ
2

≤ CMγ1/2

(
3

2
− θ
)
‖∆R‖2

L2 + CMγ

(
3

2
− θ
)2

e−
7τ
2 .
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Finally, we have shown,

I2 ≤
(
CMγ1/2

(
3

2
− θ
)

+ µ

)
‖∆R‖2

L2 +
CMγ

(
3
2
− θ
)2

µ

(
‖R‖2

L2 + ‖∇R‖2
L2

)
+
CM2γ

(
3
2
− θ
)2

µ
e−

7τ
2 .

(4.31)
Combining (4.28), (4.29), (4.30) and (4.31), one has

∂τE3 + 3E3 +

(
1− 5µ− 9α

4
e−τ
)
‖∆R‖2

L2 ≤
9

4
‖∇R‖2

L2 + CMγ1/2

(
3

2
− θ
)
‖∆R‖2

L2

+
CMγ

(
3
2
− θ
)2

µ

(
‖R‖2

L2 + ‖∇R‖2
L2

)
+
CM2γ

(
3
2
− θ
)2

µ
e−

7τ
2 .

(4.32)
We take γ0 and µ small enough and T = eτ0 large enough compared to α and obtain

∂τE3 + 3E3 +
1

2
‖∆R‖2

L2 ≤
9

4
‖∇R‖2

L2 + CMγ

(
3

2
− θ
)2 (
‖R‖2

L2 + ‖∇R‖2
L2

)
+CM2γ

(
3

2
− θ
)2

e−
7τ
2 .

(4.33)

�

To achieve the H2 estimate, we use E2 and E3 to define the functional

E4 = 12E2 + E3.

Taking into account the two inequalities (4.26) and (4.27), we see that E4 satisfies

∂τE4 + 2θE4 + 12
∥∥∥(−∆)−(θ− 1

4)R
∥∥∥2

L2
+

3

4
‖∇R‖2

L2 +
1

2
‖∆R‖2

L2 ≤

+CMγ
(
‖R‖2

L2 + ‖∇R‖2
L2 +

∥∥|X|4R∥∥2

L2 + α2e−2τ ‖∆R‖2
L2

)
+ CM2γe−

7τ
2 .

(4.34)
Using again the interpolation inequality (4.16) and taking γ0 small enough, this inequality
becomes

∂τE4 + 2θE4 + 10
∥∥∥(−∆)−(θ− 1

4)R
∥∥∥2

L2
+ 1

2
‖∇R‖2

L2 + 1
4
‖∆R‖2

L2 ≤

CMγ
∥∥|X|4R∥∥2

L2 + CM2γe−
7τ
2 .

(4.35)
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4.4 Estimates in H2(4)

To finish the energy estimates, we have to work in weighted spaces. We can see
that the terms of the right hand side of the inequality (4.35) involve weighted L2 norms
that we have to absorb. In order to perform estimates in weighted Lebesgue norms, and
additionally absorb the weighted terms of (4.35), we make the L2−inner product of (4.3)
with |X|8 (R− αe−τ∆R). One defines the energy functional

E5 =
1

2

∥∥|X|4 (R− αe−τ∆R)∥∥2

L2 .

The next lemma summarizes the terms provided by the linear part of (4.3), when making
the L2−scalar product with |X|8 (R− αe−τ∆R).

Lemma 4.8 Let u be a divergence free vector field of H2(4), a ∈ R and F (u) =
|x|8 (u− a∆u). The five next equalities hold.

1.
(∆u, F (u))L2 = 36

∥∥|x|3 u∥∥2

L2 −
∥∥|x|4∇u∥∥2

L2 − a
∥∥|x|4 ∆u

∥∥2

L2 . (4.36)

2. (x
2
.∇u, F (u)

)
L2

= −11

4

∥∥|x|4 u∥∥2

L2 −
9a

4

∥∥|x|4∇u∥∥2

L2 + 4a
∥∥|x|3 (x.∇u)

∥∥2

L2 . (4.37)

3.

(L(u), F (u))L2 = −7

4

∥∥|x|4 u∥∥2

L2 −
(

1 +
5a

4

)∥∥|x|4∇u∥∥2

L2 − a
∥∥|x|4 ∆u

∥∥2

L2

+4a
∥∥|x|3 (x.∇u)

∥∥2

L2 + 36 (1− a)
∥∥|x|3 u∥∥2

L2 .
(4.38)

4. (
∆2u, F (u)

)
L2 =

∥∥|x|4 ∆u
∥∥2

L2 − 16
∥∥|x|3∇u∥∥2

L2 − 96
∥∥|x|2 (x.∇u)

∥∥2

L2

+1512
∥∥|x|2 u∥∥2

L2 + a
∥∥|x|4∇∆u

∥∥2

L2 − 36a
∥∥|x|3 ∆u

∥∥2

L2 .
(4.39)

5. (x
2
.∇∆u, F (u)

)
L2

=
13

4

∥∥|x|4∇u∥∥2

L2 +
11a

4

∥∥|x|4 ∆u
∥∥2

L2

+4
∥∥|x|3 (x.∇u)

∥∥2

L2 − 180
∥∥|x|3 u∥∥2

L2 .
(4.40)
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Proof: Let us show the first equality. One has

(∆u, F (u))L2 =
3∑
i=1

∫
R3

|x|8 ∆ui(x)ui(x)dx− a
∥∥|x|4 ∆u

∥∥2

L2 .

Integrating twice by parts, we obtain

3∑
i=1

∫
R3

|x|8 ∆ui(x)ui(x)dx = −
∥∥|x|4∇u∥∥2

L2 − 8
3∑

i,j=1

∫
R3

xj |x|6 ∂jui(x)ui(x)dx

= −
∥∥|x|4∇u∥∥2

L2 − 4
3∑

i,j=1

∫
R3

xj |x|6 ∂j
(
u2
i (x)

)
dx

= −
∥∥|x|4∇u∥∥2

L2 + 36
∥∥|x|3 u∥∥2

L2 ,
(4.41)

which gives the equality (4.36).

We now prove the equality (4.37), integrating by parts, one has

(x
2
.∇u, F (u)

)
L2

=
1

4

3∑
i,j=1

∫
R3

xj |x|8 ∂j
(
u2
i (x)

)
dx− a

(x
2
.∇u, |x|8 ∆u

)
L2

= −11

4

∥∥|x|4 u∥∥2

L2 − a
(x

2
.∇u, |x|8 ∆u

)
L2
.

(4.42)

We now have to compute the term of the right hand side of (4.42). Several integrations
by parts lead to

(x
2
.∇u, |x|8 ∆u

)
L2

= −1

4

2∑
j=1

∫
R3

|x|8 xj∂j
(
|∇u(x)|2

)
dx

− 1

2

2∑
i,j,k=1

∫
R3

(
δj,k |x|8 + 8xjxk |x|6

)
∂jui(x)∂kui(x)dx

=
9

4

∥∥|x|4∇u∥∥2

L2 − 4
∥∥|x|3 (x.∇u)

∥∥2

L2 .

70



Chapitre 3. Fluides de grade 2

Thus, going back to (4.42), we get (4.37). The equality (4.38) is now easy to obtain.
Indeed, one has

(L(u), F (u))L2 = (u, F (u))L2 + (∆u, F (u))L2 +
(x

2
.∇u, F (u)

)
L2

=
∥∥|x|4 u∥∥2

L2 − a
(
u, |x|8 ∆u

)
L2

+ 36
∥∥|x|3 u∥∥2

L2 −
∥∥|x|4∇u∥∥2

L2 − a
∥∥|x|4 ∆u

∥∥2

L2

+−11

4

∥∥|x|4 u∥∥2

L2 −
9a

4

∥∥|x|4∇u∥∥2

L2 + 4a
∥∥|x|3 (x.∇u)

∥∥2

L2

= −7

4

∥∥|x|4 u∥∥2

L2 −
(

1 +
9a

4

)∥∥|x|4∇u∥∥2

L2 − a
∥∥|x|4 ∆u

∥∥2

L2

+ 36
∥∥|x|3 u∥∥2

L2 + 4a
∥∥|x|3 (x.∇u)

∥∥2

L2 − a
(
u, |x|8 ∆u

)
L2 .

Using the equality (4.41), we get (4.38). The equality (4.39) comes through the same
kind of computations. Integrating twice by parts, we have

(
∆2u,− |x|8 a∆u

)
L2 = a

∥∥|x|4∇∆u
∥∥2

L2 + 4a
3∑
i=1

∫
R3

xj |x|6 ∂j
(
|∆u(x)|2

)
dx

= a
∥∥|x|4∇∆u

∥∥2

L2 − 36a
∥∥|x|3 ∆u

∥∥2

L2 .

By the same way, we get

(
∆2u, |x|8 u

)
L2 =

∥∥|x|4 ∆u
∥∥2

L2 + 16
3∑
i=1

∫
R3

xi |x|6∆u(x)∂iu(x)dx

+ 72

∫
R3

|x|6 ∆u(x)u(x)dx.
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Integrating again by parts, it comes(
∆2u, |x|8 u

)
L2 =

∥∥|x|4 ∆u
∥∥2

L2 − 8
3∑

i,j=1

∫
R3

xi |x|6 ∂i
(
|∂ju(x)|2

)
dx− 16

∥∥|x|3∇u∥∥2

L2

− 96
∥∥|x|2 (x.∇u)

∥∥2

L2 − 72
∥∥|x|3∇u∥∥2

L2 − 216
3∑∫

R3

xi |x|4 ∂i
(
|u(x)|2

)
dx

=
∥∥|x|4 ∆u

∥∥2

L2 − 16
∥∥|x|3∇u∥∥2

L2 − 96
∥∥|x|2 (x.∇u)

∥∥2

L2 + 1512
∥∥|x|2 u∥∥2

L2 .

Thus, we have(
∆2u, F (u)

)
L2 =

∥∥|x|4 ∆u
∥∥2

L2 − 16
∥∥|x|3∇u∥∥2

L2 − 96
∥∥|x|2 (x.∇u)

∥∥2

L2

+ 1512
∥∥|x|2 u∥∥2

L2 + a
∥∥|x|4∇∆u

∥∥2

L2 − 36a
∥∥|x|3 ∆u

∥∥2

L2 .

It remains to show the equality (4.40) of this lemma, integrating by parts, one has(x
2
.∇∆u, F (u)

)
L2

=
(x

2
.∇∆u, |x|8 u

)
L2
− a

(x
2
.∇∆u, |x|8 ∆u

)
L2

=
(x

2
.∇∆u, |x|8 u

)
L2

+
11a

4

∥∥|x|4 ∆u
∥∥2

L2 .
(4.43)

Another integration by parts yields(x
2
.∇∆u, |x|8 u

)
L2

= −1

4

3∑
j

∫
R3

xj |x|8 ∂j
(
|∇u(x)|2

)
dx

− 1

2

3∑
i,j,k=1

∫
R3

∂k
(
xj |x|8

)
∂j∂kui(x)ui(x)dx

=
11

4

∥∥|x|4∇u∥∥2

L2

− 1

2

3∑
i,j,k=1

∫
R3

(
δj,k |x|8 + 8xjxk |x|6

)
∂j∂kui(x)ui(x)dx.

=
11

4

∥∥|x|4∇u∥∥2

L2 −
1

2

3∑
i=1

∫
R3

|x|8 ∆ui(x)ui(x)dx

− 4
3∑

i,j,k=1

∫
R3

xjxk |x|6 ∂j∂kui(x)ui(x)dx.
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The equality (4.41) shows that

−1

2

3∑
i=1

∫
R3

|x|8 ∆ui(x)ui(x)dx =
1

2

∥∥|x|4∇u∥∥2

L2 − 18
∥∥|x|3 u∥∥2

L2 .

Thus, we get(x
2
.∇∆u, |x|8 u

)
L2

=
13

4

∥∥|x|4∇u∥∥2

L2 − 18
∥∥|x|3 u∥∥2

L2

− 4
3∑

i,j,k=1

∫
R3

xjxk |x|6 ∂j∂kui(x)ui(x)dx.

Integrating one more time by parts, one has

−4
3∑

i,j,k=1

∫
R3

xjxk |x|6 ∂j∂kui(x)ui(x)dx = 4
∥∥|x|3 (x.∇u)

∥∥2

L2

+ 18
3∑

i,j=1

∫
R3

xj |x|6 ∂j
(
u2
i (x)

)
dx

= 4
∥∥|x|3 (x.∇u)

∥∥2

L2 − 162
∥∥|x|3 u∥∥2

L2 ,

and consequently(x
2
.∇∆u, |x|8 u

)
L2

=
13

4

∥∥|x|4∇u∥∥2

L2 + 4
∥∥|x|3 (x.∇u)

∥∥2

L2 − 180
∥∥|x|3 u∥∥2

L2 .

Going back to (4.43), we get (x
2
.∇∆u, F (u)

)
L2

=

13

4

∥∥|x|4∇u∥∥2

L2 + 4
∥∥|x|3 (x.∇u)

∥∥2

L2 − 180
∥∥|x|3 u∥∥2

L2 +
11a

4

∥∥|x|4 ∆u
∥∥2

L2 .

�

The next lemma enables us to close the H2(4) estimate.
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Lemma 4.9 Let W ∈ C1 ((τ0, τε) ,H1(4)) ∩ C0 ((τ0, τε) ,H3(4)) be the solution of (4.1).
There exist two positive constants γ0 and T0 such that, if T ≥ T0 and W satisfy the
condition (4.4) for some positive constant such that γ ≤ γ0, then there exist C > 0 such
that, for all τ ∈ [τ0, τ

∗
ε ),

∂τE5 + 3E5 +
1

16

∥∥|X|4R∥∥2

L2 +

(
α

2
e−τ +

α2

4
e−2τ

)∥∥|X|4 ∆R
∥∥2

L2 ≤ K1 ‖R‖2
L2

+CMγ1/4

(
3

2
− θ
)1/2 (

‖R‖2
L2 + ‖∇R‖2

L2 + ‖∆R‖2
L2

)
+ CMγ

(
3

2
− θ
)2

e−4τ ,

(4.44)
where K1 is a positive constant independent of the parameters.

Proof: To obtain the inequality 4.44 of this lemma, we perform the L2−inner product
of (4.3) with |X|8 (R− αe−τ∆R). We deliberately omit the positive terms provided by
ε∆2W which do not play any role in the next estimates. Using Lemma (4.8) and making
some easy computations, one obtains

1

2
∂τ

(∥∥|X|4 (R− αe−τ∆R)∥∥2

L2

)
+

7

4

∥∥|X|4R∥∥2

L2 +

(
1 +

7α

2
e−τ
)∥∥|X|4∇R∥∥2

L2

+

(
αe−τ +

7α2

4
e−2τ

)∥∥|X|4 ∆R
∥∥2

L2 − 108αe−τ
∥∥|X|3R∥∥2

L2 =

36
∥∥|X|3R∥∥2

L2 + I1 + I2 + I3 + I4,
(4.45)

where

I1 =
(
−U.∇ (W − αe−τ∆W ) , |X|8 (R− αe−τ∆R)

)
L2 ,

I2 =
(
(W − αe−τ∆W ) .∇U, |X|8 (R− αe−τ∆R)

)
L2 ,

I3 =
(
−εe−2τ∆2Ω∞ − αe−2τ∆Ω∞, |X|8 (R− αe−τ∆R)

)
L2 ,

I4 = εe−τ
(

16
∥∥|X|3∇R∥∥2

L2 + 96
∥∥|X|2 (X.∇R)

∥∥2

L2 + 36αe−τ
∥∥|X|3 ∆R

∥∥2

L2

)
.

In the proof of this lemma, we use the notation

δ = Mγ
(

3
2
− θ
)2
.
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As usual, I3 is the easiest term to estimate. Indeed, due to the smoothness of Ω∞ and
the inequality (4.6), we get

I3 ≤ Ce−2τ
∥∥|X|4 (α∆Ω∞ + ε∆2Ω∞

)∥∥
L2

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ µ

∥∥|X|4R∥∥2

L2 + µα2e−2τ
∥∥|X|4 ∆R

∥∥2

L2 +
C |b|2

µ
e−4τ

≤ µ
∥∥|X|4R∥∥2

L2 + µα2e−2τ
∥∥|X|4 ∆R

∥∥2

L2 +
CMγ

(
3
2
− θ
)2

µ
e−4τ ,

(4.46)

where µ is a positive constant that will be made more precise later.

We now give an estimate of I4, which is also quite simple to bound. We just need
Hölder and Young inequalities to estimate this term in a convenient way. Indeed, using
convexity inequalities, it is simple to show that∥∥|X|3∇R∥∥2

L2 +
∥∥|X|2 (X.∇R)

∥∥2

L2 ≤ C
∥∥|X|4∇R∥∥2

L2 + C ‖∇R‖2
L2 ,

and

αe−τ
∥∥|X|3 ∆R

∥∥2

L2 ≤ Cαe−τ
∥∥|X|4 ∆R

∥∥2

L2 + Cαe−τ ‖∆R‖2
L2 .

Thus, if we take ε ≤ αMγ
(

3
2
− θ
)2

, we get

I4 ≤ CMγ
(

3
2
− θ
)2
(
αe−τ

∥∥|X|4∇R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
+CMγ

(
3
2
− θ
)2 (

αe−τ ‖∇R‖2
L2 + α2e−2τ ‖∆R‖2

L2

)
.

(4.47)
As for the H2 estimate, we have to study separately I1 and I2. We begin with I1, that
we rewrite

I1 = I1
1 + I2

1 + I3
1 ,

where

I1
1 =

(
U.∇

(
R− αe−τ∆R

)
, |X|8

(
R− αe−τ∆R

))
L2 ,

I2
1 = e−2τ

(
V∞.∇

(
Ω∞ − αe−τ∆Ω∞

)
, |X|8

(
R− αe−τ∆R

))
L2 ,

I3
1 = e−τ

(
K.∇

(
Ω∞ − αe−τ∆Ω∞

)
, |X|8

(
R− αe−τ∆R

))
L2 .
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Using an integration by parts and Hölder inequalities, one has

I1
1 =

1

2

∫
R3

|X|8 U(X).∇
(∣∣R(X)− αe−τ∆R(X)

∣∣2) dX
= −4

∫
R3

|X|6 (X.U(X))
∣∣R(X)− αe−τ∆R(X)

∣∣2 dX
≤ C ‖U‖L∞

(∥∥∥|X|7/2R∥∥∥2

L2
+ α2e−2τ

∥∥∥|X|7/2 ∆R
∥∥∥2

L2

)
.

The inequalities (2.17) with p = 2, q = 6 and η = 1
2

and (4.4) and the continuous
injection of H1(R3) into L6(R3) give,

I1
1 ≤ C ‖W‖1/2

L2 ‖W‖1/2

L6

(
‖R‖2

L2 +
∥∥|X|4R∥∥2

L2 + α2e−2τ ‖∆R‖2
L2 + α2e−2τ

∥∥|X|4 ∆R
∥∥2

L2

)
≤ C ‖W‖H1

(
‖R‖2

L2 +
∥∥|X|4R∥∥2

L2 + α2e−2τ ‖∆R‖2
L2 + α2e−2τ

∥∥|X|4 ∆R
∥∥2

L2

)
≤ CM1/2γ1/2

(
3

2
− θ
)(
‖R‖2

L2 +
∥∥|X|4R∥∥2

L2

+ α2e−2τ ‖∆R‖2
L2 + α2e−2τ

∥∥|X|4 ∆R
∥∥2

L2

)
.

Because of the smoothness of Ω∞, I2
1 is a little easier to estimate. Indeed using once

more the inequalities (2.17) and (4.6) and Hölder and Young inequalities, we get

I2
1 ≤ Ce−2τ ‖V∞‖L∞

(∥∥|X|4∇Ω∞
∥∥
L2 + αe−τ

∥∥|X|4∇∆Ω∞
∥∥
L2

)(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ C |b| e−2τ ‖Ω∞‖1/2

L2 ‖Ω∞‖1/2

L6

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ C |b| e−2τ

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ µ

∥∥|X|4R∥∥2

L2 + µα2e−2τ
∥∥|X|4 ∆R

∥∥2

L2 +
CMγ

(
3
2
− θ
)2

µ
e−4τ .
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Likewise, we get

I3
1 ≤ Ce−τ ‖K‖L∞

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ Ce−τ ‖R‖H1

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ CM1/2γ1/2

(
3

2
− θ
)(
‖R‖2

L2 + ‖∇R‖2
L2 +

∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
.

Finally, taking T so that αe−τ0 =
α

T
≤ 1, we have

I1 ≤ µ
∥∥|X|4R∥∥2

L2 + µαe−τ
∥∥|X|4 ∆R

∥∥2

L2 +
CMγ

(
3
2
− θ
)2

µ
e−4τ

+CM1/2γ1/2

(
3

2
− θ
)(
‖R‖2

L2 + ‖∇R‖2
L2 + ‖∆R‖2

L2

+
∥∥|X|4R∥∥2

L2 + αe−τ
∥∥|X|4 ∆R

∥∥2

L2

) (4.48)

It remains to bound I2, which is the hardest term to estimate. Like for I1, we rewrite it

I2 = I1
2 + I2

2 + I3
2 + I4

2 ,

where

I1
2 = e−τ

(
(R− αe−τ∆R) .∇V∞, |X|8 (R− αe−τ∆R)

)
L2 ,

I2
2 =

(
(R− αe−τ∆R) .∇K, |X|8 (R− αe−τ∆R)

)
L2 ,

I3
2 = e−2τ

(
(Ω∞ − αe−τ∆Ω∞) .∇V∞, |X|8 (R− αe−τ∆R)

)
L2 ,

I4
2 = e−τ

(
(Ω∞ − αe−τ∆Ω∞) .∇K, |X|8 (R− αe−τ∆R)

)
L2 .

Using the inequality (2.17) and the smoothness of Ω∞, we get

I1
2 ≤ Ce−τ ‖∇V∞‖L∞

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
≤ Ce−τ ‖∇Ω∞‖1/2

L2 ‖∇Ω∞‖1/2

L6

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
≤ C |b|

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
≤ CM1/2γ1/2

(
3

2
− θ
)(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
.
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We now estimate I2
2 . We recall the notation δ = Mγ

(
3
2
− θ
)2

. Using again the inequality
(2.17), the inequality (4.6) and the continuous injection of H1(R3) into L6(R3), one has

I2
2 ≤ ‖∇K‖L∞

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
≤ C ‖∇R‖1/2

L2
‖∇R‖1/2

L6

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
≤ Cδ1/4 ‖∇R‖1/2

H1

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
≤ Cδ1/2

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
+ Cδ1/4 ‖∆R‖1/2

L2

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
≤ Cδ1/2

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
+ Cδ1/4 ‖∆R‖1/2

L2

∥∥|X|4R∥∥2

L2

+ Cδ1/2α7/4e−
7τ
4

∥∥|X|4 ∆R
∥∥2

L2 .

To finish the estimate of I2
2 , we use the convexity inequality ab ≤ 3

4
a

4
3 + 1

4
b4 and the

condition (4.6). We obtain

I2
2 ≤ Cδ1/2

(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
+ Cδ1/4

(
‖∆R‖2

L2 +
∥∥|X|4R∥∥8/3

L2

)
+ Cδ1/2α7/4e−

7τ
4

∥∥|X|4 ∆R
∥∥2

L2

≤ Cδ1/2
(∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
+ Cδ1/4 ‖∆R‖2

L2 + Cδ7/12
∥∥|X|4R∥∥2

L2

+ Cδ1/2α7/4e−
7τ
4

∥∥|X|4 ∆R
∥∥2

L2 .

Consequently, if we assume γ ≤ 1 and
(

3
2
− θ
)
≤ 1, one has

I2
2 ≤ CM7/12γ1/4

(
3

2
− θ
)1/2 (∥∥|X|4R∥∥2

L2 + ‖∆R‖2
L2 + α2e−2τ

∥∥|X|4 ∆R
∥∥2

L2

)
It it easier bound I3

2 . Indeed, the inequality (2.18) and the inequality (4.6) imply

I3
2 ≤ Ce−2τ

∥∥Ω∞ − αe−τ∆Ω∞
∥∥
L∞
‖∇V∞‖L2

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ Ce−2τ ‖Ω∞‖L2

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ C |b| e−2τ

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ µ

∥∥|X|4R∥∥2

L2 + µα2e−2τ
∥∥|X|4 ∆R

∥∥2

L2 +
CMγ

(
3
2
− 1
)2

µ
e−4τ .
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Likewise, it comes

I4
2 ≤ Ce−τ

∥∥Ω∞ − αe−τ∆Ω∞
∥∥
L∞
‖∇K‖L2

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ C |b| e−τ ‖R‖L2

(∥∥|X|4R∥∥
L2 + αe−τ

∥∥|X|4 ∆R
∥∥
L2

)
≤ CMγ

(
3

2
− 1

)2 (
‖R‖2

L2 +
∥∥|X|4R∥∥2

L2 + α2e−2τ
∥∥|X|4 ∆R

∥∥2

L2

)
.

Thus, taking T0 large enough so that αe−τ0 = α
T
≤ 1, the following inequality holds:

I2 ≤ µ
(∥∥|X|4R∥∥2

L2 + αe−τ
∥∥|X|4 ∆R

∥∥2

L2

)
+
CMγ

(
3
2
− 1
)2

µ
e−4τ

+CMγ1/4

(
3

2
− 1

)1/2 (
‖R‖2

L2 + ‖∆R‖2
L2 +

∥∥|X|4R∥∥2

L2 + αe−τ
∥∥|X|4 ∆R

∥∥2

L2

)
.

(4.49)
Combining the equality (4.45) together with the inequalities (4.46), (4.47), (4.48) and
(4.49) and taking T0 big enough compared to α, we have

1

2
∂τ

(∥∥|X|4 (R− αe−τ∆R)∥∥2

L2

)
+

7

4

∥∥|X|4R∥∥2

L2 +

(
1 +

7α

2
e−τ
)∥∥|X|4∇R∥∥2

L2

+

(
αe−τ +

7α2

4
e−2τ

)∥∥|X|4 ∆R
∥∥2

L2 − 108αe−τ
∥∥|X|3R∥∥2

L2 ≤

C

(
Mγ1/4

(
3

2
− θ
)1/2

+ µ

)(∥∥|X|4R∥∥2

L2 + αe−τ
∥∥|X|4∇R∥∥2

L2 + αe−τ
∥∥|X|4 ∆R

∥∥2

L2

)

+36
∥∥|X|3R∥∥2

L2 + CMγ1/4

(
3

2
− θ
)1/2 (

‖R‖2
L2 + ‖∇R‖2

L2 + ‖∆R‖2
L2

)
+
CMγ

(
3
2
− θ
)2

µ
e−4τ .

(4.50)
Integrating by parts like in the proof of Lemma 4.8, we have

E4 =
1

2

∥∥|X|4R∥∥2

L2 +
α2

2
e−2τ

∥∥|X|4 ∆R
∥∥2

L2 + αe−τ
∥∥|X|4∇R∥∥2

L2 − 36αe−τ
∥∥|X|3R∥∥2

L2 .

(4.51)
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Consequently, the inequality (4.50) becomes

∂τE5 + 3E5 +
1

4

∥∥|X|4R∥∥2

L2 +
(

1 +
α

2
e−τ
)∥∥|X|4∇R∥∥2

L2

+

(
αe−τ +

α2

4
e−2τ

)∥∥|X|4 ∆R
∥∥2

L2 ≤

C

(
Mγ1/4

(
3

2
− θ
)1/2

+ µ

)(∥∥|X|4R∥∥2

L2 + αe−τ
∥∥|X|4∇R∥∥2

L2 + αe−τ
∥∥|X|4 ∆R

∥∥2

L2

)

+36
∥∥|X|3R∥∥2

L2 + CMγ1/4

(
3

2
− θ
)1/2 (

‖R‖2
L2 + ‖∇R‖2

L2 + ‖∆R‖2
L2

)
+
CMγ

(
3
2
− θ
)2

µ
e−4τ .

(4.52)
Thus, taking γ0 and µ small enough, we obtain

∂τE5 + 3E5 +
1

8

∥∥|X|4R∥∥2

L2 +

(
α

2
e−τ +

α2

4
e−2τ

)∥∥|X|4 ∆R
∥∥2

L2 ≤ 36
∥∥|X|3R∥∥2

L2

+CMγ1/4

(
3

2
− θ
)1/2 (

‖R‖2
L2 + ‖∇R‖2

L2 + ‖∆R‖2
L2

)
+ CMγ

(
3

2
− θ
)2

e−4τ .

(4.53)

Using Hölder and the convexity inequality ab ≤ 1
4
a4 + 3

4
b

4
3 , a simple computation leads

to ∥∥|X|3R∥∥2

L2 ≤
3µ4/3

4

∥∥|X|4R∥∥2

L2 +
1

4µ4
‖R‖2

L2 ,

for all µ > 0.

Using this inequality with µ small enough, we finally obtain

∂τE5 + 3E5 +
1

16

∥∥|X|4R∥∥2

L2 +

(
α

2
e−τ +

α2

4
e−2τ

)∥∥|X|4 ∆R
∥∥2

L2 ≤ K1 ‖R‖2
L2

+CMγ1/4
(

3
2
− θ
)1/2 (‖R‖2

L2 + ‖∇R‖2
L2 + ‖∆R‖2

L2

)
+ CMγ

(
3
2
− θ
)2
e−4τ ,

(4.54)
where K1 is a positive constant.
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�

This lemma, combined with the inequality (4.35) enables to finish the H2(4) estimate of
R. We define the functional

E6 = KE4 + E5, (4.55)

with K some large positive constant that will be made more precise later.

Inequalities (4.35) and (4.44) show that one has

∂τE6 + 2θE6 + 10K
∥∥∥(−∆)−(θ− 1

4)R
∥∥∥2

L2
+
K

2
‖∇R‖2

L2 +
K

4
‖∆R‖2

L2

+
1

16

∥∥|X|4R∥∥2

L2 +
α2

4
e−2τ

∥∥|X|4 ∆R
∥∥2

L2 ≤

K1 ‖R‖2
L2 + CM2γ1/4

(
‖R‖2

L2 + ‖∇R‖2
L2 + ‖∆R‖2

L2 +
∥∥|X|4R∥∥2

L2

)
+ CM2γe−

7τ
2 .

Interpolating again ‖R‖2
L2 between

∥∥∥(−∆)−(θ− 1
4)R

∥∥∥2

L2
and ‖∇R‖2

L2 and taking K and

γ0 respectively sufficiently large and small, we get

∂τE6 + 2θE6 ≤ CM2γe−
7τ
2 . (4.56)

5 Proof of Theorem 2.1

5.1 Theorem 2.1 for approximate solutions

In this section, under the condition (2.9), we show that the solutions of (4.1) are
actually global in time and that the inequality (2.10) of Theorem 2.1 holds for these
solutions. To get this result, we take advantage of the energy estimates that we have
obtained in the section 4. The following theorem is a copy of Theorem 2.1 for solutions
of the regularized system (4.1).

Theorem 5.1 Let θ be a fixed positive constant such that 0 < θ < 3
2
, ε be a positive

constant and W0 ∈ H2(4). There exist three positive constants γ0 = γ0(α), ε = ε0(α) and
T = T0(α) such that if T ≥ T0, ε ≤ ε0 and there exists a positive constant γ ≤ γ0 such
that W0 ∈ H2(4) satisfies the condition

‖W0‖2
L2(4) + ‖∇W0‖2

L2 + αe−τ0 ‖∆W0‖2
L2 + α2e−2τ0

∥∥|X|4 ∆W0

∥∥2

L2 ≤ γ

(
3

2
− θ
)2

, (5.1)
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where τ0 = log(T ),

then there exist a unique solution Wε ∈ C1 ((τ0,+∞) ,H1(4)) ∩ C0 ((τ0,+∞) ,H3(4)) to
the system (4.1) and a positive constant C = C(α, γ, θ, τ0) such that, for all τ ≥ τ0,∥∥∥∥∥(Id− αe−τ∆)

(
Wε(τ)− e−τ

3∑
i=1

bifi

)∥∥∥∥∥
L2(4)

≤ Ce−θτ , (5.2)

where bi =

∫
R3

pi(X).W0(X)dX.

In order to prove this theorem, we use the energy estimates that we established in
the section 4. To obtain the inequality (5.2), we need the energy functional E6 to be
equivalent to the H2(4)-norm of Rε. If we take K large enough in the definition (4.55)
of E6, then the next lemma holds.

Lemma 5.1 Let Rε ∈ C1 ((τ0,+∞) ,H1(4))∩C0 ((τ0,+∞) ,H3(4)) and E6 be the energy
functional defined by (4.55). There exists K0 such that, if K ≥ K0, then there exists a
positive constant C such that

E6(τ) ≤ C
(
‖Rε‖2

L2(4) + ‖∇Rε‖2
L2 + αe−τ ‖∆Rε‖2

L2 + α2e−2τ
∥∥|X|4 ∆Rε

∥∥2

L2(4)

)
, (5.3)

C
(
‖Rε‖2

L2(4) + ‖∇Rε‖2
L2 + αe−τ ‖∆Rε‖2

L2 + α2e−2τ
∥∥|X|4 ∆Rε

∥∥2

L2(4)

)
≤ E6(τ). (5.4)

Proof: The inequalities (5.3) and (5.4) come directly from the definition of E6 and the
interpolation inequality (4.16).

�

Proof of theorem 5.1: Let θ be a fixed constant such that 0 < θ < 3
2

and
Wε ∈ C1 ((τ0,+∞) ,H1(4)) ∩ C0 ((τ0,+∞) ,H3(4)) be the solution of the system (4.1)
given by theorem 3.1. Let T and K be sufficiently large so that they satisfy the conditions
of the lemmas 4.5, 4.6, 4.7 and 4.9 and assume that the initial data W0 satisfy the
condition (2.9) for some γ > 0 which will be made more precise later. We decompose
Wε such that

Wε = e−τΩ∞ +Rε,
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where Ω∞ =
3∑
i=1

bifi, bi =

∫
R3

pi(X).W0(X)dX and {f1, f2, f3} is the basis of the

eigenspace of L associated to the eigenvalue −1, given by (2.1).

Let M be a positive constant such that M > 2 that will be made more precise later and
τ ∗ε ∈ [τ0, τε] be the biggest positive time such that the inequality (4.4) holds. We take γ
and ε sufficiently small and T sufficiently large so that the lemmas 4.5, 4.6, 4.7 and 4.9
hold. According to the inequality (4.55), one has, for all τ ∈ [τ0, τ

∗
ε ),

∂τ
(
E6(τ)e2θτ

)
≤ CM2γe−( 7

2
−2θ)τ (5.5)

Integrating in time the previous inequality between τ0 and τ ∈ [τ0, τ
∗
ε ), we get

E6(τ) ≤ E6(τ0)e−2θ(τ−τ0) + CM2γe−
7τ0
2

(
e−2θ(τ−τ0) − e−

7
2

(τ−τ0)
)
. (5.6)

Arguing like in the proof of Lemma 4.1 and using the inequality (5.3), we can show that

E6(τ0) ≤ C1γ

(
3

2
− θ
)2

,

which implies

E6(τ) ≤ Cγ

(
3

2
− θ
)2

+ CM2γe−
7τ0
2 . (5.7)

According to the inequalities (5.4) and (4.6), one has, for all τ ∈ [τ0, τ
∗
ε ),

|b|2 + ‖Rε‖2
L2(4) + ‖∇Rε‖2

L2 + αe−τ ‖∆Rε‖2
L2 + α2e−2τ

∥∥|X|4 ∆Rε

∥∥2 ≤

Cγ

(
3

2
− θ
)2

+ CM2γe−
7τ0
2 .

Recalling that Wε =
3∑
i=1

bifi +Rε, we get

‖Wε‖2
L2(4) + ‖∇Wε‖2

L2 + αe−τ ‖∆Wε‖2
L2 + α2e−2τ

∥∥|X|4 ∆Wε

∥∥2 ≤

C1γ

(
3

2
− θ
)2

+ C2M
2γe−

7τ0
2 ,
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where C1 and C2 are two positive constants.

We take M sufficiently large so that C1 ≤ M
4

and τ0 = ln(T ) sufficiently large so that

C2M
2e−

7τ0
2 ≤

M
(

3
2
− θ
)2

4
, we obtain, for all τ ∈ [τ0, τ

∗
ε ),

‖Wε‖2
L2(4) + ‖∇Wε‖2

L2 + αe−τ ‖∆Wε‖2
L2 + α2e−2τ

∥∥|X|4 ∆Wε

∥∥2 ≤
Mγ

(
3
2
− θ
)2

2
. (5.8)

In particular, the inequality (5.8) shows that τ ∗ε = τε. Furthermore, letting τ tend to τε,
we see that if τε is finite, then the H1(4) norm of Wε stay bounded on [τ, τε). According
to the proof of Theorem 3.1, it implies in particular that one can extend the interval of
definition of Wε over τε. Consequently, we have necessarily τε = +∞. In addition, going
back to the inequality (5.6) and applying the inequality (5.4) of Lemma 5.1, we see that
the inequality (5.2) holds.

�

5.2 Existence of solutions in H2(4)

In this section, we show that there exists a weak solution to the system (1.5) belonging
to the space C0 ([τ0,+∞) ,H2(4)). To this end, we show that, when ε tends to 0, Wε

tends to a divergence free vector W which satsifies (1.5) in a weak sense. Let (εn)n∈N
be a sequence of positive terms which tends to 0. Let Wεn ∈ C1 ((τ0,+∞) ,H1(4)) ∩
C0 ((τ0,+∞) ,H3(4)) be the global solution of (4.1) given by Theorem 5.1, with initial
data W0. Let O be a bounded open set of R3. For s ∈ R+, Hs(O) denotes the restriction
of the Sobolev space Hs(R3) on O. For s ≥ 1, we define also the space

Hs
0(O) =

{
u ∈ Hs(O) : u|∂O=0

}
.

Let τ1 be a fixed positive time such that τ1 > τ0. Due to the boundedness property of Wεn

in L∞ ([τ0, τ1] ,H2(4)) uniformly with respect to n, there exist W ∈ L∞ ([τ0, τ1] ,H2(4))
and a subsequence of εn (that we still note εn) such that

Wεn ⇀W weak* in L∞
(
[τ0, τ1] , H2(O)3

)
. (5.9)

SinceWεn is bounded in L∞ ([τ0, τ1] ,H2(4)), applying the operator (Id− αe−τ∆)
−1

to the
first equality of (4.1), it is quite easy to see that ∂τWεn is bounded in L∞ ([τ0, T ] , L2(O)3)
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uniformly with respect to n. Consequently, Wεn is equicontinuous in time on L2(O)3.
Indeed, given σ1 and σ2 belonging to [τ0, τ1], one has

‖Wεn(σ1)−Wεn(σ2)‖L2(O) =

∥∥∥∥∫ σ1

σ2

∂τWεn(s)ds

∥∥∥∥
L2(O)

≤
∣∣∣∣∫ σ1

σ2

‖∂τWεn(s)‖L2(O) ds

∣∣∣∣
≤ |σ1 − σ2| max

s∈[τ0,T ]
‖∂τWεn(s)‖L2(O) .

Besides, for all τ ∈ [τ0, τ1], the set
⋃
n∈N

Wεn(τ) is bounded in H2(O)3 and thus compact

in L2(O)3. Applying the classical Arzela-Ascoli theorem, we conclude that

Wεn −→ W strongly in C0 ([τ0, τ1] , L2(O)3).

A classical interpolation inequality between L2 and H2 yields, for all s < 2,

Wεn −→ W strongly in C0
(
[τ0, τ1] , Hs(O)3

)
. (5.10)

The two identities (5.9) and (5.10) are sufficient to pass to the limit in the weak formu-
lation of the system (4.1) and to show that W is a weak solution of the system (1.5).
More precisely, for every ϕ ∈ C1 ([τ0, τ1] , H1

0 (O)3) such that div ϕ = 0, one has, for all
τ ∈ [τ0, τ1],∫
O

(
W (τ)− αe−τ∆W (τ)

)
ϕ(τ)dX +

∫ τ

τ0

∫
O
L
(
W (σ)

)
ϕ(σ)dXdσ

+

∫ τ

τ0

∫
O
U(σ)×

(
W (σ)− αe−σ∆W (σ)

)
curl ϕ(σ)dXdσ

=

∫
O

(
W0 − αe−τ0∆W0

)
ϕ(τ0)dX +

∫ τ

τ0

∫
O

(
W (σ)− αe−σ∆W (σ)

)
∂τϕ(σ)dXdσ

+

∫ τ

τ0

∫
O

3α

2
e−σ∆W (σ)ϕ(σ)dXdσ +

∫ τ

τ0

∫
O

α

2
e−σ∆W (σ) (X.∇ϕ(σ)) dXdσ.

(5.11)
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We just show that the non-linear term converges, using (5.9) and (5.10). The other ones
are nearly obvious. We have∫ τ

τ0

∫
O
Uεn(σ)×

(
Wεn(σ)− αe−σ∆Wεn(σ)

)
curl ϕ(σ)dXdσ =∫ τ

τ0

∫
O
U(σ)×

(
W (σ)− αe−σ∆W (σ)

)
curl ϕ(σ)dXdσ +Rn + Sn,

(5.12)
where

Rn =

∫ τ

τ0

∫
O

(U(σ)− Uεn(σ))×
(
Wεn(σ)− αe−σ∆Wεn(σ)

)
curl ϕ(σ)dXdσ,

Sn =

∫ τ

τ0

∫
O
U(σ)×

(
W (σ)−Wεn(σ)− αe−σ (∆W (σ)−∆Wεn(σ))

)
curl ϕ(σ)dXdσ.

Due to Hölder inequalities, the boundedness property of Wεn in H2(O)3 and the inequal-
ity (2.17), we have

Rn ≤ C

∫ τ

τ0

‖U(σ)− Uεn(σ)‖L∞(O) ‖∇ϕ(σ)‖L2(O) dσ

≤ C

∫ τ

τ0

‖W (σ)−Wεn(σ)‖1/2

L2(O) ‖W (σ)−Wεn(σ)‖1/2

L6(O) ‖∇ϕ(σ)‖L2(O) dσ

≤ C (T − τ0) max
σ∈[τ0,T ]

‖W (σ)−Wεn(σ)‖H1(O) max
σ∈[τ0,T ]

‖∇ϕ(σ)‖L2(O) .

Thus, the identity (5.10) implies that Rn → 0 when n→ +∞.

Because of the identity (5.9), it is clear that we have also Sn → 0 when n→ +∞. Thus,
we have shown that, for all τ ∈ [τ0, τ1],

lim
n→+∞

∫ τ

τ0

∫
O
Uεn(σ)×

(
Wεn(σ)− αe−σ∆Wεn(σ)

)
curl ϕ(σ)dXdσ =

∫ τ

τ0

∫
O
U(σ)×

(
W (σ)− αe−σ∆W (σ)

)
curl ϕ(σ)dXdσ.

(5.13)
Furthermore, since Wεn(τ) converge weakly to W (τ) in H2(4), from the inequality (5.2),
we get ∥∥∥∥∥(I − αe−τ∆)

(
W (τ)− e−τ

3∑
i=1

bifi

)∥∥∥∥∥
L2(4)

≤ Ce−θτ , (5.14)
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for all τ ∈ [τ0,+∞).

Uniqueness

It remains to show that the solutions of (1.2) are unique in the space C0 (R+,H2(4)).
To show this fact, it suffices to show that the divergence free vector field u obtained
from a solution w of (1.2) through the Biot-Savart law is unique. Since w belongs to
C0 (R+,H2(4)), the inequality (2.16) with q = 2 and p = 6

5
and the inequality (2.18)

with p = 2 of the lemma 2.2 imply directly that u ∈ C0 (R+, H3(R3)3). Furthermore,
u satisfies the equations of motion of second grade fluids (1.1). The uniqueness of the
H3−solutions of (1.1) has been shown in [18] for the case of a bounded open set of R3

with Dirichlet boundary conditions. In our case, we can apply the computations of the
proof of [19, Theorem 2], which imply the uniqueness of the solutions of (1.1) with initial
data in H3(R3)3.
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Chapitre 4

Fluides de grade 3

I. Asymptotic profiles for the third
grade fluids equations on R2

1 Introduction

The study of the behaviour of the non-Newtonian fluids is a significant topic of re-
search in mathematics, but also in physics or biology. Indeed, these fluids, the behaviour
of which cannot be described with the classical Navier-Stokes equations, are found ev-
erywhere in the nature. For examples, blood, wet sand or certain kind of oils used in
industry are non-Newtonian fluids. In this paper, we investigate the behaviour of a par-
ticular class of non-Newtonian fluids that is the third grade fluids, which are a particular
case to the Rivlin-Ericksen fluids (see [59], [62]). The constitutive law of such fluids is
defined through the Rivlin-Ericksen tensors, given recursively by

A1 = ∇u+ (∇u)t ,

Ak = ∂tAk−1 + u.∇Ak−1 + (∇u)tAk−1 + Ak−1∇u,

where u is a divergence free vector field of R2 or R3 which represents the velocity of the
fluid. The most famous example of a Rivlin-Ericksen fluid is the class of the Newtonian
fluids, which are modelized through the stress tensor

σ = −pId+ νA1,
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where ν > 0 is the kinematic viscosity and p is the pressure which depends on u. Intro-
duced into the equations of conservation of momentum, this stress tensor leads to the
well known Navier-Stokes equations.

In this article, we consider a larger class of fluids, for which the stress tensor is not linear
in the Rivlin-Ericksen tensors, but a polynomial function of degree 3. As introduced by
Fosdick and Rajagopal in [31], the stress tensor that we consider is defined by

σ = −pId+ νA1 + α1A2 + α2A
2
1 + β |A1|2A1,

where ν > 0 is the kinematic viscosity, p is the pressure, α1 > 0, α2 ∈ R and β ≥ 0.

We assume in this article that the density of the fluid is constant in space and time and
equals to 1. Actually, the value of the density is not significant, since we can replace
the parameters ν, α1, α2 and β by dividing them by the density. Introduced into the
equations of conservation of momentum, the tensor σ leads to the system

∂t (u− α1∆u)− ν∆u+ curl (u− α1∆u) ∧ u
− (α1 + α2) (A.∆u+ 2div (LLt))− βdiv

(
|A|2A

)
+∇p = 0,

div u = 0,
u|t=0 = u0,

(1.1)

where L = ∇u, A(u) = ∇u+ (∇u)t and ∧ denotes the classical vectorial product on R3.

For matrices A,B ∈ Md(R), we define A : B =
d∑

i,j=1

Ai,jBi,j and |A|2 = A : A. If the

space dimension is 2, we use the convention u = (u1, u2, 0) and curl u = (0, 0, ∂1u2−∂2u1).
Notice also that if α1 + α2 = 0 and β = 0, we recover the equations of fluids of grade 2,
which is another class of non-Newtonian fluids, introduced earlier by Dunn and Fosdick
in 1974 (see [24], [35] or [19]). If in addition α1 = 0, then one recovers the classical
Navier-Stokes equations.

The system of equations (1.1) has been studied in various cases, on bounded domains
of R2 or R3 or in the whole space R2 or R3 (see [1], [5], [9], [10], [11] and [55]). On a
bounded domain Ω of Rd, d = 2, 3, with Dirichlet boundary conditions, Amrouche and
Cioranescu have shown the existence of local solutions to (1.1) when the initial data
belong to the Sobolev space H3(Ω)d (see [1]). In addition, these solutions are unique.
For this study, the authors have assumed the restriction

|α1 + α2| ≤ (24νβ)1/2,
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which is justified by thermodynamics considerations. The proof of their result is obtained
using a Galerkin method with functions belonging to the eigenspaces of the operator
curl (Id− α1∆). In dimension 3, a slightly different method has been applied by D.
Bresch and J. Lemoine, who used Schauder’s fixed point Theorem to extend the result of
[1] to the case of initial data belonging to the Sobolev space W 2,r(Ω)3. They have shown
in [9] the local existence of unique solutions of (1.1) in the space C0 ([0, T ] ,W 2,r(Ω)3),
where T > 0. In addition, if the data are small enough in the space W 2,r(Ω)3, the solu-
tions are global in time. Notice also that the existence of such solutions holds without
restrictions on the parameters of the system (1.1).

In the case of third grade fluids filling the whole space Rd, d = 2, 3 , Busuioc and If-
timie established the existence of global solutions with initial data belonging to H2(Rd)d,
without restrictions on the parameters or on the size of the data (see [10]). In this study,
the authors used a Friedrichs method and performed a priori estimates in H2 which allow
to show the existence of solutions of (1.1) in the space L∞loc

(
R+, H2(Rd)d

)
. Besides, these

solutions are unique if d = 2. Later, Paicu extended the results of [10] to the case of
initial data belonging to H1(Rd)d, assuming additional restrictions on the parameters of
the equation ; the uniqueness is not known in this space (see [55]). The method that he
used is slightly different from the one used in [10]. Indeed, although Paicu also consid-
ered a Friedrichs scheme, the convergence of the approximate solutions to a solution of
(1.1) is done via a monotonicity method. Notice that Theorem 1.1 of this article shows
the existence of solutions of the equations of third grade fluids on R2 for initial data in
weighted Sobolev spaces (see Section 3).

In what follows, we consider a third grade fluid filling the whole space R2. Actually,
the equations that we consider are not exactly the system (1.1) but the one satisfied by
w = curl u = ∂1u2 − ∂2u1. In dimension 2, the vorticity equations of the third garde
fluids are given by

∂t (w − α1∆w)− ν∆w + u.∇ (w − α1∆w)

−βdiv
(
|A|2∇w

)
− βdiv

(
∇
(
|A|2

)
∧ A

)
= 0,

div u = 0,
w|t=0 = w0 = curl u0.

(1.2)

Notice that the parameter α2 does no longer appear in (1.2) and thus does not play any
role in the study of these equations. Indeed, due to the divergence free property of u,
a short computation shows that curl (A.∆u+ 2div (LLt)) = 0, or equivalently there
exists q such that A.∆u+ 2div (LLt) = ∇q. This phenomenon is very particular to the
dimension 2 and does not occur in dimension 3. Notice also that the previous system
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is autonomous in w. Indeed, the vector field u depends on w and can be recovered
from w via the Biot-Savart law, which is a way to get a divergence free vector field such
that curl u = w. The motivation for considering the vorticity equations instead of the
equations of motion comes from the fact that, due to spectral reasons, we have to study
the behaviour of the solutions of (1.2) in weighted Lebesgue spaces. Unfortunately, these
functions spaces are not suitable for the equations of motions and are not preserved by
the system (1.1).

In this article, we establish the existence and uniqueness of solutions of (1.2) in
weighted Sobolev spaces, but the main aim is the study of the asymptotic behaviour of
these solutions when t goes to infinity. More precisely, we want to describe the first order
asymptotic profiles of the solutions of (1.2). We consider a fluid of third grade which fills
R2 without forcing term applied to it. In this case, as it is expected, the solutions of (1.2)
tend to 0 as t goes to infinity. Our motivation is to show that these solutions behave
like those of the Navier-Stokes equations. In our case, we will show that the solutions of
(1.2) behave asymptotically like solutions of the heat equations, up to a constant that
we can compute from the initial data. The methods that we use in the present paper are
based on scaled variables and energy estimates in several functions spaces. This work is
inspired by several older results obtained for other fluid mechanics equations. The first
and second order asymptotic profiles have been described for the Navier-Stokes equations
in dimensions 2 and 3 by Gallay and Wayne (see[36], [37], [38] and [39]). In dimension 2,
they have shown in [36] and [38] that the first order asymptotic profiles of Navier-Stokes
equations are given up to a constant by a smooth Gaussian function called the Oseen
vortex sheet. More precisely, for a solution w of the vorticity Navier-Stokes equations
(that is the system 1.2 with α1 = β = 0), for every 2 ≤ p ≤ +∞, the following property
holds: ∥∥∥∥w(t)−

∫
R2 w0(x)dx

t
G

(
.√
t

)∥∥∥∥
Lp

= O(t−
3
2

+ 1
p ), when t→ +∞,

where G is the Oseen vortex sheet

G(x) =
1

4π
e−
|x|2
4 . (1.3)

The methods that they used in [36] are very different from the ones that we develop
in this article. Although they also considered scaled variables, the convergence to the
asymptotic profiles is not obtained through energy estimates. Indeed, using dynamical
systems arguments, they established the existence of a finite-dimensional manifold which
is locally invariant by the semiflow associated to the Navier-Stokes equations. Then, they
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showed that, under restrictions on the size of the data, the solutions of the Navier-Stokes
equations behave asymptotically like solutions on this invariant manifold. The descrip-
tion of the asymptotic profiles is thus obtained by the description of the dynamics of the
Navier-Stokes equations on the invariant manifold. Later, the smallness assumption on
the data has been removed (see [38]). In [47], Jaffal-Mourtada describes the first order
asymptotics of second grade fluids, under smallness assumptions on the initial data in
weighted Sobolev spaces. She has shown that the solutions of the second grade fluids
equations converge also to the Oseen vortex sheet. In this paper, we apply the meth-
ods used by Jaffal-Mourtada, namely scaled variables and energy estimates. According
to these results, one can say that the fluids of second grade behave asymptotically like
Newtonian fluids. In this paper, we show that, under the same smallness assumptions
on the initial data, the same behaviour occurs for third grade fluids equations. We em-
phasize that the rate of convergence that we obtain is better than the one obtained in
[47]. Actually, we show that we can choose the rate of convergence as close as wanted
to the optimal one, assuming that the initial data are small enough. Since second grade
fluids are a particular case of third grade fluids, we establish an improvement of the rate
obtained in [47]. Actually, the main difference between third and second grade fluids
equations in dimension 2 is the presence of the additional term βdiv

(
|A|2A

)
in the

third grade fluids equations. Sometimes, this term helps to obtain global estimates, like
in [10] or [55], but introduces additional difficulties when one looks for estimates in H3 or
in more regular Sobolev spaces (see [1], [5] or [11]). Here, we have to establish estimates
in weighted Sobolev spaces with H2 regularity for the vorticity w, which is harder than
doing estimates in H3 for u.

We next introduce scaled variables. In order to simplify the notations, we assume
that ν = 1. Let T > 1 be a positive constant which is introduced in order to avoid
restrictions on the size of the parameter α1 and which will be made more precise later.
We consider the solution w of (1.2) and define W and U such that curl U = W through

the change of variables X =
x√
t+ T

and τ = log(t+ T ). We set
u(t, x) =

1√
t+ T

U

(
log(t+ T ),

x√
t+ T

)
,

w(t, x) =
1

t+ T
W

(
log(t+ T ),

x√
t+ T

)
.

(1.4)

For τ ≥ log(T ), we have {
U(τ,X) = eτ/2u

(
eτ − T, eτ/2X

)
,

W (τ,X) = eτw
(
eτ − T, eτ/2X

)
.

(1.5)
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These variables, called scaled or self-similar variables have been introduced in order to
study the long time asymptotic of solutions of parabolic equations and particularly to
show the convergence to self-similar solutions (see [25], [26], [33] or [48]), that is to say

under the form
1

t+ T
F

(
x√
t+ T

)
.

Scaled variables have been used to deal with the asymptotic behaviour of many equations,
not necessarily parabolic ones (see [13], [14] [47], [40] or [41]). For instance, in [40],
Gallay and Raugel described the first and second order asymptotic profiles in weighted
Sobolev spaces for damped wave equations, using scaled variables. In [41], they use
scaled variables to show a stability result of hyperbolic fronts for the same equations.

For sake of simplicity, we set Ai,j = ∂jUi + ∂iUj. Considering self-similar variables, one
can see that W and its corresponding divergence free vector field U satisfy the system

∂τ (W − α1e
−τ∆W )− L(W ) + U.∇ (W − α1e

−τ∆W ) + α1e
−τ∆W

+α1e
−τ X

2
.∇∆W − βe−2τdiv

(
|A|2∇W

)
− βe−2τdiv

(
∇
(
|A|2

)
∧ A

)
= 0,

div U = 0,
W|τ=τ0 = W0,

(1.6)
where τ0 = log(T ), W0(X) = eτ0w0

(
eτ0/2X

)
and L is the linear differential operator

defined by

L(W ) = ∆W +W + X
2
.∇W .

Notice that the initial time of the system (1.6) is log(T ). By choosing T sufficiently large,
one can consider α1e

−τ as small as wanted. This fact will allow to study the behaviour
of the solutions of (1.6) without restrictions on the size of α1. Formally, we see that most
of the terms of the system (1.6) tend to 0 as time goes to infinity. We show that the
solutions of (1.6) asymptotically behave like solutions of

∂τW∞ = L(W∞). (1.7)

In order to describe the solutions of the system (1.7), we have to study the spectrum
of the linear differential operator L in appropriate functions spaces. The form of the
previous system and the definition of L lead to consider weighted Lebesgue spaces. For
m ∈ N, we define

L2(m) =
{
u ∈ L2(R2) :

(
1 + |x|2

)m/2
u ∈ L2(R2)

}
,
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equipped with the norm

‖u‖L2(m) =

(∫
R2

(
1 + |x|2

)m |u(x)|2 dx
)1/2

.

The spectrum of L in L2(m) is studied in details in [36, Appendix A]. It is composed of
the discrete spectrum

σd (L) =
{
−k

2
: k ∈ {0, 1, ...,m− 2}

}
,

and the continuous spectrum

σc(L) =
{
λ ∈ C : Re(λ) ≤ −m−1

2

}
.

In particular, the eigenvalue 0 is simple and the Oseen vortex G given by (1.3) is an
eigenfunction of L associated to 0. Of course, G is a solution of (1.7) and we will show
that the solutions of (1.6) behave like G when the time goes to infinity. To this end, we
decompose the solutions W of (1.6) as follows

W (τ) = ηG+ f(τ),

where η ∈ R will be made more precise later and f(τ) is a rest which will tend to 0 as τ
goes to infinity.

In order to get a good rate of convergence for f , we shall ”push” the continuous spectrum
of L to the left by choosing an appropriate weighted Lebesgue space. For this reason,
we work in L2(2), so that σc(L) =

{
λ ∈ C : Re(λ) ≤ −1

2

}
. Since the second eigenvalue

of L in L2(2) is −1
2
, the best result that we expect is as follows

f(τ) = O(e−τ/2) in L2(2), when τ → +∞.

Notice that choosing a weighted space L2(m) with m > 2 would be useless for describing
the first order asymptotics only. Indeed, if we take m > 2, the second eigenvalue would
still be −1

2
and the rate of convergence could not be better than e−τ/2.

For later use, we define the divergence free vector field V such that curl V = G. It is
obtained by the Biot-Savart law and given by

V (X) =
1− e−

|X|2
4

2π |X|2

(
−X2

X1

)
.
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In particular, for every X ∈ R2, one has

V (X).X = 0, V (X).∇G(X) = 0 and V (X).∇∆G(X) = 0.

Before stating the main theorem of this paper, we have to define some additional func-
tions spaces. For m ∈ N, we set

H1(m) =
{
u ∈ L2(m) : ∂ju ∈ L2(m); j ∈ {1, 2}

}
,

H2(m) =
{
u ∈ H1(m) : ∂ju ∈ H1(m); j ∈ {1, 2}

}
,

equipped with the norms

‖u‖H1(m) =
(
‖u‖2

L2(m) + ‖∇u‖2
L2(m)

)1/2

and

‖u‖H2(m) =
(
‖u‖2

H1(m) + ‖∇2u‖2
L2(m)

)1/2

,

where |∇u|2 =
2∑
i=1

(∂iu)2 and
∣∣∇2u

∣∣2 =
2∑

i,j=1

(∂i∂ju)2.

The following theorem describes the first order asymptotic profile of W in H2(2), if one
assumes that the initial data W0 are small enough in the weighted Sobolev space H2(2).

Theorem 1.1 Let θ be a constant such that 0 < θ < 1. There exist two positive constants
γ0 = γ0(α1, β) and T0 = T0(α1) ≥ 1 such that, for all W0 ∈ H2(2) satisfying the condition

‖W0‖2
H1 +

α1

T
‖∆W0‖2

L2 +
∥∥|X|2W0

∥∥2

L2 +
α2

1

T 2

∥∥|X|2 ∆W0

∥∥2

L2 ≤ γ (1− θ)6 , (1.8)

for some T ≥ T0 and 0 < γ ≤ γ0,

there exist a unique global solution W ∈ C0 ([τ0,+∞) , H2(2)) of (1.6) and a positive
constant C = C(α1, β, θ) such that, for all τ ≥ τ0,∥∥(1− α1e

−τ∆
)

(W (τ)− ηG)
∥∥2

L2(2)
≤ Cγe−θτ , (1.9)

where η =

∫
R2

W0(X)dX, τ0 = log(T ) and the parameters α1 and β are fixed and given

in (1.1).

Remark 1.1 The smallness assumption (1.8) is not optimal. By working harder, it is
possible to get γ (1− θ)p with p < 6 in the right hand side of the inequality.
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Remark 1.2 Notice that Theorem 1.1 establishes an improvement of [47, Theorem 1.1]
concerning the first order asymptotics of the second grade fluids equations. Indeed, the
above theorem holds also with β = 0 and consequently describes the first order asymptotic
profiles of the solutions of the second grade fluids equation. The improvement comes from
the fact that one can choose θ as close as wanted to 1, which is the optimal rate. In [47],
the constant θ can not be bigger than 1

2
.

Theorem 1.1 implies the following result in the unscaled variables.

Corollary 1.1 Let θ be a constant such that 0 < θ < 1. There exist two positive
constants γ0 = γ0(α1, β) and T0 = T0(α1, β) ≥ 1 such that, for all w0 ∈ H2(2) satisfying
the condition

T ‖w0‖2
L2 +T 2 ‖∇w0‖2

L2 +
1

T

∥∥|x|2w0

∥∥2

L2 +α1T
3 ‖∆w0‖2

L2 +
α2

1

T

∥∥|x|2 ∆w0

∥∥2

L2 ≤ γ (1− θ)6 ,

(1.10)
for some T ≥ T0 and 0 < γ ≤ γ0,

there exists a unique global solution w ∈ C0 ([0,+∞) , H2(2)) of (1.2) such that, for all
1 ≤ p ≤ 2, there exists a positive constant C = C(α1, β, θ) such that, for all t ≥ 0,

‖(1− α1∆) (w(t)− ηΩ(t))‖Lp ≤ Cγ (t+ T )−1+ 1
p
− θ

2 ,

and there exists a positive constant C = C(α1, β, θ) such that, for all t ≥ 0,∥∥|x|2 (1− α1∆) (w(t)− ηΩ(t))
∥∥
L2 ≤ Cγ (t+ T )

1
2
− θ

2 ,

where η =

∫
R2

w0(x)dx and Ω(t, x) =
1

t+ T
G

(
x√
t+ T

)
.

Theorem 1.1 describes the asymptotic behaviour of the solutions of (1.6) in H2(2)
at the first order. Since the solutions of Navier-Stokes equations converge also to the
Oseen vortex sheet, we can say that the fluids of third grade behave asymptotically like
Newtonian fluids. Notice that the functions space H2(2) is suitable for the first order
asymptotics because it ”pushes” the continuous spectrum of L far enough to get 0 as an
isolated eigenvalue. If we had to describe the asymptotics of (1.6) at the second order,
we should work in a space where L has at least two isolated eigenvalue. Due to the
forms of σc and σd, the second order asymptotics must be studied in functions space
with polynomial weight of degree at least 3, in order to get the two isolated eigenvalues
0 and −1

2
.
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Notice also that as the system (1.2) and our change of variables preserve the total mass,
we have, for all τ ≥ τ0 and t ≥ 0,

η =

∫
R2

w0(x)dx =

∫
R2

w(t, x)dx =

∫
R2

W0(X)dX =

∫
R2

W (τ,X)dX.

The plan of this article is as follows. In Section 2, we recall classical results concerning
the Biot-Savart law and give several technical lemmas. In Section 3, we introduce a
regularized system, which is close to (1.6) and depends on a small parameter ε > 0.
Actually, we add the regularizing term ε∆2W to the system (1.6) and show the existence
of unique regular solutions Wε to this new system. In Section 4, using energy estimates
in various functions spaces, we show that Wε satisfies the inequality (1.9) of Theorem
1.1, and thus tends to the Oseen vortex sheet G when τ goes to infinity. In Section 5, we
let ε go to 0 and show that Wε tends in a sense to a solution W of (1.6). Additionally,
this solution satisfies the inequality (1.9) of Theorem 1.1 and consequently tends also to
the Oseen vortex sheet. Finally, we establish the uniqueness of W , which enables us to
say that every solution of (1.6) satisfying the assumption (1.8) converges to the Oseen
Vortex sheet when τ goes to infinity.

2 Biot-Savart law and auxiliary lemmas

In this section, we state several technical lemmas which are useful to prove Theorem
1.1. These lemmas concern the Biot-Savart and inequalities involving weighted Lebesgue
norms. The first one is needed when making energy estimates in weighted Sobolev spaces.
In what follows, we use the notation

‖u‖ = ‖u‖L2 ,

and C denotes a positive constant which can depend on the fixed constants α1 and β.

The first lemma will be useful in Section 4 to obtain estimates in Sobolev spaces of
negative order. We define, for s ∈ R, the operator (−∆)s, given by

(−∆)s u = F̄
(
|ξ|2s û

)
,

where û (also denoted F(u)) is the Fourier transform of u, given by

û(ξ) =

∫
R2

u(x)e−ix.ξdx,
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and F̄ denotes the inverse Fourier transform

F̄(v)(x) =
1

(2π)2

∫
R2

v(ξ)eix.ξdξ.

Lemma 2.1 Let s be a positive real number such that 3
4
< s < 1, then we have the

following two inequalities.

1. Let g ∈ L2(1). Then (−∆)−s∇g ∈ L2(R2) and there exists C > 0 independent of g
and s such that ∥∥(−∆)−s∇g

∥∥ ≤ C

(1− s)3/2
‖g‖L2(1) . (2.1)

2. Let g ∈ L2(2) such that

∫
R2

g(x)dx = 0. Then (−∆)−s g ∈ L2(R2) and there exists

C > 0 independent of g and s such that∥∥(−∆)−s g
∥∥
L2 ≤

C

(1− s)3/2
‖g‖L2(2) . (2.2)

Proof : We start by proving the inequality (2.1). For j ∈ {1, 2}, using Fourier variables,
one has ∥∥(−∆)−s ∂jg

∥∥2

L2 ≤ C

∫
|ξ|≤1

1

|ξ|4s−2 |ĝ|
2 dξ + ‖g‖2

L2

≤ C

(∫
|ξ|≤1

1

|ξ|2s
dξ

) 2s−1
s
(∫
|ξ|≤1

|ĝ|
2s
1−s dξ

) 1−s
s

+ ‖g‖2
L2

≤ C

(1− s)
‖ĝ‖2

L
2s
1−s

+ ‖g‖2
L2 .

We now use the continuous injection of H1(R2) into L
2s
1−s (R2). Looking at the compu-

tations of [15, p. 723-724], one can see that there exists a constant C > 0 such that

‖u‖Lp ≤ Cp ‖u‖H1 , for all u ∈ H1(R2) and 2 ≤ p < +∞. (2.3)

Notice that Cp is not the optimal constant in the previous inequality. Using the inequal-
ity (2.3), one has ∥∥(−∆)−s ∂jg

∥∥2

L2 ≤
C

(1− s)3 ‖ĝ‖
2
H1 + ‖g‖2

L2

≤ C

(1− s)3 ‖g‖
2
L2(1) .
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We now prove the inequality (2.2). Since

∫
R2

f(x)dx = 0, using Fourier variables, we get

∥∥(−∆)−s g
∥∥2

L2 = (2π)2

∫
R2

1

|ξ|4s
|ĝ(ξ)|2 dξ

≤ (2π)2

∫
|ξ|≤1

1

|ξ|4s
|ĝ(ξ)|2 dξ + ‖g‖2

L2

≤ (2π)2

∫
|ξ|≤1

1

|ξ|4s

∣∣∣∣∫ 1

0

ξ.∇ĝ(σξ)dσ

∣∣∣∣2 dξ + ‖g‖2
L2

≤ C

∫
|ξ|≤1

1

|ξ|4s−2

∣∣∣∣∫ 1

0

|∇ĝ(σξ)| dσ
∣∣∣∣2 dξ + ‖g‖2

L2 .

Cauchy-Schwarz inequality and Fubini’s theorem give∥∥(−∆)−s g
∥∥2

L2 ≤ C

∫ 1

0

∫
|ξ|≤1

1

|ξ|4s−2 |∇ĝ(σξ)|2 dξdσ + ‖g‖2
L2 .

Using Hölder inequality, we get

∥∥(−∆)−s g
∥∥2

L2 ≤ C

∫ 1

0

(∫
|ξ|≤1

1

|ξ|4−
2
s

dξ

)s(∫
|ξ|≤1

|∇ĝ(σξ)|
2

1−s dξ

)1−s

dσ + ‖g‖2
L2

≤ C

(
s

1− s

)s ∫ 1

0

(∫
|ξ|≤1

|∇ĝ(σξ)|
2

1−s dξ

)1−s

dσ + ‖g‖2
L2 .

The change of variables ζ = σξ yield∥∥(−∆)−s g
∥∥2

L2 ≤ C

(
s

1− s

)s ∫ 1

0

(∫
|ζ|≤σ

1

σ2
|∇ĝ(ζ)|

2
1−s dζ

)1−s

dσ + ‖g‖2
L2

≤ C

(
s

1− s

)s(
1

2s− 1

)
‖∇ĝ‖2

L
2

1−s
+ ‖g‖2

L2 .

Finally, we use again the inequality (2.3) and obtain∥∥(−∆)−s g
∥∥2

L2 ≤ C

(
s

1− s

)s(
1

2s− 1

)(
2

1− s

)2

‖ĝ‖2
H2 + ‖g‖2

L2

≤ C

(1− s)3 ‖g‖
2
L2(2) ,

which concludes the proof of this lemma.
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�

Lemma 2.2 1. Let 1 ≤ p < +∞ and f ∈ Lp(R2) such that |x|2 f ∈ Lp(R2), then
|x| f ∈ Lp(R2) and the following inequality holds :

‖|x| f‖Lp ≤ ‖f‖
1/2
Lp

∥∥|x|2 f∥∥1/2

Lp
. (2.4)

2. Let f ∈ H2(2), there exists C > 0 such that∥∥|x|2∇2f
∥∥ ≤ C

(
‖f‖+ ‖|x| ∇f‖+

∥∥|x|2 ∆f
∥∥) . (2.5)

3. Let f ∈ H2(2), then |x|2∇f ∈ L4(R2) and there exists C > 0 such that∥∥|x|2∇f∥∥
L4 ≤ C

∥∥|x|2∇f∥∥1/2
(
‖f‖1/2 + ‖|x| ∇f‖1/2 +

∥∥|x|2 ∆f
∥∥1/2

)
. (2.6)

Proof: The inequality (2.4) comes directly from Hölder’s inequality. To prove the
inequality (2.5), we show by a simple calculation that, for every j, k ∈ {1, 2},∥∥|x|2 ∂j∂kf∥∥2 ≤ C

(
‖f‖2 + ‖|x| ∇f‖2 +

∥∥|x|2 ∆f
∥∥2
)
. (2.7)

Indeed, we notice that

|x|2 ∂j∂kf = ∂j∂k
(
|x|2 f

)
− 2δj,kf − 2xj∂kf − 2xk∂jf, (2.8)

and furthermore∥∥∂j∂k (|x|2 f)∥∥2 ≤ C
∥∥∆
(
|x|2 f

)∥∥2 ≤ C
(
‖f‖2 + ‖|x| ∇f‖2 +

∥∥|x|2 ∆f
∥∥2
)
. (2.9)

Combining (2.8) and (2.9) we get the inequality (2.7).

To obtain (2.6), we use Gagliardo-Niremberg’s inequality as follows:∥∥|x|2∇f∥∥
L4 ≤ C

∥∥|x|2∇f∥∥1/2 ∥∥∇ (|x|2∇f)∥∥1/2

≤ C
∥∥|x|2∇f∥∥1/2

(
‖|x| ∇f‖1/2 +

∥∥|x|2∇2f
∥∥1/2

)
,

and consequently inequality (2.5) implies (2.6).

�

101



Chapitre 4. Fluides de grade 3

Biot-Savart law: Let w be a real function defined on R2. The Bio-Savart law is a way
to build a divergence free vector field u such that curl u = w. It is given by

u(x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
w(y)dy, (2.10)

where (x1, x2)⊥ = (−x2, x1).

The next two lemmas give estimates on the divergence free vector field u obtained from
w via the Bio-Savart law.

Lemma 2.3 Let u be the divergence free vector field given by (2.10).

1. Assume that 1 < p < 2 < q <∞ and 1
q

= 1
p
− 1

2
. If w ∈ Lp(R2), then u ∈ Lq(R2)2

and there exists C > 0 such that

‖u‖Lq ≤ C ‖w‖Lp . (2.11)

2. Assume that 1 ≤ p < 2 < q ≤ ∞, and define α ∈ (0, 1) by the relation 1
2

= α
p

+ 1−α
q

.

If w ∈ Lp(R2) ∩ Lq(R2), then u ∈ L∞(R2)2 and there exists C > 0 such that

‖u‖L∞ ≤ C ‖w‖αLp ‖w‖
1−α
Lq . (2.12)

3. Assume that 1 < p < ∞. If w ∈ Lp(R2), then ∇u ∈ Lp(R2)4 and there exists
C > 0 such that

‖∇u‖Lp ≤ C ‖w‖Lp . (2.13)

In addition, div u = 0 and curl u = w.

We refer to [36] for the proof of this lemma.

Lemma 2.4 Let u be the divergence free vector field given by (2.10).

1. If w ∈ L2(2), then u ∈ L4(R2)2 and there exists C > 0 such that

‖u‖L4 ≤ C ‖w‖L2(2) . (2.14)

2. If w ∈ L2(2) ∩H1(R2), then u ∈ L∞(R2)2 and there exists C > 0 such that

‖u‖L∞ ≤ C ‖w‖1/2

H1 ‖w‖1/2

L2(2) . (2.15)
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3. Let s ∈ R. If (−∆)
s−1
2 w ∈ L2(R2) for s ∈ R, then (−∆)s/2 u ∈ L2(R2)2 and

there exists C > 0 such that∥∥∥(−∆)s/2 u
∥∥∥ ≤ C

∥∥∥(−∆)
s−1
2 w

∥∥∥ . (2.16)

4. Let s ∈ R. If w ∈ Hs(R2), then ∇u ∈ Hs(R2)4 and there exists C > 0 such that

‖∇u‖Hs ≤ C ‖w‖Hs . (2.17)

The proof of the two first inequalities are shown in [47]. The two other inequalities are
obvious when using Fourier variables. The next lemma is useful to get energy estimates
in weighted Sobolev spaces for solutions of (1.6). For a vector field u, we set

|∇2u|2 =
2∑

i,j,k=1

(∂j∂kui)
2 and |∇3u|2 =

2∑
i,j,k,l=1

(∂j∂k∂lui)
2.

Lemma 2.5 Let w ∈ L2(R2) and u be the divergence free vector given by (2.10).

1. If w ∈ H1(1), then ∇2u ∈ L2(1) and there exists C > 0 such that∥∥∇2u
∥∥
L2(1)

≤ C (‖w‖H1 + ‖|x| ∇w‖) . (2.18)

2. If w ∈ H2(1), then |x| ∇2u ∈ L4(R2) and there exists C > 0 such that∥∥|x| ∇2u
∥∥
L4 ≤ C (‖w‖+ ‖|x| ∇w‖)1/2 (‖∇w‖+ ‖|x|∆w‖)1/2 . (2.19)

3. If w ∈ H2(2), then u ∈ |x|2∇3u ∈ L2(R2) and there exists C > 0 such that∥∥|x|2∇3u
∥∥ ≤ C

(
‖w‖+ ‖|x| ∇w‖+

∥∥|x|2 ∆w
∥∥) . (2.20)

4. If w ∈ L2(1) and

∫
R2

w(x)dx = 0, then u ∈ H1(1) and there exists a positive constant

C such that
‖u‖+ ‖|x| ∇u‖ ≤ C ‖|x|w‖ . (2.21)

5. If w ∈ H1(2) and

∫
R2

w(x)dx = 0, then |x|2∇2u ∈ L2(R2) and there exists a positive

constant C such that ∥∥|x|2∇2u
∥∥ ≤ C ‖w‖H1(2) . (2.22)
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Proof: Let us show the inequality (2.18). Let w belong to H1(1) and u be the divergence
free vector field obtained via the Biot-Savart law. From the inequality 2.13 of Lemma
2.3, we obtain ∥∥∇2u

∥∥
L2 ≤ C ‖∇w‖L2 . (2.23)

Since the divergence of u vanishes and since we are in dimension 2, it is enough to show
the inequality ∥∥xi∂2

juk
∥∥ ≤ C (‖w‖+ ‖|x| ∇w‖) , (2.24)

where i, j, k ∈ {1, 2}.

We omit k that doesn’t appear in the following calculations. One has

∥∥|xi| ∂2
ju
∥∥2

= (2π)2

∫
R2

∣∣∂i (ξ2
j û
)∣∣2 dξ

≤ C

∫
R2

|ξjû|2 dξ + C

∫
R2

∣∣ξ2
j ∂iû

∣∣2 dξ
≤ C ‖∇u‖2 + C

∫
R2

|F (∆ (xiu))|2 dξ

≤ C ‖∇u‖2 + C ‖|x|∆u‖2 .

Using the inequality (2.13) of Lemma 2.3 with p = 2 and remarking that ∂1w = ∆u2 and
∂2w = ∆u1, we obtain (2.24). Combining it with the inequality (2.23), we get (2.18).

The inequality (2.19) is a direct consequence of (2.18) and Gagliardo-Niremberg inequal-
ity. Indeed, one has∥∥xi∂2

ju
∥∥
L4 ≤ C

∥∥xi∂2
ju
∥∥1/2 ∥∥∇ (xi∂2

ju
)∥∥1/2

≤ C
∥∥xi∂2

ju
∥∥1/2 (∥∥∂2

ju
∥∥+

∥∥xi∂2
j∇u

∥∥)1/2
.

Furthermore, the inequalities (2.13) and (2.18) yield∥∥xi∂2
ju
∥∥
L4 ≤ C (‖w‖+ ‖|x| ∇w‖)1/2 (‖∇w‖+ ‖xi∇2w‖)1/2

.

Making the same computations than the ones we made to establish (2.18), we obtain

‖xi∇2w‖ ≤ C (‖∇w‖+ ‖|x|∆w‖),
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which gives ∥∥xi∂2
ju
∥∥
L4 ≤ C (‖w‖+ ‖|x| ∇w‖)1/2 (‖∇w‖+ ‖|x|∆w‖)1/2 ,

and the inequality (2.19) comes when summing for i ∈ {1, 2}.

In order to get the inequality (2.20), it suffices to obtain it for |x|2 ∂j∂2
ku, where j, k ∈

{1, 2}. One has∥∥|x|2 ∂j∂2
ku
∥∥2

= (2π)2

∫
R2

∣∣∆ (ξjξ2
kû
)∣∣2 dξ

≤ C

(∫
R2

∣∣|ξ|2 (ξj + ξk) ∆û
∣∣2 dξ +

∫
R2

|(ξj + ξk) û|2 dξ +

∫
R2

∣∣|ξ|2∇û∣∣2 dξ)
≤ C

(∥∥∇∆
(
|x|2 u

)∥∥2
+ ‖∇u‖2 +

2∑
i=1

‖∆ (xiu)‖2

)
≤ C

(∥∥|x|2∇∆u
∥∥2

+ ‖∇u‖2 + ‖|x|∆u‖2
)

≤ C
(∥∥|x|2∇2w

∥∥2
+ ‖w‖2 + ‖|x| ∇w‖2

)
.

Applying the inequality (2.5), we get (2.20). The proof of the inequality (2.21) is made
in two steps. It is shown in [47] that

‖u‖ ≤ C ‖|x|w‖ . (2.25)

To finish the proof of the inequality (2.21), we notice that

‖|x|w‖2 = ‖|x| ∂1u2‖2 + ‖|x| ∂2u1‖2 − 2

∫
R2

|x|2 ∂1u2∂2u1dx. (2.26)

Integrating by parts, one gets

−2

∫
R2

|x|2 ∂1u2∂2u1dx =

∫
R2

|x|2 u2∂1∂2u1dx+ 2

∫
R2

x1u2∂2u1dx

+

∫
R2

|x|2 ∂1∂2u2u1dx+ 2

∫
R2

x2∂1u2u1dx.

Using the divergence free property of u and integrating by parts, we have
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−2

∫
R2

|x|2 ∂1u2∂2u1dx = ‖|x| ∂1u1‖2 +‖|x| ∂2u2‖2 + 4

∫
R2

x2u2∂2u2dx+ 4

∫
R2

x1∂1u1u1dx.

Finally, integrating again by parts, we get

−2

∫
R2

|x|2 ∂1u2∂2u1dx = ‖|x| ∂1u1‖2 + ‖|x| ∂2u2‖2 − 2 ‖u‖2 .

Thus, going back to (2.26), one has

‖|x| ∇u‖2 = ‖|x|w‖2 + 2 ‖u‖2 .

Combining this equality with (2.25), we get inequality (2.21). The inequality (2.22) is
obtained in the same way.

�

3 Approximate solutions

In this section, we introduce a ”regularized” system of equations, whose solutions are
more regular than the solutions of (1.2). Actually, this new system is very close to (1.2),
and is obtained by adding the small term ε∆2w to (1.2). Here, the positive constant ε
is supposed to be small and is devoted to tend to 0. Adding this term, we are able to
prove the existence of solutions to the regularized system via a semi-group method. The
presence of the term u.∇∆w would not let us obtain solutions to (1.2) by a semi-group
method because of the too high degree of derivatives in this term compared to the linear
term ∆w. We introduce now the following regularized system of equations:

∂t (wε − α1∆wε) + ε∆2wε −∆wε + uε∇ (wε − α1∆wε)

−βdiv
(
|Aε|2∇wε

)
− βdiv

(
∇
(
|Aε|2

)
∧ Aε

)
= 0,

wε|t=0 = w0 ∈ H2(2),
(3.1)

where Aε = ∇uε + (∇uε)t.

The aim of this section is to prove the following theorem.

Theorem 3.1 Let w0 ∈ H2(2). For all ε > 0, there exists tε > 0 and a unique solution
wε of the system (3.1) such that

wε ∈ C1 ((0, tε) , H
1(2)) ∩ C0 ([0, tε) , H

2(2)) ∩ C0 ((0, tε) , H
3(2)).
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Proof: First of all, we introduce the change of variable x̃ = γx, where γ is a positive
constant that is close to 0 and will be made more precise later. This is made in order
to not have to consider restrictions on the size of α1. We note vε(x) = wε(x/γ). The
system (3.1) provides a new system in vε, that we will solve in H2(2).

∂t (vε − α1γ
2∆vε) + εγ4∆2vε − γ2∆vε + γuε.∇ (vε − α1γ

2∆vε)

−βγ∇
(
|Aε|2

)
.∇vε − βγ2 |Aε|2 ∆vε − βdiv

(
∇
(
|Aε|2

)
∧ Aε

)
= 0,

vε|t=0 = w0(x/γ) ∈ H2(2).
(3.2)

Although there are terms involving uε in this system, it is actually autonomous. In fact,
one recover wε from vε and then recover uε via the Biot-Savart law (2.10) applied to wε.
We set

zε(x) = q(x)vε(x),

where q(x) =
(
1 + |x|2

)
.

To show the existence of a solution in H2(2) to the system (3.2), we are reduced to show
that there exists a solution in H2(R2) of the system

∂t (zε − γ2α1∆zε − α1γ
2q∆q−1zε − 2γ2α1q∇q−1.∇zε) + εγ4∆2zε = F (zε) ,

zε|t=0 = qw0(x/γ) ∈ H2(R2),
(3.3)

where

F (zε) = −εγ4q∆2 (q−1zε) + γ2q∆ (q−1zε)− γquε∇ (q−1zε − γ2α1∆ (q−1zε))

+βγq∇
(
|Aε|2

)
.∇ (q−1zε) + βγ2q |Aε|2 ∆ (q−1zε) + βqdiv

(
∇
(
|Aε|2

)
∧ Aε

)
.

(3.4)
We define the two linear operators B : D(B) = H1(R2) → H−1(R2) and D : D(D) =
L2(R2)→ H−1(R2) as follows:

B(z) = α1γ
2∆z + α1γ

2q∆q−1z,

D(z) = 2α1γ
2q∇q−1.∇z.

Via Lax-Milgram theorem, it is easy to show that A = (I −B −D) is invertible. We
define the bilinear form on H1(R2)

a(u, v) = (u, v)L2 + α1γ
2 (∇u,∇v)L2 − α1γ

2
(
q∆q−1u, v

)
L2 − 2α1γ

2
(
q∇q−1.∇u, v

)
L2 .
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We notice that a is obviously coninuous on H1(R2)×H1(R2). Using the fact that q∆q−1

and q∇q−1 are bounded on R2, one has, for all u, v ∈ H1(R2),

|a(u, v)| ≤ C(α1, γ) ‖u‖H1 ‖v‖H1 ,

where C(α1, γ) is a positive constant depending on α1 and γ.

We show now that a is coercive. Via an integration by parts, we get

a(u, u) = ‖u‖2 + α1γ
2 ‖∇u‖2 − α1γ

2

∫
R2

q∆q−1 |u|2 dx+ α1γ
2

∫
R2

div
(
q∇q−1

)
|u|2 dx.

Due to the boundedness of q∆q−1 and div (q∇q−1), there exists C > 0 such that

a(u, u) ≥
(
1− α1γ

2C
)
‖u‖2 + α1γ

2 ‖∇u‖2 .

If we take γ sufficiently small, the bilinear form a is both continuous and coercive on
H1(R2). From the Lax-Milgram theorem, we conclude that for all f ∈ H−1(R2) there
exists u ∈ H1(R2) such that

a(u, v) = 〈f, v〉H−1×H1 for all v ∈ H1(R2), (3.5)

and consequently (I −B −D)−1 is defined from H−1(R2) to H1(R2). We define A :
D(A) = H3(R2)→ H1(R2) the linear differential operator on H1(R2)

A = εγ4 (I −B −D)−1 ∆2.

We rewrite the system (3.3) as follows:

∂tzε + A (zε) = F̃ (zε) ,
zε|t=0 = qw0(x/γ) ∈ H2(R2),

(3.6)

where F̃ (zε) = (I −B −D)−1 F (zε).

To finish the proof of this theorem, we show that the operator A is sectorial on H1(R2),
which is equivalent to the fact that −A generates an analytic semigroup on H1(R2).

Then, we check that F̃ is locally Lipschitz from bounded sets of a Sobolev space Hs(R2)
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to H1(R2), where 1 ≤ s < 3. By a theorem that one can found in [58], we get theorem
5.1. A small computation leads to

A = εγ4 (I −B)−1 ∆2 − εγ4 (I −B −D)−1D (I −B)−1 ∆2

= I + εγ4 (I −B)−1 ∆2 − I − εγ4 (I −B −D)−1D (I −B)−1 ∆2

= J +R,

where

J = I + εγ4 (I −B)−1 ∆2,

R = −I − εγ4 (I −B −D)−1D (I −B)−1 ∆2.

Using the same method as the one used to invert (I −B −D), one can invert (I −B)
and define (I −B)−1 from H−1(R2) to H1(R2). Consequently, J is well defined from
H3(R2) to H1(R2). In the remaining of this proof, we will show that −J generates an
analytic semi-group on H1(R2) and then show that R satisfies the conditions of [58,
Theorem 2.1 p. 81]. According to this result, it implies that −A generates an analytic
semi-group on H1(R2). In order to show that J is sectorial on H1(R2), we associate it
to a continuous and coercive bilinear form on H2(R2)×H2(R2). To this end, we define
a H1-scalar product which is suitable to J . Let us define, for u, v ∈ H1(R2), the bilinear
form on H1 given by

〈u, v〉H1 = ((1− α1γ
2q∆q−1)u, v)L2 + α1γ

2 (∇u,∇v)L2 .

If γ is sufficiently small compared to α1, then 〈., .〉H1 is a scalar product on H1(R2).
Furthermore, for u ∈ H2(R2) and v ∈ H1(R2), one has

〈u, v〉H1 = ((I −B)u, v)L2 .

We define, using this scalar product, the bilinear form j on H2(R2)×H2(R2) associated
to J by the formula

j(u, v) = 〈u, v〉H1 + εγ4 (∆u,∆v)L2 .

A short computation shows that, for u ∈ H3(R2) and v ∈ H2(R2), one has

j(u, v) = 〈Ju, v〉H1 . (3.7)

Furthermore, if γ is small enough, using the definition of 〈., .〉H1 and j, we see that there
exists C(α1, ε, γ) > 0 such that, for all u, v ∈ H2(R2),

j(u, v) ≤ C(α1, ε, γ) ‖u‖H2 ‖v‖H2 .
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Besides, it is simple to check that, if γ is mall enough, there exists C(α1, γ, ε) > 0 such
that, for all u ∈ H2(R2),

j(u, u) ≥ C(α1, γ, ε) ‖u‖2
H2 .

The bilinear form j is thus coninuous and coercive on H2(R2) and the operator J is
sectorial on H1(R2). Additionally, The linear operator R is defined from H2(R2) to
H1(R2), and one can check that there exists C(α1, γ, ε) > 0 such that, for all u ∈ H3(R2),

‖Ru‖H1 ≤ C(α1, γ, ε) ‖u‖H2 . (3.8)

Applying the equality (3.7) to u ∈ H3(R2), we get

j(u, u) = 〈Ju, u〉H1 , for all u ∈ H3(R2).

Because j is coercive on H2, we obtain, via Cauchy-Schwartz inequality,

‖u‖2
H2 ≤ C(α1, γ, ε) ‖Ju‖H1 ‖u‖H1 , for all u ∈ H3(R2).

Going back to (3.8), the following property holds

‖Ru‖2
H1 ≤ C(α1, γ, ε) ‖Ju‖H1 ‖u‖H1 , for all u ∈ H3(R2).

In particular, the Young inequality yields, for all δ > 0,

‖Ru‖2
H1 ≤ δ ‖Ju‖2

H1 + C(α1, γ, ε) ‖u‖2
H1 , for all u ∈ H3(R2).

By a classical result that we can find in [46], −A is thus the generator of an analytic
semigroup on H1(R2).

Lastly, it is easy to check that F̃ is Lipschitzian from the bounded sets of H2(R2)
into H1(R2). Combining several results from [46, chapter 3] and [58, section 6.3], we
conclude that there exists tε > 0 and a unique solution zε ∈ C1 ((0, tε) , H

1(R2)) ∩
C0 ([0, tε) , H

2(R2))∩C0 ((0, tε) , H
3(R2)) of the system (3.3). Thus, there exists a unique

solution wε ∈ C1 ((0, tε) , H
1(2)) ∩ C0 ([0, tε) , H

2(2)) ∩ C0 ((0, tε) , H
3(2)) to the system

(3.1).

�
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4 Energy estimates

In this section, we perform energy estimates on the regularized solutions of the third
grade fluids equations in the weighted space H2(2). These estimates are independent of
ε and will allow us to pass to the limit when ε tends to 0. Thus, we consider the solution
wε(t, x) of (3.1). Let T , T ≥ 1 be a fixed positive constant and τ0 = log(T ). We define
Wε(τ,X), the vorticity obtained from wε by the change of variables (1.4) and (1.5). A
short computation shows that Wε satisfies the system

∂τ
(
Wε − α1e

−τ∆Wε

)
+ εe−τ∆2Wε − L(Wε) + Uε.∇

(
Wε − α1e

−τ∆Wε

)
+ α1e

−τ∆Wε

+α1e
−τX

2
.∇∆Wε − βe−2τdiv

(
|Aε|2∇Wε

)
− βe−2τdiv

(
∇
(
|Aε|2

)
∧ Aε

)
= 0,

div Uε = 0,
Wε|τ=τ0 = W0,

(4.1)
where τ0 = log(T ), Uε is obtained from Wε via the Biot-Savart law (2.10), Aε = ∇Uε +
(∇Uε)t and we recall that

L(Wε) = ∆Wε +Wε + X
2
.∇Wε.

By theorem 3.1, it is clear that there exists τε > τ0 such that

Wε ∈ C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)) .

We assume also that the initial datum W0 ∈ H2(2) satisfies the assumption (1.8) of The-

orem 1.1, for some γ > 0. Let η =

∫
R2

W0(X)dX, we write the following decompositions

Wε = ηG+ fε,
Uε = ηV +Kε,

(4.2)

where G is the Oseen vortex sheet defined by (1.3) and V is the divergence free vector
field obtained from G via the Biot-Savart law (2.10). Using the fact that L(G) = 0, one
has the equality

∂τ (fε − α1e
−τ∆fε) + εe−τ∆2fε − L(fε) +Kε.∇ (fε − α1e

−τ∆fε)

+ηV.∇ (fε − α1e
−τ∆fε) + ηKε.∇ (G− α1e

−τ∆G) + α1e
−τ∆fε

+α1e
−τ X

2
.∇∆fε + ηα1e

−τ∆G+ ηα1e
−τ X

2
.∇∆G+ ηεe−τ∆2G

−βe−2τdiv
(
|Aε|2∇fε + η |Aε|2∇G

)
− βe−2τdiv

(
∇
(
|Aε|2

)
∧ Aε

)
= 0.

(4.3)
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Let M = M(α1, β) > 2 be a positive constant which will be made more precise later.
Let τ ∗ε ∈ (τ0, τε] be the largest time (depending on M) such that, for all τ ∈ [τ0, τ

∗
ε ), the

following inequality holds

‖Wε(τ)‖2
H1 + α1e

−τ ‖∆Wε(τ)‖2
L2 +

∥∥|X|2Wε(τ)
∥∥2

L2

+α2
1e
−2τ
∥∥|X|2 ∆Wε(τ)

∥∥2

L2 ≤Mγ (1− θ)6 .
(4.4)

To simplify the notations in the following computations, we assume that 0 < γ ≤ 1 and

we take T sufficiently large so that
α1

T
= α1e

−τ0 ≤ 1.

Since Wε ∈ C0 ([τ0, τε) , H
2(2)) and the condition (1.8) holds, τ ∗ε is well defined. Further-

more, there exists a positive constant C independent of W0 such that, for all τ ∈ [τ0, τ
∗
ε ),

η2+‖fε‖2
H1+α1e

−τ ‖∆fε‖2
L2+

∥∥|X|2 fε∥∥2

L2+α2
1e
−2τ
∥∥|X|2 ∆fε

∥∥2

L2 ≤ CMγ (1− θ)6 . (4.5)

Indeed, using Cauchy-Schwartz inequality, we get

η =

∫
R2

W0(X)dX

=

∫
R2

1 + |X|2

1 + |X|2
W0(X)dX

≤

(∫
R2

1(
1 + |X|2

)2dX

)1/2(∫
R2

(
1 + |X|2

)2 |W0(X)|2 dX
)1/2

≤ C ‖W0‖L2(2) .

Considering the decomposition (4.2) and the smoothness of G, we obtain the inequality
(4.5).

To simplify the notations, in this section we write f instead of fε, W instead of Wε, U
instead of Uε and K instead of Kε.

The aim of this section is to show that the inequality (1.9) of Theorem 1.1 holds
for the regularized solutions of the system (4.1), provided that the condition (1.8) is
satisfied by W0. To this end, we consider a fixed constant θ such that 0 < θ < 1 which
is twice the rate of convergence of W to ηG in H2(2). In fact, we will show that, under

the assumption (1.8), the decaying of f to 0 in H2(2) is equivalent to e−
θτ
2 . As it is

explained in the introduction of this paper, the spectrum of L in L2(m) does not allow
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the rate of convergence to be better than e−
τ
2 .

In order to get the inequality (1.9), we construct in this section an energy functional
E = E(τ) such that, for every τ ∈ [τ0, τ

∗
ε ),

E(τ) ∼ ‖f(τ)‖2
H2(2),

and there exists a positive constant C = C(α1, β, θ, γ) such that, for all τ ∈ [τ0, τ
∗
ε ),

∂τE(τ) + θE(τ) ≤ Ce−τ . (4.6)

This inequality will enable us to show that τ ∗ε = +∞ and obtain, by the application of
Gronwall Lemma,

E(τ) ≤ Ce−θτ , for all τ ∈ [τ0,+∞).

This functional is built as the sum of several intermediate energy functionals in various
functions spaces, for which we perform convenient estimates.

4.1 Estimates in Ḣ−
1+θ
2

We start by performing an estimate of the solution of (4.3) in the homogeneous

Sobolev space Ḣ−
1+θ
2 (R2). Combined with the other estimates, it will give us an estimate

in the classical Sobolev space H−
1+θ
2 (R2). The motivation to do this comes from the fact

that the H1−estimate that we will perform later (see Lemma 4.3) makes the term ‖u‖2
L2

appear on the right hand side of our H1−energy inequality. In order to absorb this
term, we look for an estimate in a Sobolev space of negative order. To this end, due

to Lemma 2.1 and the fact that

∫
R2

f(X)dX = 0, for 3
4
≤ s < 1, one can apply the

operator (−∆)−s to the equality (4.3) and take the inner product of it with (−∆)−s f .
Through the computations that we will perform below, one can see that, in order to get
the estimate (4.6), we have to choose at least s = 1+θ

2
. Actually, since we have to absorb

terms coming from the non-linear part of (4.3), it is more convenient to take 1+θ
2
< s < 1,

for instance s = 3+θ
4

. In [47], the considered operator was (−∆)−3/4, which implied the
restriction 0 < θ < 1

2
.

The next lemma summarizes the computations needed when applying (−∆)−s to (4.3)
and taking the L2-scalar product of it with (−∆)−s f .
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Lemma 4.1 Let f ∈ H3(2) such that

∫
R2

f(X)dX = 0, then, for all 1
2
≤ s < 1 the three

following equalities hold.(
(−∆)−s

(
X
2
.∇f

)
, (−∆)−s f

)
L2 = −

(
s+ 1

2

) ∥∥(−∆)−s f
∥∥2

L2 ,

(
(−∆)−s (L(f)) , (−∆)−s f

)
L2 = −

∥∥∥(−∆)
1
2
−s f

∥∥∥2

L2
−
(
s− 1

2

) ∥∥(−∆)−s f
∥∥2

L2 ,

(
(−∆)−s

(
X
2
.∇∆f

)
, (−∆)−s f

)
L2 = (s+ 1)

∥∥∥(−∆)
1
2
−s f

∥∥∥2

L2
.

(4.7)

Proof: Using Fourier variables, it is easy to see that

X̂
2
.∇f = −f̂ − ξ

2
.∇f̂ , and X̂

2
.∇∆f = 2 |ξ|2 f̂ + ξ|ξ|2

2
∇f̂ .

The proof of this lemma is then obtained through the Plancherel formula and direct
computations.

�

In order to obtain a priori estimates of f in Ḣ−
1+θ
2 (R2), we define the functional

E1(τ) =
1

2

(∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+ α1e
−τ
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2
)

.

The estimate in Ḣ−
1+θ
2 of f under the condition (4.4) is given in the next lemma.

Lemma 4.2 Let W ∈ C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some γ > 0. There exist γ0 > 0 and T0 ≥ 1 such that
if T ≥ T0 and γ ≤ γ0, then, for all τ ∈ [τ0, τ

∗
ε ), E1 satisfies the inequality

∂τE1 + θE1 +

(
1 +

1− θ
4

α1e
−τ
)∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

≤ CM3γ (1− θ)2 e−2τ

+CMγ (1− θ)2
(
‖f‖2

L2(2) + ‖∇f‖2 + α2
1e
−2τ ‖∆f‖2

L2(1)

)
,

(4.8)
where θ, 0 < θ < 1 is the fixed constant introduced at the beginning of Section 4.

Proof: Since

∫
R2

f(X)dX = 0, according to Lemma 2.1, (−∆)−
3+θ
4 f is well defined.

Thus, we apply (−∆)−
3+θ
4 to the equality (4.3) and we get

∂τ

(
(−∆)−

3+θ
4 f + α1e

−τ (−∆)
1−θ
4 f

)
+ εe−τ (−∆)

5−θ
4 f − (−∆)−

3+θ
4 (L(f))

−α1e
−τ (−∆)

1−θ
4 f + α1e

−τ (−∆)−
3+θ
4
(
X
2
.∇∆f

)
= H (τ,G, f,W ) ,

(4.9)
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where

H (τ,G, f,W ) = (−∆)−
3+θ
4

(
−K.∇ (f − α1e

−τ∆f)− ηV.∇ (f − α1e
−τ∆f)

−ηK.∇ (G− α1e
−τ∆G)− ηα1e

−τ∆G− ηα1e
−τ X

2
.∇∆G

−ηεe−τ∆2G+ βe−2τcurl div
(
|A|2A

))
.

Taking the L2−scalar product of (4.9) with (−∆)−
3+θ
4 and taking into account the equal-

ities(
− (−∆)−

3+θ
4 (L(f)) , (−∆)−

3+θ
4 f

)
L2

=
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

+
(

1+θ
4

) ∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

,

and (
α1e

−τ (−∆)−
3+θ
4
(
X
2
.∇∆f

)
, (−∆)−

3+θ
4 f

)
L2

=
(

7+θ
4

)
α1e

−τ
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

,

given by Lemma 4.1, we obtain

1
2
∂τ

(∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+ α1e
−τ
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2
)

+ εe−τ
∥∥∥(−∆)−

1−θ
4 f

∥∥∥2

+
(

1+θ
4

) ∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+
(
1 +

(
1+θ

4

)
α1e

−τ) ∥∥∥(−∆)−
1+θ
4 f

∥∥∥2

=
(
H (τ,G, f) , (−∆)−

3+θ
4 f

)
L2
.

(4.10)
Now, it remains to estimate the right hand side of (4.10), that we write as(

H (τ,G, f) , (−∆)−
3+θ
4 f

)
L2

= I1 + I2 + I3 + I4 + I5,

where

I1 =
(

(−∆)−
3+θ
4 (−K.∇ (f − α1e

−τ∆f)) , (−∆)−
3+θ
4 f

)
L2
,

I2 =
(

(−∆)−
3+θ
4 (−ηV.∇ (f − α1e

−τ∆f)) , (−∆)−
3+θ
4 f

)
L2
,

I3 =
(

(−∆)−
3+θ
4 (−ηK.∇ (G− α1e

−τ∆G)) , (−∆)−
3+θ
4 f

)
L2
,

I4 =
(

(−∆)−
3+θ
4
(
−ηα1e

−τ∆G− ηα1e
−τ X

2
.∇∆G− ηεe−τ∆2G

)
, (−∆)−

3+θ
4 f

)
L2

=
(

(−∆)−
3+θ
4 J, (−∆)−

3+θ
4 f

)
L2
,

I5 =
(

(−∆)−
3+θ
4
(
βe−2τcurl div

(
|A|2A

))
, (−∆)−

3+θ
4 f

)
L2
.
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The remaining of the proof of this lemma is devoted to the estimate of these terms. We
recall that curl K = f , curl V = G and curl U = W . Since the divergence of K vanishes,
we obtain

I1 =
(

(−∆)−
3+θ
4
(
−div

(
K
(
f − α1e

−τ∆f
)))

, (−∆)−
3+θ
4 f

)
L2

≤
∥∥∥(−∆)−

3+θ
4 ∇

(
K
(
f − α1e

−τ∆f
))∥∥∥ ∥∥∥(−∆)−

3+θ
4 f

∥∥∥ .
Using the inequalities (2.1) of Lemma 2.1 and (2.15) of Lemma 2.4, together with the
Young and Hölder inequalities and the property (4.5), we get

I1 ≤
C

(1− θ)3/2

∥∥K (f − α1e
−τ∆f

)∥∥
L2(1)

∥∥∥(−∆)−
3+θ
4 f

∥∥∥
≤ C

(1− θ)3/2
‖K‖L∞

∥∥f − α1e
−τ∆f

∥∥
L2(1)

∥∥∥(−∆)−
3+θ
4 f

∥∥∥
≤ µ

∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+
C

µ (1− θ)3 ‖f‖L2(2) ‖f‖H1

∥∥f − α1e
−τ∆f

∥∥2

L2(1)

≤ µ
∥∥∥(−∆)−

3+θ
4 f

∥∥∥2

+
CMγ (1− θ)3

µ

(
‖f‖2

L2(1) + α2
1e
−2τ ‖∆f‖2

L2(1)

)
,

(4.11)

where µ is a positive constant which is made more precise later.

Similar computations and the inequality (4.5) give similar estimates for I2. One has

I2 ≤ µ
∥∥∥(−∆)−

3+θ
4 f

∥∥∥2

+
CMγ (1− θ)3

µ

(
‖f‖2

L2(1) + α2
1e
−2τ ‖∆f‖2

L2(1)

)
. (4.12)

We likewise estimate the term I3. Indeed, the same computations and the smoothness
of G yield

I3 ≤ µ
∥∥∥(−∆)−

3+θ
4 f

∥∥∥2

+
Cη2

µ (1− θ)3 ‖f‖L2(2) ‖f‖H1

∥∥G− α1e
−τ∆G

∥∥2

L2(1)

≤ µ
∥∥∥(−∆)−

3+θ
4 f

∥∥∥2

+
CMγ (1− θ)3

µ

(
‖f‖2

L2(2) + ‖f‖2
H1

) (
1 + α1e

−τ) .
Taking T0 sufficiently large so that α1e

−τ ≤ 1, we get

I3 ≤ µ
∥∥∥(−∆)−

3+θ
4 f

∥∥∥2

+
CMγ (1− θ)3

µ

(
‖f‖2

L2(2) + ‖∇f‖2
)
. (4.13)
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Estimating I4 is simple, because of the smoothness of G. We first remark the fact that∫
R2

J(X)dX = 0. Thus we can apply the inequality (2.2) of Lemma 2.1 to obtain

∥∥∥(−∆)−
3+θ
4 J

∥∥∥ ≤ C |η| e−τ ‖G‖H4(3)

(1− θ)3/2
.

Using the above inequality and the smoothness of G, we can write

I4 ≤
Cηe−τ

(1− θ)3/2

∥∥∥(−∆)−
3+θ
4 f

∥∥∥
≤ µ

∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+
CMγ (1− θ)3 e−2τ

µ
.

(4.14)

It remains estimate the term I5. The inequality (2.1) of Lemma 2.1 implies

I5 ≤
Cβe−2τ

(1− θ)3/2

∥∥∇ (|A|2A)∥∥
L2(1)

∥∥∥(−∆)−
3+θ
4 f

∥∥∥
≤ µ

∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+
Cβ2e−4τ

µ (1− θ)3

∥∥∇ (|A|2A)∥∥2

L2(1)
.

A short computation leads to∥∥∇ (|A|2A)∥∥2

L2(1)
≤ C

∥∥|∇U |2∇2U
∥∥2

L2(1)
.

Using Hölder inequalities, the inequality (2.15) of Lemma 2.4 and the inequality (2.18)
of Lemma 2.5, we get∥∥∇ (|A|2A)∥∥2

L2(1)
≤ C ‖∇U‖4

L∞

∥∥∇2U
∥∥2

L2(1)

≤ ‖W‖2
L2(2) ‖W‖

2
H1

(
‖W‖2

L2 + ‖∇W‖2
L2(1)

)
.

Finally, taking into account the inequality (4.4), we get

I5 ≤ µ
∥∥∥(−∆)−

3+θ
4 f

∥∥∥2

+
CM3β2γ3 (1− θ)18 e−4τ

µ

(
1 +

eτ

α1

)
≤ µ

∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+
CM3γ3 (1− θ)18 e−3τ

µ
.

(4.15)
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The equality (4.10) and the inequalities (4.11), (4.12), (4.13), (4.14), (4.15) imply that

1

2
∂τ

(∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+ α1e
−τ
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2
)

+

(
1− 20µ+ θ

4

)∥∥∥(−∆)−
3+θ
4 f

∥∥∥2

+

(
1 +

(
1 + θ

4

)
α1e

−τ
)∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

≤ CM3γ (1− θ)3 e−2τ

µ
+
CMγ (1− θ)3

µ

(
‖f‖2

L2(2) + ‖∇f‖2 + α2
1e
−2τ ‖∆f‖2

L2(1)

)
.

(4.16)

Setting µ =
1− θ

20
, we finally get

∂τE1 + θE1 +

(
1 +

1− θ
4

α1e
−τ
)∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

≤ CM3γ (1− θ)2 e−2τ

+CMγ (1− θ)2
(
‖f‖2

L2(2) + ‖∇f‖2 + α2
1e
−2τ ‖∆f‖2

L2(1)

)
.

(4.17)

�

4.2 Estimates in H1(R2)

We next establish an H1-estimate of f . As explained earlier, we get it by performing
the L2-scalar product of (4.3) with f . In this section, we will see how useful the lemma
4.2 is for absorbing bad terms which appear in the computations made below. One
defines the functional

E2(τ) =
1

2

(
‖f‖2 + α1e

−τ ‖∇f‖2) .
The H1 estimate of f is given by the following lemma.

Lemma 4.3 Let W ∈ C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some γ > 0. There exist γ0 > 0 and T0 ≥ 1 such that
if T ≥ T0 and γ ≤ γ0, then, for all τ ∈ [τ0, τ

∗
ε ), E2 satisfies the inequality

∂τE2 + E2 + 1
2
‖∇f‖2 + β

2
e−2τ ‖|A| ∇f‖2

≤ ‖f‖2 + CMγ (1− θ)6
(
‖f‖2 +

∥∥|X|2 f∥∥2
)

+ CM2γ (1− θ)6 e−τ ,
(4.18)

where θ, 0 < θ < 1 is the fixed constant introduced at the beginning of Section 4.
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Proof: Taking the L2-inner product of (4.3) with f , performing several integrations by
parts and taking into account the equalities

(−L(f), f)L2 = ‖∇f‖2 − 1

2
‖f‖2,

and

α1e
−τ
(
X

2
.∇∆f, f

)
L2

= α1e
−τ ‖∇f‖2,

we obtain the equality

∂τE2 + E2 + εe−τ ‖∆f‖2 + (1− α1e
−τ ) ‖∇f‖2 + βe−2τ ‖|A| ∇f‖2

= ‖f‖2 + I1 + I2 + I3 + I4 + I5,
(4.19)

where

I1 = −
(
K.∇

(
f − α1e

−τ∆f
)
, f
)
L2 ,

I2 = −η
(
K.∇

(
G− α1e

−τ∆G
)
, f
)
L2 ,

I3 = −η
(
V.∇

(
f − α1e

−τ∆f
)
, f
)
L2 ,

I4 = −ηα1e
−τ
(
ε

α1

∆2G+ ∆G+
X

2
.∇∆G, f

)
L2

+ ηβe−2τ
(
div

(
|A|2∇G

)
, f
)
L2 ,

I5 =
(
βe−2τdiv

(
∇
(
|A|2

)
∧ A

)
, f
)
L2 .

We notice that, since K is divergence free, (K.∇f, f)L2 = 0. Integrating by parts and
using the inequality (2.15) of lemma 2.4 and the inequality (4.5), we obtain

I1 = −α1e
−τ (K∆f,∇f)L2

≤ Cα1e
−τ ‖K‖L∞ ‖∆f‖ ‖∇f‖

≤ Cα1e
−τ ‖f‖1/2

H1 ‖f‖1/2

L2(2) ‖∆f‖ ‖∇f‖
≤ C
√
α1Mγ (1− θ)6 e−τ/2 ‖∇f‖

≤ µ ‖∇f‖2 +
CM2γ2 (1− θ)12

µ
e−τ ,

(4.20)

where µ > 0 will be made more precise later.

By the same method, using the inequality (2.14) of the lemma 2.4 and the smoothness

119



Chapitre 4. Fluides de grade 3

of G, one has

I2 = η
(
K
(
G− α1e

−τ∆G
)
,∇f

)
L2

≤ |η| ‖K‖L4

∥∥G− α1e
−τ∆G

∥∥
L4 ‖∇f‖

≤ C
(
1 + α1e

−τ) |η| ‖f‖L2(2) ‖∇f‖

≤ µ ‖∇f‖2 +
CMγ (1− θ)6

µ

(
‖f‖2 +

∥∥|X|2 f∥∥2
)
.

(4.21)

The same method gives

I3 = −α1e
−τη (V∆f,∇f)L2

≤ α1e
−τ |η| ‖V ‖L∞ ‖∆f‖ ‖∇f‖

≤ C
√
α1Mγ (1− θ)6 e−τ/2 ‖∇f‖

≤ µ ‖∇f‖2 +
CM2γ2 (1− θ)12

µ
e−τ .

(4.22)

Because of the regularity of G, the estimate of I4 is simple. Indeed, an integration by
parts and Hölder inequalities yield

I4 ≤ C |η| (ε+ α1) e−τ ‖f‖ − ηβe−2τ
(
|A|2∇G,∇f

)
L2

≤ C |η| (ε+ α1) e−τ ‖f‖+ C |η| βe−2τ ‖∇G‖L∞ ‖∇U‖
2
L3 ‖∇f‖L3

Then, by the inequality (2.13), the continuous injection of H1(R2) into L3(R2) and the
inequalities (4.4) and (4.5), one obtains

I4 ≤ C |η| (ε+ α1) e−τ ‖f‖+ C |η| βe−2τ ‖W‖2
L3 ‖∇f‖L3

≤ C (ε+ α1)Mγ (1− θ)6 e−τ + C |η| βe−2τ ‖W‖2
H1 (‖∇f‖+ ‖∆f‖)

≤ C (ε+ α1)Mγ (1− θ)6 e−τ + CM3/2γ3/2 (1− θ)9 e−
3τ
2

≤ CM3/2γ (1− θ)6 e−τ .

(4.23)

Finally, using the same arguments, due to the inequality (2.13) and the continuous
injection of H1(R2) into L4(R2), one has

I5 = −βe−2τ
(
∇
(
|A|2

)
∧ A,∇f

)
L2

≤ Cβe−2τ ‖∇U‖L4

∥∥∇2U
∥∥
L4 ‖|A| ∇f‖

≤ Cβe−2τ ‖W‖H1 ‖W‖H2 ‖|A| ∇f‖

≤ CβMγ (1− θ)6 e−2τ e
τ/2

√
α1

‖|A| ∇f‖

≤ β

2
e−2τ ‖|A| ∇f‖2 + CM2γ2 (1− θ)12 e−τ .

(4.24)
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Taking into account the inequalities (4.20), (4.21), (4.22), (4.23) and (4.24) and assuming
that γ ≤ 1, we deduce from (4.19) that

∂τE2 + E2 +
(
1− 3µ− α1e

−τ) ‖∇f‖2 +
β

2
e−2τ ‖|A| ∇f‖2 ≤

‖f‖2 +
CMγ (1− θ)6

µ

(
‖f‖2 +

∥∥|X|2 f∥∥2
)

+ CM2γ (1− θ)6 e−τ ,

(4.25)
If we choose for instance µ = 1

12
and T0 large enough to have α1e

−τ ≤ 1
4
, we get

∂τE2 + E2 + 1
2
‖∇f‖2 + β

2
e−2τ ‖|A| ∇f‖2 ≤

‖f‖2 + CMγ (1− θ)6
(
‖f‖2 +

∥∥|X|2 f∥∥2
)

+ CM2γ (1− θ)6 e−τ .

(4.26)

�

To achieve the H1−estimate of f , we have to combine the inequalities (4.8) and (4.18).

We can interpolate ‖f‖2 between
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

and ‖∇f‖2. Indeed, via Hölder and

Young inequalities, we get

‖f‖2 = (2π)2

∫
R2

1

|ξ|
2(1+θ)
3+θ

|ξ|
2(1+θ)
3+θ

∣∣∣f̂ ∣∣∣ 2(1+θ)3+θ
∣∣∣f̂ ∣∣∣ 4

3+θ
dξ

≤ (2π)2

(∫
R2

1

|ξ|1+θ

∣∣∣f̂ ∣∣∣2 dξ) 2
3+θ (∫

R2

|ξ|2
∣∣∣f̂ ∣∣∣2 dξ) 1+θ

3+θ

≤
∥∥∥(−∆)−

1+θ
4 f

∥∥∥ 4
3+θ ‖∇f‖

2+2θ
3+θ

≤
(

1 + θ

3 + θ

)
3

8
‖∇f‖2 +

(
2

3 + θ

)(
8

3

) 1+θ
2 ∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

.

Since, 0 < θ < 1, we obtain

‖f‖2 ≤ 1

4
‖∇f‖2 + 5

∥∥∥(−∆)−
1+θ
4 f

∥∥∥2

. (4.27)

Thus, we have

∂τE2 + E2 +
1

4
‖∇f‖2 +

β

2
e−2τ ‖|A| ∇f‖2 ≤

5
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

+ CMγ (1− θ)6
(
‖f‖2 +

∥∥|X|2 f∥∥2
)

+ CM2γ (1− θ)6 e−τ .

(4.28)
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We define E3 = 6E1 + E2. Inequalities (4.8) and (4.28) give

∂τE3 + θE3 +

(
1 +

3

2
(1− θ)α1e

−τ
)∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

+
1

4
‖∇f‖2 ≤ CM3γ (1− θ)2 e−τ

+CMγ (1− θ)2
(
‖f‖2 + ‖∇f‖2 + α2

1e
−2τ ‖∆f‖2 +

∥∥|X|2 f∥∥2
+ α2

1e
−2τ
∥∥|X|2 ∆f

∥∥2
)
.

(4.29)

Interpolating again ‖f‖2 between ‖∇f‖2 and
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

and taking γ sufficiently

small, we obtain

∂τE3 + θE3 +
1

2

∥∥∥(−∆)−
1+θ
4 f

∥∥∥2

+
1

8
‖∇f‖2 ≤ CM3γ (1− θ)2 e−τ

+CMγ (1− θ)2
(
α2

1e
−2τ ‖∆f‖2 +

∥∥|X|2 f∥∥2
+ α2

1e
−2τ
∥∥|X|2 ∆f

∥∥2
)
.

(4.30)

4.3 Estimates in H2(R2)

We now perform a H2 estimate of f . This is done with the same method as for the
H1 estimate in the previous section. Indeed, we perform the L2 product between (4.3)
and −∆f and, after some computations, we see that the inequality (4.4) enables us to
absorb all terms involving the H2 norm of f . Combined with (4.30), we get an estimate
in H2, where only terms with weighted norms remain. More precisely, we introduce the
following functional.

E4(τ) =
1

2

(
‖∇f‖2 + α1e

−τ ‖∆f‖2).
The H2 estimate of f is given by the lemma below.

Lemma 4.4 Let W ∈ C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some γ > 0. There exist γ0 > 0 and T0 ≥ 1 such that
if T ≥ T0 and γ ≤ γ0, then for all τ ∈ [τ0, τ

∗
ε ), E4 satisfies the inequality

∂τE4 + E4 +
1

2
‖∆f‖2 +

β

2
e−2τ ‖|A|∆f‖2 ≤ 3

2
‖∇f‖2 + CM2γ (1− θ)6 e−2τ

+CM2γ (1− θ)6
(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2 f∥∥2
)
,

(4.31)
where θ, 0 < θ < 1 is the fixed constant introduced at the beginning of Section 4.
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Proof: We take the L2 product of (4.3) with −∆f . Doing several integrations by parts,
it is easy to see that

(−L(f),−∆f)L2 = ‖∆f‖2 − ‖∇f‖2,

and

−
(
α1e

−τX

2
.∇∆f,∆f

)
L2

=
1

2
α1e

−τ ‖∆f‖2.

Furthermore, one also has

βe−2τ
(
div

(
|A|2∇f

)
,∆f

)
= βe−2τ ‖|A|∆f‖2 + βe−2τ

2∑
j=1

∫
R2

A : ∂jA∂jf∆fdX.

Using Hölder inequalities, the inequality (2.13) of lemma 2.3, the continuous injections
of H1(R2) into L4(R2) and the inequality (4.4), we get

βe−2τ

2∑
j=1

∫
R2

A : ∂jA∂jf∆fdX ≤ Cβe−2τ ‖|A|∆f‖ ‖∇A∇f‖

≤ Cβe−2τ ‖|A|∆f‖
∥∥∇2U

∥∥
L4 ‖∇f‖L4

≤ Cβe−2τ ‖|A|∆f‖ ‖∇W‖H1 ‖∇f‖H1

≤ µ1βe
−2τ ‖|A|∆f‖2

+
Cβ

µ1

e−2τ ‖W‖2
H2

(
‖∇f‖2 + ‖∆f‖2)

≤ µ1βe
−2τ ‖|A|∆f‖2

+
CMγ (1− θ)6

µ1

e−τ
(
‖∇f‖2 + ‖∆f‖2) ,

where µ1 > 0 will be chosen later.

Consequently, we get

∂τE4 + εe−τ ‖∇∆f‖2 +
(

1− α1

2
e−τ
)
‖∆f‖2 + β (1− µ1) e−2τ ‖|A|∆f‖2

≤ ‖∇f‖2 +
CMγ (1− θ)6

µ1

e−τ
(
‖∇f‖2 + ‖∆f‖2)+ I1 + I2 + I3 + I4 + I5,

(4.32)
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where

I1 =
(
U.∇

(
f − α1e

−t∆f
)
,∆f

)
L2 ,

I2 = η
(
K.∇

(
G− α1e

−t∆G
)
,∆f

)
L2 ,

I3 = ηα1e
−t
(
ε

α1

∆2G+ ∆G+
X

2
.∇∆G,∆f

)
L2

+ ηβe−2t
(
div

(
|A|2∇G

)
,∆f

)
L2 ,

I4 = βe−2t
(
div

(
∇
(
|A|2

)
∧ A

)
,∆f

)
L2 .

Integrating by parts and using the divergence free property of K, one can show that

I1 = −
2∑

j,k=1

∫
R2

∂kUj∂jf∂kfdX.

Due to the Gagliardo-Niremberg inequality and the inequalities (2.13) and (4.4), it comes

I1 ≤ C ‖∇U‖ ‖∇f‖2
L4

≤ C ‖∇U‖ ‖∇f‖ ‖∆f‖

≤ µ2 ‖∆f‖2 +
CMγ (1− θ)6

µ2

‖∇f‖2 ,

(4.33)

where µ2 > 0 will be chosen later.

We now estimate I2 with the help of the inequality (2.15) of lemma 2.4, the inequality
(4.5) and the smoothness of G.

I2 ≤ |η| ‖K‖L∞
∥∥G− α1e

−τ∆G
∥∥ ‖∆f‖

≤ C |η|
(
1 + α1e

−τ) ‖f‖1/2

H1 ‖f‖1/2

L2(2) ‖∆f‖

≤ µ2 ‖∆f‖2 +
CMγ (1− θ)6

µ2

(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2 f∥∥2
)
.

(4.34)

We rewrite

I3 = I1
3 + I2

3 ,

where

I1
3 = ηα1e

−τ
(
ε

α1

∆2G+ ∆G+
X

2
.∇∆G,∆f

)
L2

,

I2
3 = ηβe−2τ

(
div

(
|A|2∇G

)
,∆f

)
L2 .
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Using the good regularity of G and the inequality (4.5), one can show that

I1
3 ≤ CM1/2γ1/2 (1− θ)3 e−τ ‖∆f‖

≤ µ2 ‖∆f‖2 +
CMγ (1− θ)6

µ2

e−2τ .

The estimate of I2
3 is slightly more complicated. Actually, we can bound I2

3 by two kinds
of terms that we estimate separately. In fact, it is easy to see that

I2
3 ≤ C |η| βe−2τ

∫
R2

|∇A| |A| |∇G| |∆f | dX+C |η| βe−2τ

∫
R2

|A|2
∣∣∇2G

∣∣ |∆f | dX. (4.35)

Each term of the right hand side of (4.35) can be estimated in a convenient way. We use
again the inequality (2.13) of the lemma 2.3, inequality (4.4) , the Hölder inequalities
and the inequality (4.4). We get

C |η| βe−2τ

∫
R2

|∇A| |A| |∇G| |∆f | dX ≤ C |η| βe−2τ
∥∥∇2U

∥∥ ‖∇G‖L∞ ‖|A|∆f‖
≤ µ1βe

−2τ ‖|A|∆f‖2 +
C |η|2 β
µ1

e−2τ ‖∇W‖2

≤ µ1βe
−2τ ‖|A|∆f‖2 +

CM2γ2 (1− θ)12

µ1

e−2τ .

By the same way, we have

C |η| βe−2τ

∫
R2

|A|2
∣∣∇2G

∣∣ |∆f | dx ≤ µ1βe
−2τ ‖|A|∆f‖2 +

CM2γ2 (1− θ)12

µ1

e−2τ ,

and thus we have shown

I2
3 ≤ 2µ1βe

−2τ ‖|A|∆f‖2 +
CM2γ2 (1− θ)12

µ1

e−2τ .

Finally, assuming γ ≤ 1, one has

I3 ≤ µ2 ‖∆f‖2 + 2µ1βe
−2τ ‖|A|∆f‖2 +

CM2γ (1− θ)6

min(µ1, µ2)
e−2τ . (4.36)

It remains to estimate I4. Recalling that U = ηV +K, one has

I4 ≤ C |η| βe−2τ
∫
R2 |∇A| |A| |∇2V | |∆f | dX + C |η| βe−2τ

∫
R2 |A|2 |∇3V | |∆f | dX

+Cβe−2τ
∫
R2 |∇A| |A| |∇2K| |∆f | dX + Cβe−2τ

∫
R2 |A|2 |∇3K| |∆f | dX.

(4.37)
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We have to estimate each term of the right hand side of the equality (4.37). The first
two ones can be estimated exactly like we did for I2

3 . The inequality (2.13) of lemma 2.3
and Gagliardo-Niremberg inequality yield

Cβe−2τ

∫
R2

|∇A| |A|
∣∣∇2K

∣∣ |∆f | dX ≤ µ1βe
−2τ ‖|A|∆f‖2

+
Cβe−2τ

µ1

∥∥∇2U
∥∥2

L4

∥∥∇2K
∥∥2

L4

≤ µ1βe
−2τ ‖|A|∆f‖2

+
Cβe−2τ

µ1

‖∇W‖2
L4 ‖∇f‖2

L4

≤ µ1βe
−2τ ‖|A|∆f‖2

+
Cβe−2τ

µ1

‖∇W‖ ‖∆W‖ ‖∇f‖ ‖∆f‖ .

Due to the inequality (4.4), we get

Cβe−2τ

∫
R2

|∇A| |A|
∣∣∇2K

∣∣ |∆f | dX ≤ µ1βe
−2τ ‖|A|∆f‖2

+
CMγ (1− θ)6 e−

3τ
2

µ1

(
‖∇f‖2 + ‖∆f‖2) .

By the same method, we obtain

Cβe−2τ

∫
R2

|A|2
∣∣∇3K

∣∣ |∆f | dX ≤ µ1βe
−2τ ‖|A|∆f‖2 +

Cβe−2τ

µ1

‖∇U‖2
L∞

∥∥∇3K
∥∥2

≤ µ1βe
−2τ ‖|A|∆f‖2

+
Cβe−2τ

µ1

‖∇W‖H1 ‖∇W‖L2(2) ‖∆f‖
2

≤ µ1βe
−2τ ‖|A|∆f‖2 +

CMγ (1− θ)6 e−τ

µ1

‖∆f‖2 .

Finally, we have shown that

I4 ≤ 4µ1βe
−2τ ‖|A|∆f‖2 +

CM2γ (1− θ)6 e−τ

µ1

(
‖∇f‖2 + ‖∆f‖2) . (4.38)

Going back to (4.32) and taking into account the inequalities (4.33), (4.34), (4.36) and
(4.38), we get
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∂τE4 +
(

1− 3µ2 −
α1

2
e−τ
)
‖∆f‖2 + (1− 7µ1) βe−2τ ‖|A|∆f‖2 ≤ ‖∇f‖2

+
CM2γ (1− θ)6

min(µ1, µ2)

(
‖f‖2 + ‖∇f‖2 + ‖∆f‖2 +

∥∥|X|2 f∥∥2
)

+
CM2γ (1− θ)6

min(µ1, µ2)
e−2τ .

Taking for instance µ1 = 1
14

, µ2 = 1
12

, γ small enough and T = eτ0 large enough, we
finally have

∂τE4 + E4 +
1

2
‖∆f‖2 +

β

2
e−2τ ‖|A|∆f‖2 ≤ 3

2
‖∇f‖2 + CM2γ (1− θ)6 e−2τ

+CM2γ (1− θ)6
(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2 f∥∥2
)
.

(4.39)

�

In order to finish the H2 estimate of f we define a new functional E5 as a linear combi-
nation of E3 and E4 given by

E5 = 16E3 + E4.

From the inequalities (4.30) and (4.31), it is clear that one has

∂τE5 + θE5 + 8
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

+
1

2
‖∇f‖2 +

1

2
‖∆f‖2 ≤ CM3γ (1− θ)2 e−τ

+CM2γ (1− θ)2
(
‖f‖2 + ‖∇f‖2 + α2

1e
−2τ ‖∆f‖2

+
∥∥|X|2 f∥∥2

+ α2
1e
−2τ
∥∥|X|2 ∆f

∥∥2
)
.

(4.40)
Using the interpolation inequality (4.27) and taking γ small enough and τ0 = log(T )
large enough, we finally obtain

∂τE5 + θE5 + 7
∥∥∥(−∆)−

1+θ
4 f

∥∥∥2

+
1

4
‖∇f‖2 +

1

4
‖∆f‖2 ≤ CM3γ (1− θ)2 e−τ

+CM2γ (1− θ)2
(∥∥|X|2 f∥∥2

+ α2
1e
−2τ
∥∥|X|2 ∆f

∥∥2
)
.

(4.41)

4.4 Estimates in H2(2)

In order to achieve the estimate of f in H2(2), it remains to perform estimates in
weighted spaces. Combined with the inequality (4.41), it will give us an estimate in
H2(2). To do this, we make the L2−scalar product of (4.3) with |X|4

(
f − α1e

−τ∆f
)
.

We define the functional
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E6(τ) =
1

2

∥∥|X|2 (f − α1e
−τ∆f

)∥∥2
.

Before stating the lemma which contains the estimate of E, we state a technical lemma,
which gives the terms provided by the L2−product of the linear terms of (4.3) with
|X|4

(
f − α1e

−τ∆f
)
.

Lemma 4.5 Let f ∈ C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)) and H be defined by
H(X, τ, f) = |X|4 (f − α1e

−τ∆f). For all τ ∈ (τ0, τε), the next equalities hold.

1. (−f,H(X, τ, f))L2 = −
∥∥|X|2 f∥∥2

+ 8α1e
−τ ‖|X| f‖2 − α1e

−τ
∥∥|X|2∇f∥∥2

.

2. (−∆f,H(X, τ, f))L2 = α1e
−τ
∥∥|X|2 ∆f

∥∥2 − 8 ‖|X| f‖2 +
∥∥|X|2∇f∥∥2

.

3.

(
−X

2
.∇f,H(X, τ, f)

)
L2 = 3

2

∥∥|X|2 f∥∥2 − 24α1e
−τ ‖|X| f‖2

+3α1e
−τ
∥∥|X|2∇f∥∥2 − α1

2
e−τ

(
X.∇∆f, |X|4 f

)
L2 .

4.
(−L(f), H(X, τ, f))L2 = 1

2

∥∥|X|2 f∥∥2
+ (1 + 2α1e

−τ )
∥∥|X|2∇f∥∥2

+α1e
−τ
∥∥|X|2 ∆f

∥∥2 − (8 + 16α1e
−τ ) ‖|X| f‖2 − α1

2
e−τ

(
X.∇∆f, |X|4 f

)
L2 .

5.
(
α1e

−τ X
2
.∇∆f,H(X, τ, f)

)
L2 = α1

2
e−τ

(
X.∇∆f, |X|4 f

)
L2 +

3α2
1

2
e−2τ

∥∥|X|2 ∆f
∥∥2
.

6.
εe−τ (∆2f,H(X, τ, f))L2 = εα1e

−2τ
(∥∥|X|2∇∆f

∥∥2 − 8 ‖|X|∆f‖2
)

+εe−τ
(∥∥|X|2 ∆f

∥∥2 − 8 ‖|X| ∇f‖2 + 32 ‖f‖2 − 16 ‖X.∇f‖2
)
.

Proof: All these equalities are obtained via integrations by parts. We only show the
first four ones, the others are obtained with the same method. Let us show the equality
1. Two integrations by parts imply(
−f, |X|4

(
f − α1e

−τ∆f
))
L2 = −

∥∥|X|2 f∥∥2 − α1e
−τ ∥∥|X|2∇f∥∥2

− 4α1e
−τ

2∑
j=1

∫
R2

Xj |X|2 f∂jfdX

= −
∥∥|X|2 f∥∥2 − α1e

−τ ∥∥|X|2∇f∥∥2

− 2α1e
−τ

2∑
j=1

∫
R2

Xj |X|2 ∂j
(
f 2
)
dX

= −
∥∥|X|2 f∥∥2 − α1e

−τ ∥∥|X|2∇f∥∥2
+ 8α1e

−τ ‖|X| f‖2 .
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The equality 2. is obtained through the same computations. We show now the third
equality of this lemma. Integrating by parts, we obtain(
−X

2
.∇f, |X|4

(
f − α1e

−τ∆f
))

L2

= −
2∑
j=1

∫
R2

Xj |X|4

4
∂j
(
|f |2
)
dX

+ α1e
−τ

2∑
j=1

∫
R2

Xj |X|4

2
∂jf∆fdX

=
3

2

∥∥|X|2 f∥∥2
+ α1e

−τ
2∑
j=1

∫
R2

Xj |X|4

2
∂jf∆fdX.

Besides, integrating several times by parts, we get

α1e
−τ

2∑
j=1

∫
R2

Xj |X|4

2
∂jf∆fdX = −α1e

−τ
2∑
j=1

∫
R2

f∂j

(
Xj |X|4

2
∆f

)
dX

= −3α1e
−τ
∫
R2

|X|4 f∆fdX

− α1

2
e−τ

(
X.∇∆f, |X|4 f

)
L2

= −24α1e
−τ ‖|X| f‖2 + 3α1e

−τ ∥∥|X|2∇f∥∥2

− α1

2
e−τ

(
X.∇∆f, |X|4 f

)
L2 ,

and consequently(
−X

2
.∇f, |X|4 (f − α1e

−τ∆f)
)
L2 = 3

2

∥∥|X|2 f∥∥2 − 24α1e
−τ ‖|X| f‖2

+3α1e
−τ
∥∥|X|2∇f∥∥2 − α1

2
e−τ

(
X.∇∆f, |X|4 f

)
L2 .

The fourth equality of this lemma is obtained by summing the first three ones. By the
same method, we obtain easily the equalities 5. and 6. of this lemma.

�

The H2(2) estimate of f is given in the following lemma.
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Lemma 4.6 Let W ∈ C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)) be the solution of (4.1)
satisfying the inequality (4.4) for some γ > 0. There exist γ0 > 0 and T0 ≥ 1 such that
if T ≥ T0 and γ ≤ γ0, then for all τ ∈ [τ0, τ

∗
ε ), E6 satisfies the inequality

∂τE6 + θE6 +
1− θ

8

∥∥|X|2 f∥∥2
+

1

4

∥∥|X|2∇f∥∥2
+
α1

4
e−τ

∥∥|X|2 ∆f
∥∥2

≤ CM2γ (1− θ)6 e−τ +
1024

1− θ
‖f‖2 + CM2γ1/2 (1− θ)3 (‖f‖2 + ‖∇f‖2 + ‖∆f‖2) ,

(4.42)
where θ, 0 < θ < 1 is the fixed constant introduced at the beginning of Section 4.

Proof: To show this lemma, we perform the L2−product of the equality (4.3) with
|X|4 (f − α1e

−τ∆f). Applying the lemma 4.5, we obtain

∂τE6 +
1

2

∥∥|X|2 f∥∥2
+
(
1 + α1e

−τ) ∥∥|X|2∇f∥∥2
+

(
α1e

−τ +
α2

1

2
e−2τ

)∥∥|X|2 ∆f
∥∥2

+ J

= Cεe−τ ‖|X| ∇f‖2 + Cεα1e
−2τ ‖|X|∆f‖2 +

(
8 + 8α1e

−τ) ‖|X| f‖2

+I1 + I2 + I3 + I4 + I5,
(4.43)

where

J = −βe−2τ
(
div

(
|A|2∇f

)
, |X|4

(
f − α1e

−τ∆f
))
L2 ,

I1 =
(
K.∇

(
f − α1e

−τ∆f
)
, |X|4

(
f − α1e

−τ∆f
))
L2 ,

I2 = η
(
K.∇

(
G− α1e

−τ∆G
)
, |X|4

(
f − α1e

−τ∆f
))
L2 ,

I3 = η
(
V.∇

(
f − α1e

−τ∆f
)
, |X|4

(
f − α1e

−τ∆f
))
L2 ,

I4 = −ηεe−τ
(
∆2G, |X|2

(
f − α1e

−τ∆f
))
L2

+ ηα1e
−τ
(

∆G+
X

2
.∇∆G, |X|4

(
f − α1e

−τ∆f
))

L2

− ηβe−2τ
(
div

(
|A|2∇G

)
, |X|4

(
f − α1e

−τ∆f
))
L2 ,

I5 = −βe−2τ
(
div

(
∇
(
|A|2

)
∧ A

)
, |X|4

(
f − α1e

−τ∆f
))
L2 .

We estimate now J . One has

J = J1 + J2, (4.44)

where
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J1 = −βe−2τ
(
div

(
|A|2∇f

)
, |X|4 f

)
L2 ,

J2 = βα1e
−3τ
(
div

(
|A|2∇f

)
, |X|4 ∆f)

)
L2 .

We estimate J1 and J2 separately. Integrating by parts, we obtain

J1 = βe−2τ
∥∥|X|2 |A| ∇f∥∥2

+ 4βe−2τ

2∑
j=1

∫
R2

Xj |X|2 |A|2 ∂jffdX.

Using Hölder and Young inequalities, we obtain∣∣∣∣∣4βe−2τ

2∑
j=1

∫
R2

Xj |X|2 |A|2 ∂jffdX

∣∣∣∣∣ ≤ β

2
e−2τ

∥∥|X|2 |A| ∇f∥∥2

+ Cβe−2τ ‖|X| f‖2 ‖∇U‖2
L∞ .

Then, using the inequality (2.15) of Lemma 2.4, the inequality (2.4) of Lemma 2.2 and
the conditions (4.4) and (4.5), we get∣∣∣∣∣4βe−2τ

2∑
j=1

∫
R2

Xj |X|2 |A|2 ∂jffdX

∣∣∣∣∣ ≤ β

2
e−2τ

∥∥|X|2 |A| ∇f∥∥2

+ Cβe−2τ
∥∥|X|2 f∥∥ ‖f‖ ‖∇W‖H1 ‖∇W‖L2(2)

≤ β

2
e−2τ

∥∥|X|2 |A| ∇f∥∥2
+ CM2γ2 (1− θ)12 e−τ ,

and we conclude that

J1 ≥
β

2
e−2τ

∥∥|X|2 |A| ∇f∥∥2 − CM2γ2 (1− θ)12 e−τ . (4.45)

By the same way, we estimate J2. A short computation shows that

J2 = βα1e
−3τ
∥∥|X|2 |A|∆f∥∥2

+ 2βα1e
−3τ
∑2

j=1

∫
R2 |X|4 ∂jA : A∂jf∆fdX.

We define

I =

∣∣∣∣∣2βα1e
−3τ

2∑
j=1

∫
R2

|X|4 ∂jA : A∂jf∆fdX

∣∣∣∣∣
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Applying Hölder inequalities and the continuous injection of H1(R2) into L4(R2), we
obtain

I ≤ Cβα1e
−3τ
∥∥|X|2 |A|∆f∥∥∥∥|X|2∇f∥∥

L4

∥∥∇2U
∥∥
L4

≤ Cβα1e
−3τ
∥∥|X|2 |A|∆f∥∥∥∥|X|2∇f∥∥

L4

∥∥∇2U
∥∥
H1 .

Using the inequality (2.6) of Lemma 2.2 and the inequality (2.17) of Lemma 2.4, we get

I ≤ Cβα1e
−3τ
∥∥|X|2 |A|∆f∥∥∥∥|X|2∇f∥∥1/2

×
(
‖f‖1/2 + ‖|X| ∇f‖1/2 +

∥∥|X|2 ∆f
∥∥1/2

)
‖W‖H2 .

Due to Young inequality and the condition (4.4), we obtain

I ≤ β

2
α1e

−3τ
∥∥|X|2 |A|∆f∥∥2

+ Cβα1e
−3τ ‖W‖2

H2

(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)

≤ β

2
α1e

−3τ
∥∥|X|2 |A|∆f∥∥2

+ CMγ (1− θ)6 e−2τ
(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)
.

Thus, we can conclude that

J2 ≥
β

2
α1e

−3τ
∥∥|X|2 |A|∆f∥∥2

−CMγ (1− θ)6 e−2τ
(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)
.

(4.46)
Combining the inequalities (4.45) and (4.46) and going back to (4.44), we have shown
that

J ≥ β

2
e−2τ

(∥∥|X|2 |A| ∇f∥∥2
+ α1e

−τ ∥∥|X|2 |A|∆f∥∥2
)
− CM2γ2 (1− θ)12 e−τ

−CMγ (1− θ)6 e−2τ
(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)
.

(4.47)
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Taking into account the inequality (4.47), the equality (4.43) becomes

∂τE6 +
1

2

∥∥|X|2 f∥∥2
+
(
1 + α1e

−τ) ∥∥|X|2∇f∥∥2
+

(
α1e

−τ +
α2

1

2
e−2τ

)∥∥|X|2 ∆f
∥∥2

+
β

2
e−2τ

(∥∥|X|2 |A| ∇f∥∥2
+ α1e

−τ ∥∥|X|2 |A|∆f∥∥2
)
≤

Cεe−τ ‖|X| ∇f‖2 + Cεα1e
−2τ ‖|X|∆f‖2 +

(
8 + 8α1e

−τ) ‖|X| f‖2

+CMγ (1− θ)6 e−2τ
(
‖f‖2 + ‖∇f‖2 +

∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)

+CM2γ2 (1− θ)12 e−τ + I1 + I2 + I3 + I4 + I5.
(4.48)

It remains to estimate every Ii, i = 1, ..., 5. Using the divergence free property of K,
integrating by parts and using Hölder inequalities, we get

I1 = −2
2∑
j=1

∫
R2

Xj |X|2Kj

∣∣f − α1e
−τ∆f

∣∣2 dX
≤ C ‖K‖L∞

∥∥|X|2 (f − α1e
−τ∆f

)∥∥ ∥∥|X| (f − α1e
−τ∆f

)∥∥ .
The inequalities (2.15) of lemma 2.3 and (2.4) of lemma 2.2, the Young inequality ab ≤
3
4
a

4
3 + 1

4
b4 and the inequality (4.5) yield

I1 ≤ C ‖f‖1/2

H1 ‖f‖1/2

L2(2)

∥∥|X|2 (f − α1e
−τ∆f

)∥∥3/2 ∥∥f − α1e
−τ∆f

∥∥1/2

≤ CM1/2γ1/2 (1− θ)3
(∥∥|X|2 (f − α1e

−τ∆f
)∥∥2

+
∥∥f − α1e

−τ∆f
∥∥2
)

≤ CM1/2γ1/2 (1− θ)3
(∥∥|X|2 f∥∥2

+ α2
1e
−2τ
∥∥|X|2 ∆f

∥∥2
+ ‖f‖2 + α2

1e
−2τ ‖∆f‖2

)
.

(4.49)
Using the inequality (2.14) of Lemma 2.4, one can bound I2 in a convenient way. Indeed,
one has

I2 ≤ C |η| ‖K‖L4

∥∥|X|2∇ (G− α1e
−τ∆G

)∥∥
L4

∥∥|X|2 (f − α1e
−t∆f

)∥∥
≤ C |η| ‖f‖L2(2)

(∥∥|X|2 f∥∥+ α1e
−τ ∥∥|X|2 ∆f

∥∥)
≤ CM1/2γ1/2 (1− θ)3

(∥∥|X|2 f∥∥2
+ α2

1e
−2τ
∥∥|X|2 ∆f

∥∥2
+ ‖f‖2

)
.

(4.50)
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Via an integration by parts, due to the facts that V (X).X = 0 and div V = 0, we show
that I3 vanishes. Indeed

I3 =
η

2

2∑
j=1

∫
R2

|X|4 Vj∂j
(∣∣f − α1e

−τ∆f
∣∣2) dX

= −2η
2∑
j=1

∫
R2

|X|XjVj
∣∣f − α1e

−τ∆f
∣∣2 dX = 0.

We rewrite I4 = I1
4 + I2

4 , where

I1
4 = −ηα1e

−τ
(
ε

α1

∆2G+ ∆G+
X

2
.∇∆G, |X|2

(
f − α1e

−τ∆f
))

L2

,

I2
4 = −ηβe−2τ

(
div

(
|A|2∇G

)
, |X|4

(
f − α1e

−τ∆f
))
L2 .

It is easy, using the smoothness of G and the inequality (4.5), to see that

I1
4 ≤ C |η| e−τ ‖G‖H3(3)

(
‖f‖+ α1e

−τ ‖∆f‖
)

≤ CMγ (1− θ)6 e−τ .

The term I3
4 is not really harder to estimate. Due to the inequality (2.13) of Lemma 2.3,

the inequality (4.5), the continuous injection of H1(R2) into L4(R2) and the inequality
(4.4), we get

I2
4 ≤ |η| βe−2τ

(
‖∇U‖2

L4

∥∥|X|4 ∆G
∥∥
L∞

+ ‖∇U‖L4

∥∥∇2U
∥∥
L4

∥∥|X|4∇G∥∥
L∞

)
×
(
‖f‖+ α1e

−τ ‖∆f‖
)

≤ C |η| βe−2τ
(
‖W‖2

L4 + ‖W‖L4 ‖∇W‖L4

) (
‖f‖+ α1e

−τ ‖∆f‖
)

≤ C |η| e−2τ
(
‖W‖2

H1 + ‖W‖H1 ‖W‖H2

) (
‖f‖+ α1e

−τ ‖∆f‖
)

≤ CM2γ2 (1− θ)12 e−
3τ
2 .

Thus, assuming γ ≤ 1, the following inequality holds:

I4 ≤ CM2γ (1− θ)6 e−τ . (4.51)

It remains to estimate I5, which is the term that does not appear in the second grade
fluids equations. We rewrite
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I5 = I1
5 + I2

5 ,

where

I1
5 = −βe−2τ

(
div

(
∇
(
|A|2

)
∧ A

)
, |X|4 f

)
L2 ,

I2
5 = βα1e

−3τ
(
div

(
∇
(
|A|2

)
∧ A

)
, |X|4 ∆f

)
L2 .

We begin by estimating I1
5 . After some computations, we notice that we have to estimate

two kinds of terms. In fact, one has

I1
5 ≤ I1,1

5 + I1,2
5 ,

where

I1,1
5 = Cβe−2τ

∫
R2

|X|4
∣∣∇2U

∣∣2 |∇U | |f | dX,
I1,2

5 = Cβe−2τ

∫
R2

|X|4
∣∣∇3U

∣∣ |∇U |2 |f | dX.
In order to simplify the notations, we define

δ = Mγ (1− θ)6.

Applying the inequality (2.6) of Lemma 2.2 and the continuous injection of H2(R2) into
L∞(R2), we obtain

I1,1
5 ≤ βe−2τ

∥∥|X| ∇2U
∥∥2

L4 ‖∇U‖L∞
∥∥|X|2 f∥∥

≤ Cβe−2τ (‖W‖+ ‖|X| ∇W‖) (‖∇W‖+ ‖|X|∆W‖) ‖∇U‖H2

∥∥|X|2 f∥∥ .
Then, using the inequalities (2.4) of Lemma 2.2 and (2.17) of Lemma 2.4 and the condi-
tions (4.4) and (4.5), we get

I1,1
5 ≤ Cβe−2τ

(
‖W‖+ ‖∇W‖1/2

∥∥|X|2∇W∥∥1/2
)

×
(
‖∇W‖+ ‖∆W‖1/2

∥∥|X|2 ∆W
∥∥1/2

)
‖W‖H2

∥∥|X|2 f∥∥
≤ Cδe−3τ/2

(
δ1/2 + δ1/4

∥∥|X|2∇W∥∥1/2
)(

δ1/2 + δ1/4eτ/4
∥∥|X|2 ∆W

∥∥1/2
)
.

Then, we recall that W = ηG + f . Due to the fact that |η| ≤ δ1/2 and the smoothness
of G, we obtain

I1,1
5 ≤ Cδe−3τ/2

(
δ1/2 + δ1/4

∥∥|X|2∇f∥∥1/2
)(

δ1/2 + δ1/4eτ/4
∥∥|X|2 ∆f

∥∥1/2
)

≤ Cδ2e−3τ/2 + Cδ7/4e−3τ/2
∥∥|X|2∇f∥∥1/2

+ Cδ7/4e−5τ/4
∥∥|X|2 ∆f

∥∥1/2

+ Cδ3/2e−5τ/4
∥∥|X|2∇f∥∥1/2 ∥∥|X|2 ∆f

∥∥1/2
.
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Using the Young inequalities ab ≤ 1
4
a4 + 3

4
b4/3 and ab ≤ 1

3
a3 + 2

3
b3/2, the inequality (4.5)

and assuming γ ≤ 1, we finally obtain

I1,1
5 ≤ Cδ2e−

3τ
2 + Cδ2

(∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)

+Cδ5/3
(
e−2τ + e−

5τ
3

)
+ Cδ4/3e−

5τ
3

∥∥|X|2∇f∥∥2/3

≤ Cδ2e−
3τ
2 + Cδ2

(∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)

+Cδ5/3
(
e−2τ + e−

5τ
3

)
+ Cδe−

5τ
2 + Cδ2

∥∥|X|2∇f∥∥2

≤ CM2γ (1− θ)6 e−
3τ
2 + CM2γ2 (1− θ)12

(∥∥|X|2∇f∥∥2
+
∥∥|X|2 ∆f

∥∥2
)
.

(4.52)
In order to estimate I1,2

5 , we use Hölder inequalities and obtain

I1,2
5 ≤ Cβe−2τ

∥∥|X|2∇3U
∥∥∥∥|X|2 f∥∥

L4 ‖∇U‖
2
L8 .

Then, using the Galiardo-Niremberg inequality, we notice that∥∥|X|2 f∥∥
L4 ≤

∥∥|X|2 f∥∥1/2 ∥∥∇ (|X|2 f)∥∥1/2

≤ C
∥∥|X|2 f∥∥1/2 (‖|X| f‖+

∥∥|X|2∇f∥∥)1/2
.

The inequalities (2.13) of lemma 2.3, (2.20) of lemma 2.5 and the continuous injection
of H1(R2) into L8(R2) imply

I1,2
5 ≤ Cβe−2τ

∥∥|X|2∇3U
∥∥∥∥|X|2 f∥∥

L4 ‖∇U‖
2
L8

≤ Cβe−2τ
(
‖W‖+ ‖|X| ∇W‖+

∥∥|X|2 ∆W
∥∥)

×
∥∥|X|2 f∥∥1/2 (‖|X| f‖+

∥∥|X|2∇f∥∥)1/2 ‖W‖2
H1 .

Finally, using the conditions (4.4) and (4.5) and the Young inequality ab ≤ 1
4
a4 + 3

4
b4/3,

we obtain
I1,2

5 ≤ Cδ7/4e−
3τ
4

∥∥|X|2 f∥∥1/2

≤ Cδ2e−τ + Cδ
∥∥|X|2 f∥∥2

≤ CM2γ2 (1− θ)12 e−τ + CMγ (1− θ)6
∥∥|X|2 f∥∥2

.

(4.53)

Thus, combining the inequalities (4.52) and (4.53), we obtain

I1
5 ≤ CM2γ (1− θ)6 e−τ + CM2γ (1− θ)6

(∥∥|X|2 f∥∥2
+
∥∥|X|2∇f∥∥2

+
∥∥|X|2 ∆f

∥∥2
)
.

(4.54)
It remains to estimate I2

5 . Like in the case of I1
5 , we have to consider two kinds of terms.

Indeed, one can show that
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I2
5 ≤ I2,1

5 + I2,2
5 ,

where

I2,1
5 = Cα1βe

−3τ

∫
R2

|X|4
∣∣∇2U

∣∣2 |∇U | |∆f | dX,
I2,2

5 = Cα1βe
−3τ

∫
R2

|X|4
∣∣∇3U

∣∣ |∇U |2 |∆f | dX.
With the same tools than the ones used to estimate I1

5 , one can bound I2,1
5 . Due to

Hölder inequalities and the continuous injection of H2(R3) into L∞(R2), one has

I2,1
5 ≤ Cα1βe

−3τ
∥∥|X|2 ∆f

∥∥∥∥|X| ∇2U
∥∥2

L4 ‖∇U‖L∞
≤ Cα1βe

−3τ
∥∥|X|2 ∆f

∥∥∥∥|X| ∇2U
∥∥2

L4 ‖∇U‖H2 .

Then, using the inequality (2.6) of Lemma 2.2 and the inequality (2.17) of Lemma 2.4,
we obtain

I2,1
5 ≤ Cα1βe

−3τ
∥∥|X|2 ∆f

∥∥ (‖W‖+ ‖|X| ∇W‖) (‖∇W‖+ ‖|X|∆W‖) ‖W‖H2

Finally, the condition (4.4) and Young inequality imply

I2,1
5 ≤ Cδ3/2e−τ

∥∥|X|2 ∆f
∥∥

≤ CM2γ2 (1− θ)12 e−2τ + CMγ (1− θ)6
∥∥|X|2 ∆f

∥∥2
.

(4.55)

Likewise, using the inequality (2.20) of Lemma 2.5 and the continuous injection of

H
3
2 (R2) into L∞(R2), we get

I2,2
5 ≤ Cβα1e

−3τ
∥∥|X|2 ∆f

∥∥∥∥|X|2∇3U
∥∥ ‖∇U‖2

L∞

≤ Cβα1e
−3τ
∥∥|X|2 ∆f

∥∥ (‖W‖+ ‖|X| ∇W‖+
∥∥|X|2 ∆W

∥∥) ‖W‖2
H3/2

≤ Cδ1/2e−2τ
∥∥|X|2 ∆f

∥∥ ‖W‖2
H3/2 .

Using the well-known interpolation inequality

‖v‖H3/2 ≤ C ‖v‖1/2

H1 ‖v‖1/2

H2 , for every v ∈ H2(R2),

we obtain, using again the condition (4.4) and Young inequality,

I2,2
5 ≤ Cδ1/2e−2τ

∥∥|X|2 ∆f
∥∥ ‖W‖H1 ‖W‖H2

≤ Cδ3/2e−3τ/2
∥∥|X|2 ∆f

∥∥
≤ CM2γ2 (1− θ)12 e−3τ + CMγ (1− θ)6

∥∥|X|2 ∆f
∥∥2
.

(4.56)
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Finally, the inequalities (4.55) and (4.56) imply

I2
5 ≤ CM2γ2 (1− θ)12 e−3τ + CMγ (1− θ)6

∥∥|X|2 ∆f
∥∥2
. (4.57)

Thus, combining the inequalities (4.54) and (4.57), we get

I5 ≤ CM2γ (1− θ)6 e−τ + CM2γ (1− θ)6
(∥∥|X|2 f∥∥2

+
∥∥|X|2∇f∥∥2

+
∥∥|X|2 ∆f

∥∥2
)
.

(4.58)
Taking into account the inequalities (4.49), (4.50), (4.51) and (4.58) and going back to
(4.48), one has

∂τE6 +
1

2

∥∥|X|2 f∥∥2
+
(
1 + α1e

−τ) ∥∥|X|2∇f∥∥2
+

(
α1e

−τ +
α2

1

2
e−2τ

)∥∥|X|2 ∆f
∥∥2

−
(
8 + 8α1e

−τ) ‖|X| f‖2 ≤

Cεe−τ ‖|X| ∇f‖2 + Cεα1e
−2τ ‖|X|∆f‖2 + CM2γ (1− θ)6 e−τ

+CM2γ1/2 (1− θ)3 (‖f‖2 + ‖∇f‖2 + ‖∆f‖2)
+CM2γ1/2 (1− θ)3

(∥∥|X|2 f∥∥2
+
∥∥|X|2∇f∥∥2

+
∥∥|X|2 ∆f

∥∥2
)
.

(4.59)
Via the Young inequality and the condition (4.5), it is easy to check that

Cεe−τ ‖|X| ∇f‖2 + Cεα1e
−2τ ‖|X|∆f‖2 ≤ ε2

∥∥|X|2∇f∥∥2
+ Ce−2τ ‖∇f‖2

+ ε2
∥∥|X|2 ∆f

∥∥2
+ Cα2

1e
−4τ ‖∆f‖2

≤ ε2
∥∥|X|2∇f∥∥2

+ ε2
∥∥|X|2 ∆f

∥∥2

+ CM (1− θ)6 e−2τ .

We assume that ε2 ≤ min

(
1

2
,
α1e

−τ0

2

)
. The inequality (4.59) becomes

∂τE6 +
1

2

∥∥|X|2 f∥∥2
+

(
1

2
+ α1e

−τ
)∥∥|X|2∇f∥∥2

+

(
α1

2
e−τ +

α2
1

2
e−2τ

)∥∥|X|2 ∆f
∥∥2 − 8α1e

−τ ‖|X| f‖2 ≤

CM2γ (1− θ)6 e−τ + 8 ‖|X| f‖2

+C1M
2γ1/2 (1− θ)3 (‖f‖2 + ‖∇f‖2 + ‖∆f‖2)

+C1M
2γ1/2 (1− θ)3

(∥∥|X|2 f∥∥2
+
∥∥|X|2∇f∥∥2

+
∥∥|X|2 ∆f

∥∥2
)
,

(4.60)
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where C1 is a positive constant dependent on α1 and β.

We take now γ sufficiently small so that C1M
2γ1/2 (1− θ)3 ≤ 1−θ

4
. We obtain

∂τE6 +

(
θ

2
+

1− θ
4

)∥∥|X|2 f∥∥2
+

(
1

4
+ α1e

−τ
)∥∥|X|2∇f∥∥2

+

(
α1

4
e−τ +

α2
1

2
e−2τ

)∥∥|X|2 ∆f
∥∥2 − 8α1e

−τ ‖|X| f‖2 ≤

CM2γ (1− θ)6 e−τ + 8 ‖|X| f‖2

+C1M
2γ1/2 (1− θ)3 (‖f‖2 + ‖∇f‖2 + ‖∆f‖2) .

(4.61)
Using the inequality (2.4) of lemma 2.2, one has

8 ‖|X| f‖2 ≤ h
∥∥|X|2 f∥∥2

+
64

h
‖f‖2 , for all h > 0.

Thus, we set h = 1−θ
8

and obtain

∂τE6 +

(
θ

2
+

1− θ
8

)∥∥|X|2 f∥∥2
+

(
1

4
+ α1e

−τ
)∥∥|X|2∇f∥∥2

+

(
α1

4
e−τ +

α2
1

2
e−2τ

)∥∥|X|2 ∆f
∥∥2 − 8α1e

−τ ‖|X| f‖2 ≤

CM2γ (1− θ)6 e−τ +
1024

1− θ
‖f‖2

+C1M
2γ1/2 (1− θ)3 (‖f‖2 + ‖∇f‖2 + ‖∆f‖2) .

(4.62)
Integrating several times by parts, we notice that

E6 = 1
2

∥∥|X|2 f∥∥2
+ α1e

−τ
∥∥|X|2∇f∥∥2

+
α2
1

2
e−2τ

∥∥|X|2 ∆f
∥∥2 − 8α1e

−τ ‖|X| f‖2 .

Consequently, the inequality (4.62) can be written

∂τE6 + θE6 +
1− θ

8

∥∥|X|2 f∥∥2
+

1

4

∥∥|X|2∇f∥∥2
+
α1

4
e−τ

∥∥|X|2 ∆f
∥∥2

≤ CM2γ (1− θ)6 e−τ +
1024

1− θ
‖f‖2 + CM2γ1/2 (1− θ)3 (‖f‖2 + ‖∇f‖2 + ‖∆f‖2) .

(4.63)

�
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5 Proof of Theorem 1.1

In this section, we consider the solution Wε of (4.1) with initial data W0 satisfying the
condition (1.8) for some γ > 0 and we take advantage of the energy estimates obtained
in Section 4 to show that Wε satisfies the inequality (1.9). Then, we pass to the limit
when ε tends to 0 and show that Wε converges, up to a subsequence, to a weak solution
of (1.6) which satisfies also the inequality (1.9). We recall that

Wε = ηG+ fε,

where G is the Oseen vortex sheet given by (1.3), η =

∫
R2

W0(X)dX and fε satisfies the

equality (4.3). We define the functional

E7 =
K

1− θ
E5 + E6,

where K is a large positive constant that will be made more precise later and E5 and E6

are the energy functionals defined in Section 4.

If K is large enough, this energy is suitable to estimate the H2(2) norm of fε, as it is
shown by the next lemma.

Lemma 5.1 Let fε ∈ C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)). If K is large enough,
there exist two positive constants C1 and C2 such that, for all τ ∈ (τ0, τε),

E7 ≤
C1

1− θ

(
‖fε‖2

H1 + α1e
−τ ‖∆fε‖2 +

∥∥|X|2 fε∥∥2
+ α2

1e
−2τ
∥∥|X|2 ∆fε

∥∥2
)
,

C2

(
‖fε‖2

H1 + α1e
−τ ‖∆fε‖2 +

∥∥|X|2 fε∥∥2
+ α2

1e
−2τ
∥∥|X|2 ∆fε

∥∥2
)
≤ E7.

Proof: The first inequality of this lemma comes directly from the definition of E7. To
prove the second one, we notice that

E7 ≥
CK

1− θ
(
‖fε‖2

H1 + α1e
−τ ‖∆fε‖2)+

1

2

∥∥|X|2 (fε − α1e
−τ∆fε

)∥∥2
.

Furthermore, we have already shown that∥∥|X|2 (fε − α1e
−τ∆fε

)∥∥2
=
∥∥|X|2 fε∥∥2

+ 2α1e
−τ ∥∥|X|2∇fε∥∥2

+α2
1e
−2τ
∥∥|X|2 ∆fε

∥∥2 − 16 ‖|X| fε‖2 .
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Via the Hölder and Young inequalities, we get∥∥|X|2 (fε − α1e
−τ∆fε

)∥∥2 ≥
∥∥|X|2 fε∥∥2

+ 2α1e
−τ ∥∥|X|2∇fε∥∥2

+α2
1e
−2τ
∥∥|X|2 ∆fε

∥∥2 − 1

2

∥∥|X|2 fε∥∥2 − 128 ‖fε‖2 .

Consequently, one has

E7 ≥
CK

1− θ
(
‖fε‖2

H1 + α1e
−τ ‖∆fε‖2)+

1

4

∥∥|X|2 fε∥∥2
+ α1e

−τ ∥∥|X|2∇fε∥∥2

+
α2

1

2
e−2τ

∥∥|X|2 ∆f
∥∥2 − 64 ‖fε‖2 .

Thus, if K is big enough, we get the second inequality of this lemma.

�

Lemma 5.2 Let Wε ∈ C0 ([τ0, τε) , H
3(2)) be a solution of (4.1) satisfying the inequality

(4.4) for some γ > 0. There exist T0 > 0 and γ0 > 0 such that if T = eτ0 ≥ T0 and
γ ≤ γ0, then, for all τ ∈ [τ0, τ

∗
ε ), E7 satisfies the inequality

∂τE7 + θE7 ≤ CM3γ (1− θ) e−τ . (5.1)

Proof: We take γ0 and T0 respectively as small and large as necessary to satisfy the
conditions of the lemmas 4.2 to 4.6. According to the inequalities (4.41) and (4.42), one
has

∂τE7 + θE7 +
K

1− θ

(
7
∥∥∥(−∆)−

1+θ
4 fε

∥∥∥2

+
1

4
‖∇fε‖2 +

1

4
‖∆fε‖2

)
+

1− θ
8

∥∥|X|2 fε∥∥2
+
α1

4
e−τ

∥∥|X|2 ∆fε
∥∥2 ≤ CM3γ (1− θ) e−τ +

1024

1− θ
‖fε‖2

+ CM2 (1− θ) γ1/2K
(∥∥|X|2 fε∥∥2

+ α2
1e
−2τ
∥∥|X|2 ∆fε

∥∥2
)

+ CM2 (1− θ) γ1/2
(
‖fε‖2 + ‖∇fε‖2 + ‖∆fε‖2) .

Using the interpolation inequality (4.27) of ‖fε‖2 between
∥∥∥(−∆)−

1+θ
4 fε

∥∥∥2

and ‖∇fε‖2

and taking K large enough and γ small enough, we get

∂τE7 + θE7 ≤ CM3γ (1− θ) e−τ . (5.2)

�

Remark 5.1 We can see in the proofs of the lemmas 4.2 to 5.2 that γ0 does not depend
on θ, but only on α1, β and M .
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5.1 Regularized problem

Before proving Theorem 1.1, we show an intermediate theorem. This one gives the
same result than Theorem 1.1, but for the solution of the regularized system (4.1).

Theorem 5.1 Let θ be a constant such that 0 < θ ≤ 1. There exist ε0 = ε0(α1, β) > 0,
γ0 = γ0(α1, β) > 0 and T0 = T0(α1, β) ≥ 0 such that, for all ε ≤ ε0, T = eτ0 ≥ T0 and
W0 ∈ H2(2) satisfying the condition (1.8) with γ ≤ γ0, there exist a unique global solution
Wε ∈ C1 ((τ0,+∞) , H1(2)) ∩ C0 ((τ0,+∞) , H3(2)) of (4.1) and a positive constant C =
C(α1, β, θ) > 0 such that, for all τ ≥ τ0,∥∥(1− α1e

−τ∆
)

(Wε(τ)− ηG)
∥∥2

L2(2)
≤ Cγe−θτ , (5.3)

where η =

∫
R2

W0(x)dx and the parameters α1 and β are fixed and given in (1.1).

Proof of Theorem 5.1: LetW0 ∈ H2(2) satisfying the condition (1.8) with 0 ≤ γ ≤ γ0

and 0 ≤ T0 ≤ T , where γ0 and T0 will be made more precise later. By theorem 3.1,
there exist τε > τ0 = log(T ) and a solution Wε to the system (4.1) which belongs to

C1 ((τ0, τε) , H
1(2)) ∩ C0 ((τ0, τε) , H

3(2)). Let η =

∫
R2

W0(X)dX, and fε defined by the

equality
Wε = ηG+ fε. (5.4)

Let M > 2 be a positive constant that will be set later and τ ∗ε ∈ [τ0, τε) be the highest
positive time such that the inequality (4.4) holds. As shown at the beginning of Section
4, the inequality (4.5) holds on [τ0, τ

∗
ε ). We take T0 sufficiently large and γ0 and ε

sufficiently small so that the results of the lemmas 4.2 to 5.2 occur. Consequently, there
exists C = C(α1, β) > 0 such that, for all τ ∈ [τ0, τ

∗
ε ),

∂τ
(
E7e

θτ
)
≤ CM3γ (1− θ) e−(1−θ)τ . (5.5)

Integrating this inequality in time between τ0 and τ ∈ [τ0, τ
∗
ε ), we obtain

E7(τ) ≤ E7(τ0)e−θ(τ−τ0) + CM3γ
(
e−(1−θ)τ0e−θτ − e−τ

)
. (5.6)

Due to the decomposition (5.4) and the lemma 5.1, for every τ ∈ [τ0, τ
∗
ε ), one has

‖Wε(τ)‖2
H1 +

∥∥|X|2Wε(τ)
∥∥2

+ α1e
−τ ‖∆Wε(τ)‖2 + α2

1e
−2τ
∥∥|X|2 ∆Wε(τ)

∥∥2 ≤
Cη2 + CE7(τ).
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Since fε satisfies the inequality (4.5), one has η2 ≤ Cγ (1− θ)6. Taking into account the
inequality (5.6), it comes

‖Wε(τ)‖2
H1 +

∥∥|X|2Wε(τ)
∥∥2

+ α1e
−τ ‖∆Wε(τ)‖2 + α2

1e
−2τ
∥∥|X|2 ∆Wε(τ)

∥∥2 ≤
Cγ (1− θ)6 + E7(τ0)e−θ(τ−τ0) + CM3γe−τ0 .

(5.7)
Using again the lemma 5.1 and arguing like for the establishment of the inequality (4.5),
we can show that

E7(τ0) ≤ C

1− θ

(
‖fε(τ0)‖2

H1 + α1e
−τ0 ‖∆fε(τ0)‖2

+
∥∥|X|2 fε(τ0)

∥∥2
+ α2

1e
−2τ0

∥∥|X|2 ∆fε(τ0)
∥∥2
)

≤ Cγ (1− θ)5 .

Consequently, the inequality (5.7) becomes

‖Wε(τ)‖2
H1 +

∥∥|X|2Wε(τ)
∥∥2

+ α1e
−τ ‖∆Wε(τ)‖2 + α2

1e
−2τ
∥∥|X|2 ∆Wε(τ)

∥∥2 ≤
C1γ (1− θ)5 + C2M

3γe−τ0 ,
(5.8)

where C1 and C2 are two positive constants independent of W0 and θ.

We set M = 4C1

1−θ , and we get

‖Wε(τ)‖2
H1 +

∥∥|X|2Wε(τ)
∥∥2

+ α1e
−τ ‖∆Wε(τ)‖2 + α2

1e
−2τ
∥∥|X|2 ∆Wε(τ)

∥∥2 ≤
Mγ (1− θ)6

4
+ C2M

3γe−τ0 .

(5.9)

Finally, taking T0 sufficiently large so that C2M
3γe−τ0 ≤ Mγ (1− θ)6

4
, we obtain, for all

τ ∈ [τ0, τ
∗
ε ),

‖Wε(τ)‖2
H1+

∥∥|X|2Wε(τ)
∥∥2

+α1e
−τ ‖∆Wε(τ)‖2+α2

1e
−2τ
∥∥|X|2 ∆Wε(τ)

∥∥2 ≤ Mγ (1− θ)6

2
.

(5.10)
This inequality shows in particular that τ ∗ε = τε and thus (5.10) holds for all τ ∈ [τ0, τε).
From the inequality (5.10), we deduce also that τε = +∞. Indeed, if τε < +∞, the
boundedness of Wε in H2(2) on [τ0, τε) given by (5.10) is a contradiction to the finiteness
of τε.

In particular, the inequality (5.6) occurs on [τ0,+∞). Applying the lemma 5.1 in the
inequality (5.6), we finally obtain the inequality (5.3).
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5.2 Existence of weak solutions in H2(2)

Now, we show that under the hypotheses of Theorem 5.1, there exists a global weak
solution W of (1.6) which belongs to C0 ([τ0,+∞) , H2(2)), and that this solution con-
verges to the Oseen vortex sheet G when τ goes to infinity. To this end, we pass to the
limit in the system (4.1) when ε tends to 0 and show that, up to a subsequence, Wε con-
verges in some sense to a solution of the system (1.6) which satisfies the inequality (5.3).
Let (εn)n∈N be a sequence of positive numbers tending to 0. We consider the solution
Wεn ∈ C1 ((τ0,+∞) , H1(2))∩C0 ((τ0,+∞) , H3(2)) of (4.1) which satisfies the conditions
of Theorem 5.1. Due to technical reasons linked to the compactness properties of Sobolev
spaces, it is more convenient to establish the convergence of Wεn to W in every regular
bounded domain of R2. Let Ω be a regular domain of R2 and τ1 be a fixed positive time
such that τ0 < τ1 < +∞. In what follows, Hs(Ω), s ≥ 0, denotes the restrictions to Ω
of the functions of the Sobolev space Hs(R2). From Theorem 5.1, we know that Wεn

is bounded in L∞ ([τ0,+∞) , H2(2)) uniformly with respect to n. Consequently, there
exists W ∈ L∞ ([τ0, τ1] , H2(2)) such that

Wεn ⇀W weakly in Lp ([τ0, τ1] , H2(Ω)) , for all p ≥ 2.

Looking at the system (4.1), we can see that ∂τWεn is bounded in L∞ ([τ0, τ1] , H1(Ω))
uniformly with respect to n. This implies that Wεn is equicontinuous in H1(Ω). Indeed,
for σ1, σ2 ∈ [τ0, τ1], σ2 ≥ σ1, we have

‖Wεn(σ2)−Wεn(σ1)‖H1(Ω) =

∥∥∥∥∫ σ2

σ1

∂τWεn(s)ds

∥∥∥∥
H1(Ω)

≤ (σ2 − σ1) ‖∂τWεn(s)‖L∞([τ0,τ1],H1(Ω)) .

Furthermore, for every τ ∈ [τ0, τ1], the set
⋃
n∈N

fεn(τ) is bounded in H2(Ω) and thus

compact in H1(Ω). Using the Arzela-Ascoli theorem, we get

Wεn → W strongly in C0 ([τ0, τ1] , H1(Ω)).

By interpolation, we can show that

Wεn → W in C0 ([τ0, τ1] , Hs(Ω)) , for all s < 2. (5.11)

This is enough to pass to the limit in the system (4.1) in the sense of distributions on
[τ0, τ1]×Ω and to show that W is a weak solution of the system (1.6). Since most of the
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terms of the equation (4.1) have already been studied in [47], we will just show that the
convergence holds for the term −div curl

(
|Aεn|

2Aεn
)

which does not appear in the
second grade fluids equations.

We consider ϕ ∈ C∞0 ([τ0, τ1]× Ω). For all τ ∈ [τ0, τ1], we want to show that∫ τ

τ0

∫
Ω

|Aεn(τ,X)|2Aεn(τ,X) � ∇2ϕ(τ,X)dXdτ −→∫ τ

τ0

∫
Ω

|A(τ,X)|2A(τ,X) � ∇2ϕ(τ,X)dXdτ,
(5.12)

when n tends to infinity, where, for A,B ∈M2(R), we use the notation

A �B =
2∑
j=1

(A1,jB2,j − A2,jB1,j) .

The term of the right hand side of (5.12) appears naturally via two integrations by
parts, when performing the L2−scalar product of −div curl

(
|A|2A

)
with ϕ. The strong

convergence of Wεn to W in C0 ([τ0, τ1] , H1(Ω)) implies directly the identity (5.12). In-
deed, due to the continuous injection of H1(Ω) into L3(Ω), Wεn converges to W in
C0 ([τ0, τ1] , L3(Ω)). Furthermore, the inequality (2.13) implies

‖Aεn − A‖L3 ≤ ‖Wεn −W‖L3 ,

and consequently Aεn converges to A strongly in C0 ([τ0, τ1] , L3(Ω)). This fact suffices
to show that the identity (5.12) occurs. Thus W is a global weak solution of (1.6) which
belongs to C0 ([τ0,+∞) , H2(2)).

The fact that W satisfies the inequality (1.9) is a direct consequence of the weak conver-
gence of Wεn to W . Indeed, for all τ ∈ [τ0,+∞), Wεn(τ) is bounded in H2(2) uniformly
with respect to n and consequently we have

Wεn(τ) ⇀W (τ), weakly in H2(2), for all τ ∈ [τ0,+∞).

Since Wεn satisfies the inequality (1.9), it implies that W also satisfies (1.9).
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5.3 Uniqueness

The aim of this part is to prove that the solution w of the system (1.2) obtained in
Section 5.2 is unique in L2(2). Let w1 and w2 be two solutions of (1.2) with the same
initial data w0 ∈ H2(2). Let u1 and u2 be the divergence free vector fields obtained via
the Biot-Savart law respectively from w1 and w2. We also define Ai = ∇ui + (∇ui)t.
Applying the Biot-Savart law to the system (1.1), we can see that, for i = 1, 2, the
divergence free vector field ui satisfies the system

∂t (ui − α1∆ui)−∆ui + curl (ui − α1∆ui) ∧ ui − βdiv
(
|Ai|2Ai

)
+∇pi = 0,

div ui = 0,
ui|t=0 = u0,

(5.13)

where u0 is obtained from w0 via the Biot-Savart law.

Notice that since wi belongs to L∞loc (R+, H2(2)) and ∂twi belongs to L∞loc (R+, H1(R2)),
the inequalities (2.11) and (2.13) imply in particular

ui ∈ L∞loc (R+, Lp(R2)2) , for all p > 2,
∇ui ∈ L∞loc (R+, H2(R2)4) ,
∂tui ∈ L∞loc (R+, Lp(R2)2) , for all p > 2,
∂t∆ui ∈ L∞loc (R+, L2(R2)2) .

Consequently, the system (5.13) has a meaning in the sense of distributions.

We note w = w1−w2, u = u1−u2, L = L1−L2 and A = A1−A2. A short computation
shows that u satisfies the system

∂t (u− α1∆u)−∆u+ curl (u− α1∆u) ∧ u1 + curl (u2 − α1∆u2) ∧ u
+βdiv

(
|A2|2A2

)
− βdiv

(
|A1|2A1

)
+∇q = 0,

div u = 0,
u|t=0 = 0.

(5.14)
Notice that, although u1 and u2 do not belong to L2(R2), the divergence free vector field
u does. Indeed, since w1 and w2 have the same initial data, for all t ≥ 0, we have∫

R2

w(t, x)dx = 0.

By application of the lemma 2.5, this fact implies that u belongs to L2(R2). Let t0 > 0 be
a fixed positive time. We notice that both w1 and w2 are bounded in L∞ ([0, t0] , H2(2)).
More precisely, one has
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sup
t∈[0,t0]

(
‖w1(t)‖H2(2) + ‖w2(t)‖H2(2)

)
≤ C.

Applying the lemma 2.3, it implies in particular

sup
t∈[0,t0]

(‖ui(t)‖L4 + ‖∇ui(t)‖L∞ + ‖∆ui(t)‖L4) ≤ C, for i = 1, 2.

In order to show that u ≡ 0, we now perform estimates on the H1−norm of u. The
uniqueness of the solutions of (5.13) has been shown in [10] for solutions with initial
data in H2(R2). In our case, the proof is slightly simpler, because the vector field u
belongs to H3(R2)2. We consider the L2−inner product of (5.14) with u. First of all,
integrating by parts, we notice that

β
(
div

(
|A2|2A2 − |A1|2A1

)
, u
)
L2 =

β

2

(
|A1|2A1 − |A2|2A2, A

)
L2

=
β

4

∫
R2

(
|A1|2 + |A2|2

)
|A|2 dx

+
β

4

∫
R2

(
|A1|2 − |A2|2

)
(A1 + A2) : Adx

=
β

4

∫
R2

(
|A1|2 + |A2|2

)
|A|2 dx

+
β

4

∫
R2

(
|A1|2 − |A2|2

)2
dx.

Thus, using integrations by parts and the divergence free property of u, we have

1

2
∂t
(
‖u‖2 + α ‖∇u‖2)+ ‖∇u‖2 +

β

4

∫
R2

(
|A1|2 + |A2|2

)
|A| dx

+
β

4

∫
R2

(
|A1|2 − |A2|2

)2
dx = I1 + I2,

(5.15)

where

I1 = (curl (u2 − α1∆u2) ∧ u, u)L2 ,
I2 = (curl u ∧ u1, u)L2 ,
I3 = −α1 (curl ∆u ∧ u1, u)L2 .

A short computation shows that I1 vanishes. Indeed, we set ω = u2 − α1∆u2 and we
recall the notation u = (u1, u2, 0) and curl ω = (0, 0, ∂1ω2 − ∂2ω1). We have

I1 = (curl ω ∧ u, u)L2

= −
(
(∂1ω2 − ∂2ω1)u2, u1

)
L2 +

(
(∂1ω2 − ∂2ω1)u1, u2

)
L2

= 0.
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Due to the boundedness of u1 in L4(R2), applying Hölder inequalities we obtain

I2 ≤ ‖u1‖L4 ‖∇u‖ ‖u‖
≤ C(α1)

(
‖u‖2 + α1 ‖∇u‖2) .

Using [57, Lemma A.1], we check that

I3 ≤ Cα1

∫
R2

|∆u1| |∇u| |u| dx+ Cα1

∫
R2

|∇u1| |∇u|2 dx.

Using Hölder inequalities, the Gagliardo-Nirenberg inequality and the Young inequality
ab ≤ 1

4
a4 + 3

4
b4/3, we obtain

I3 ≤ Cα1 ‖u‖L4 ‖∆u2‖L4 ‖∇u‖+ Cα1 ‖∇u1‖L∞ ‖∇u‖
2

≤ Cα1 ‖∇u‖3/2 ‖u‖1/2 + Cα1 ‖∇u‖2

≤ C(α1)
(
‖u‖2 + α1 ‖∇u‖2) .

Going back to (5.15), we get

1

2
∂t
(
‖u‖2 + α ‖∇u‖2) ≤ C(α)

(
‖u‖2 + α ‖∇u‖2) . (5.16)

Integrating in time this inequality between 0 and t ∈ [0, t0] and applying the Gronwall
lemma, we finally obtain

‖u(t)‖2 + α ‖∇u(t)‖2 = 0, for all t ∈ [0, t0] .

Since t0 is arbitrary, we conclude that u ≡ 0 on R+. Consequently u is unique and so is
w. Thus, the system (1.2) has a unique global solution in the space C0 (R+, H2(2)).
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II. Attractor for the third grade
fluids equations in dimension 2

1 Introduction

In this article, we study the asymptotic behaviour of solutions of third grade fluids
equations in the periodic domain T2 = [−π, π]2. This class of non Newtonian fluids, which
is a particular case of fluids of grade n (or Rivlin Ericksen fluids), has been introduced
from the mathematical point of view by Fosdick and Rajagopal in 1980 (see [31] and
[59]). Since one can find many non Newtonian fluids in the nature, the understanding of
their behaviours is important. For instance, one can find non-Newtonian fluids in a lot
of oils used in industry, or even in the day-life, for examples melted cheese or wet sand.
The third grade fluids equations are given by

∂t (u− α1∆u)− ν∆u+ curl (u− α1∆u) ∧ u− (α1 + α2) (A∆u+ div (LLt))

−βdiv
(
|A|2A

)
+∇p = f,

div u = 0,
u|t=0 = u0,

(1.1)
where u is a vector field of R2 or R3, ν ≥ 0 is the cinematic viscosity, p is the pressure
of the fluid, depending on u, α1 ∈ R, α2 ∈ R, β ≥ 0, (L)i,j = ∂jui and A = L + Lt. For

matrices A,B ∈Md(R), we use the notation |A|2 =
d∑

i,j=1

A2
i,j and A : B =

d∑
i,j=1

Ai,jBi,j.

Notice that if we consider β = 0 and α2 = −α1, one recovers the second grade fluids
equations, which is another class of non-Newtonian fluids, introduced earlier in 1974 by
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J. Dunn and R. Fosdick (see [24]). If we assume α1 = α2 = β = 0, one recovers the
classical Navier-Stokes equations, which modelize Newtonian fluids.

The equations of third grade fluids have been studied in various cases, in open domains
of R2 or R3 (see [1], [9], [5] or [61]) or in the whole spaces R2 and R3 (see [10], [11] or [55]).
On a bounded set of R2 or R3, Amrouche and Cioranescu have shown the existence and
uniqueness of local solutions to (1.1) in the Sobolev space H3 with Dirichlet boundary
conditions (see [1]). For this study, they made the restriction

|α1 + α2| ≤
√

24νβ, (1.2)

which comes from physical considerations. The proof of their result is based on a Galerkin
method associated to the eigenspaces of the operator curl (Id− α∆). Later, in [9],
Bresch and Lemoine introduced a more general class of solutions belonging to the space
L∞ ([0, T ] ,W 2,p(Ω)3), with p > 3 and T > 0, for initial data in W 2,p(Ω)3 and forcing
term in Lp (R+, Lp(Ω)3). This result is obtained without assumption on the parameters
by using the Schauder’s fixed point theorem, and shows additionally that the solutions
are global in time if the initial data are small enough in W 2,p(Ω)3. In the whole space
R2 or R3, Busuioc and Iftimie established the existence of global weak solutions in the
Sobolev space H2 (see [10]), using Friedrich’s method and a priori estimates in H2.
Furthermore, they showed the uniqueness property in dimension 2 and the propagation
of the regularity if the data are in H3. Later, Paicu established the existence of global
weak solutions in the Sobolev space H1 (see [55]), considering additional restrictions on
the parameters α1, α2 and β. The methods used in [55] are slightly different from the
ones used in [10]. The proof of Paicu involves also a Friedrich’s scheme, but the final step
which shows that the approximate solutions converge to a solution of (1.1) is achieved
through a monotonicity method, that we will use in the present paper. Moreover, it is
shown that these weak solutions satisfy an energy equality, which will be useful in the
present paper.

In this paper, we are interested in the asymptotic behaviour of weak H1−solutions of
third grade fluids equations with periodic conditions. In order to study these asymptotics,
we will associate a dynamical system T (t) to the solutions of (1.1), as it has been made
for the second grade fluids equations or the Navier-Stokes equations. On a bounded
set Ω of R2 with homogeneous boundary conditions, Ladyzhenskaya has shown that
the solutions of the Navier-Stokes equations with initial data in the functions space
H =

{
u ∈ L2(Ω)2 : div u = 0, u|∂Ω = 0

}
define a dynamical system in H (see [49] and
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[50]). The same result has been shown by Moise, Rosa and Wang for the second grade
fluids equations on the space H3∩H (see [53]). In our case, the situation is slightly more
complicated. Indeed, since the solutions of (1.1) are not known to be unique in H1, we
cannot associate a classical dynamical system to the H1−weak solutions. To overcome
this difficulty, we show that the set of the weak H1−solutions of (1.1) is a generalized
semiflow for the H1−topology, according to the definition of Ball (see [3] and [4]). In [3,
Theorem 3.3], J. Ball gives a useful theorem that shows the existence of a compact global
attractor, provided that the generalized semiflow is point-dissipative and asymptotically
compact. This result is the analogue of a theorem shown by Hale, Lasalle and Slemrod in
[44] for classical dynamical systems (see also [43]). For the second grade fluids equations,
the existence of a compact global attractor has been shown by Moire, Rosa and Wang on
a bounded or periodic domain of R2 for solutions with initial data in H3, assuming that
the forcing term is constant in time and belongs to H1 (see [53]). This result is obtained
through an energy equality method, which show that the dynamical system associated to
the solutions of the second grade fluids equations is point dissipative and asymptotically
compact. In the case of the torus of dimension 2, Paicu, Rekalo and Raugel proved that
this attractor belongs to a more regular space than H3 (see [57]). Indeed, they proved
that there exists δ > 0 such that if the forcing term is in H1+δ, then the attractor is
bounded in H3+δ. They also extended the regularity results to the case of solutions with
initial data in W 3,p(T2), where 1 < p < +∞ and W s,q denotes the Sobolev space of order
s associated to the Lq-norm (see [56]). To obtain this result, they considered Lagrangian
coordinates.

In this paper, using the works of Paicu [55] and Busuioc and Iftimie [10], we will show
that the weak solutions of (1.1) in dimension 2 with periodic boundary conditions and
initial data in H2 admit a compact global attractor for the H1−topology. This result
is obviously weaker than the ones obtained for the second grade fluids equations, and
is mainly due to the fact that, under restrictions on the parameters α1, ν and β, the
H2−solutions of (1.1) admit a bounded absorbing set in H2.

In the two dimensional case, combining results that we can find in [10] and [1], one can
show that the system (1.1) is equivalent to

∂t (u− α∆u)− ν∆u+ u.∇u− αdiv (u.∇A+ LtA+ AL)− βdiv
(
|A|2A

)
+∇p = f,

div u = 0,
u|t=0 = u0,

(1.3)
where α = α1.
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Notice that, in this new system, the constant α2 disappeared. This phenomenon is due
to the divergence free property of u and is very particular to the dimension 2. The proofs
of the results of this paper clearly take advantage of this fact.

The plan of this paper is as follows. In the section 2, we establish the existence
of weak solutions to (1.3) with initial data in H1(T2)2 and forcing term in L2(T2)2

which is independent of the time. We will also recall the energy equality satisfied by
these solutions, which has a particular form in dimension 2. In the section 3, we recall
some definitions about the generalized semiflows and then show that the set of the weak
solutions of (1.3) with initial data in H1 is a generalized semiflow for the H1−topology.
Furthermore, we show that this generalized semiflow admits a bounded absorbing set.
Finally, we show in the section 4 that the set of the weak solutions of (1.3) with initial
data in H2 admits in some sense a compact global attractor for the H1−topology. More
precisely, we will show that the bounded sets of H2 are attracted in the topology of H1

by an invariant bounded set of H2.

2 Existence of weak solutions and energy equality

In this section, we show that the proof of the existence of global H1 solutions to (1.3)
given by Paicu in [55] for the whole space R2 extends to the case of T2. To this end, we
define the functions spaces

H =

{
u ∈ L2(T2)2 : div u = 0,

∫
T2

u(x)dx = 0

}
, and V = H1(T2)2 ∩H.

In particular, every u ∈ V satisfies the Poincaré inequality

‖u‖2
L2 ≤ ‖∇u‖2

L2 . (2.1)

One defines also, for s > 0, the functions space

V s = Hs(T2)2 ∩H,

and V −s, the dual space of V s.

Like for the case of a fluid filling the whole space R2, we show next that, given initial
data in V , there exist weak solutions to (1.3) belonging to the space

X∞ = L∞
(
R+, V

)
∩ L4

loc

(
R+,W 1,4

(
T2
)2
)
.
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Although this result has not been written, it is almost shown in [55], and only a few
details differ between the periodic and the whole space cases.

In order to define the weak solutions of (1.3), we introduce the space

XT = L∞ ([0, T ] , V ) ∩ L4 ([0, T ] ,W 1,4(T2)),

its dual space X
′
T and the operator R : XT → X

′
T given by

R(u) = −ν∆u− αdiv (LtA+ AL)− βdiv
(
|A|2A

)
.

This non-linear operator is continuous from XT to X
′
T and

〈R(u), v〉X′T ,XT =

∫ T

0

[
ν (∇u(s),∇v(s))L2 + α

((
LtA+ AL

)
(s),∇v(s)

)
L2

+β
(
|A(s)|2A(s),∇v(s)

)
L2

]
ds.

Furthermore, assuming that the parameter α is small compared to the product νβ, we
have the following monotonicity result.

Lemma 2.1 Assume that |α| ≤
√

8νβ. Then R is monotone, that is

〈R(u)−R(v), u− v〉X′T ,XT ≥ 0, (2.2)

for all u, v ∈ XT .

The proof of this lemma is given in [12].

We now give the definition of a weak solution of (1.3).

Definition 2.1 Let u0 ∈ V and f ∈ H.

We say that u ∈ C0 (R+, V )∩L4
loc (R+,W 1,4(T2)2) is a weak solution of (1.3) with initial

datum u0 if, for all T > 0 and ϕ ∈ C1 ([0, T ] , V 2), the following equality holds:

(u(T ), ϕ(T )− α∆ϕ(T ))L2 + 〈R(u), ϕ〉X′T ,XT +

∫ T

0

(u(s).∇u(s), ϕ(s))L2 ds

−α
2∑

i,j,k=1

∫ T

0

∫
T2

uk(s)A
i,j(s)∂k∂jϕi(s)dxds

= (u0, ϕ(0)− α∆ϕ(0))L2 +

∫ T

0

(u(s), ∂t (ϕ(s)− α∆ϕ(s)))L2 ds+

∫ T

0

(f, ϕ(s))L2 ds.

(2.3)
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Remark 2.1 If u is a weak solutions of (1.3), then the equality

∂t (u− α∆u)−ν∆u+u.∇u−αdiv
(
LtA+ AL+ u.∇A

)
−βdiv

(
|A|2A

)
+∇p = f (2.4)

occurs in the sense of distributions.

For later use, we define an equivalent norm to the classical H1−norm, that is

‖u‖2
H1
α

= ‖u‖2
L2 + α ‖∇u‖2

L2 .

We establish now a weak existence result for the system (1.3), when (u0, f) belongs to
V × L2(T2)2. This result comes nearly directly from the existence result of Paicu in the
whole space R2, but there are some details to adapt to the case of periodic boundary
conditions.

Theorem 2.1 Assume that ν ≥ 0, β > 0 and |α| ≤
√

8νβ and let u0 ∈ V and f ∈ H be
given. There exists a solution u to the system (1.3) such that

u ∈ C0
b

(
R+, V

)
∩ L4

loc

(
R+,W 1,4(T2)

)
and ∂tu ∈ L∞loc

(
R+, H

)
.

In addition, for every weak solution of (1.3) in the sense of Definition 2.3 and all t ≥
s ≥ 0, the following energy equality holds

1

2
‖u(t)‖2

H1
α

+ ν

∫ t

s

‖∇u(σ)‖2
L2 dσ +

β

2

∫ t

s

‖A(σ)‖4
L4 dσ =

1

2
‖u(s)‖2

H1
α

+

∫ t

s

(f, u(σ))L2 dσ.

(2.5)

The proof of this theorem is very similar to the one in [55]. We only need to do a few
changes. In particular, we need a technical lemma, which is the analogue the lemma
obtained in [23, lemma II.1] on the whole space R2. For n ∈ N and v a function of R2,
we define the linear operator

Jn(v) =
1

(2π)2

∑
k∈Z2

ϕ

(
|k|
2n

)
v̂ke

ik.x,

where v̂k =

∫
T2

v(x)e−ik.xdx is the classical Fourier coefficient of v associated to k, and

ϕ ∈ C∞0 (R, [0, 1]) is a smooth function such that

ϕ(ξ) =

{
1, |ξ| ≤ 3

4
,

0, |ξ| ≥ 1.
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It is well-known that, for all p ≥ 2, Jn is well defined on Lp(T2) and, for all v ∈ Lp(T2),
one has

Jn(v) −→
n→∞

v, in Lp(T2).

Furthermore, Jn is self-adjoint with respect to the classical L2-scalar product and com-
mutes with derivatives

The lemma which enables to prove Theorem 2.1 is the following.

Lemma 2.2 1) Let u ∈ W 1,4(T2)2 and v ∈ L4(T2), then one has

Jn(u.∇v)− u.∇Jn(v)→ 0 in L2(T2) when n→ +∞.

2) Let T ≥ 0, u ∈ L4 ([0, T ] ,W 1,4(T2)2) and v ∈ L4 ([0, T ]L4(T2)), then one has

Jn(u.∇v)− u.∇Jn(v)→ 0 in L2 ([0, T ] , L2(T2)) when n→ +∞.

This lemma is obtained by following step by step the proof of [23, lemma II.1] given by
R. Di Perna and P. -L. Lions and enables to show the existence of weak solutions of (1.3),
following the steps of [55, Theorem 1]. The proof of the energy equality is also given in
[55]. Indeed, it is shown that, for all t ≥ s ≥ 0 and every weak solution u, one has

1

2
‖u(t)‖2

H1
α

+ ν

∫ t

s

‖∇u(σ)‖2
L2 dσ +

β

2

∫ t

s

‖A(σ)‖4
L4 dσ

+
1

2
α

∫ t

s

∫
T2

tr
(
A3(σ)

)
dxdσ =

1

2
‖u(s)‖2

H1
α

+

∫ t

s

(f, u(σ))L2 .

(2.6)
Actually, using the divergence free property of u, one obtains

tr
(
A3
)

=
2∑

i,j,k=1

Ai,kAk,jAi,j

= A1,1A1,1A1,1 + A2,2A2,2A2,2 + 3A1,2A1,2A1,1 + 3A1,2A1,2A2,2

= 0.

Thus, in dimension 2, the energy equality (2.5) holds. This phenomenon is very particular
to the dimension 2 and does not occur in dimension 3.

Remark 2.2 Notice that the fact that u belongs to L4
loc (R+,W 1,4(T2)2) is a consequence

of the fact that u belongs to L∞loc (R+, V ) and A belongs to L4
loc (R+, L4(T2)2). According

to the Korn inequality and the continuous injection of H1(T2) into L4(T2), it implies
that u belongs to L4

loc (R+,W 1,4(T2)2).
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3 Generalized semiflow

Since the weak solutions of (1.3) are not known to be unique in general, there are
new difficulties which do not occur for the second grade fluids equations or the Navier-
Stokes equations. In fact, we cannot associate a classical dynamical system to the weak
solutions of (1.3). However, we will see that these solutions define a generalized semiflow
on V , according to the definition of J. Ball (see [3] or [4]). Furthermore, using again the
results of Ball, we are able to show the existence of a compact attractor in V for weak
solutions of (1.3) with initial data in a bounded set of V 2. In this section, we will also
assume additional restrictions on the parameters α, β and ν. Hereafter, we assume that

|α| ≤
√

8νβ,

so that Lemma 2.2 and Theorem 2.1 hold.

First of all, we recall some definitions about generalized semiflows and their asymptotic
behaviour. In what follows, X denotes a metric space.

Definition 3.1 A generalized semiflow G on X is a family of maps ϕ : [0,+∞) → X
(called solutions) satisfying the hypotheses:

(H1) (Existence) For each z ∈ X there exists at least one ϕ ∈ G with ϕ(0) = z.

(H2) (Translates of solutions are solutions) If ϕ ∈ G and τ ≥ 0, then ϕτ ∈ G,
where ϕτ (t) = ϕ(t+ τ), t ∈ [0,+∞).

(H3) (Concatenation) If ϕ, ψ ∈ G, t ≥ 0, with ψ(0) = ϕ(t) then θ ∈ G, where

θ(τ) =

{
ϕ(τ), for 0 ≤ τ ≤ t,
ψ(τ − t), for t < τ.

(H4) (Upper-semicontinuity with respect to initial data) If ϕj ∈ G with ϕj(0) → z then
there exist a subsequence ϕµ of ϕj and ϕ ∈ G with ϕ(0) = z such that ϕµ(t)→ ϕ(t)
for each t ≥ 0.

We will see later that the set of the solutions of (1.3) is a generalized semiflow on V . For
a generalized semiflow G, we state the definition below.

Definition 3.2 Let G be a generalized semiflow on X. A complete orbit is a map ϕ :
R→ X such that for any s ∈ R, ϕs ∈ G. If ϕ is a complete orbit, we define the α-limit
of ϕ, given by

α(ϕ) =

{
z ∈ X : there exists a sequence tj → −∞ such that ϕ(tj) −→

j→∞
z

}
.
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Let E ⊂ X, the ω-limit set of E is the set given by

ω(E) = {z ∈ X : there exist ϕj ∈ G with ϕj(0) ∈ E,ϕj(0) bounded,

and a sequence tj ∈ R+, tj → +∞, such that ϕj(tj) −→
j→∞

z

}
.

If G is a generalized semiflow on a metric space (X, d), we note 2X the space of all the
subsets of X and we define the application T (t) : 2X → 2X such that, for E ⊂ X,

T (t)E = {ϕ(t) : ϕ ∈ G,ϕ(0) ∈ E} . (3.1)

We also define the semi-distance δX on the subsets of X, given by, for E,F ⊂ X,

δX (E,F ) = sup
e∈E

inf
f∈F

d (e, f).

Notice that δX is not symmetric, that is the reason why it is not a distance on 2X .

Definition 3.3 Let G be a generalized semiflow on X.

1. G is point-dissipative if there exists a bounded set B ⊂ X such that, for all ϕ ∈ G,
there exists T ≥ 0 such that ϕ(t) ∈ B, for all t ≥ T .

2. G is asymptotically compact if for any sequence ϕj ∈ G such that ϕj(0) is bounded,
and any sequence tj such that, tj → +∞, the sequence ϕj(tj) has a convergent
subsequence.

3. The subset A ⊂ X attracts the subset B ⊂ X if δX (T (t)B,A)→ 0 when t→ +∞.

4. The subset A ⊂ X is positively invariant if T (t)A ⊂ A, for all t ≥ 0.

5. The subset A ⊂ X is quasi-invariant if, for each z ∈ A, there exists a complete
orbit ϕ ∈ G such that ϕ(0) = z and ϕ(t) ∈ A, for all t ∈ R.

6. The subset A ⊂ X is invariant if T (t)A = A, for all t ≥ 0.

7. The subset A ⊂ X is a compact global attractor if A is compact, invariant and
attracts the bounded sets of X.

For later use, we also introduce the following definition.

Definition 3.4 Let G be a generalized semiflow on a metric space X. We say that
B ⊂ X is a bounded absorbing set of G if B is bounded and, for all bounded set E ⊂ X,
there exists T ≡ T (E) ≥ 0 such that,

T (t)E ⊂ X, for all t ≥ T .
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In particular, every generalized semiflow which admits a bounded absorbing set is point
dissipative. We can now state the main result of this section, which shows that the set
of the weak solutions of (1.3) is a generalized semiflow on V . Using the energy equality
(2.5), one can also show that this generalized semiflow is point-dissipative. In what
follows, W denotes the set of weak solutions of (1.3) in V , that is,

W = {u ∈ C0 (R+, V ) ∩ L4
loc (R+,W 1,4(T2)2) : u is a weak solution of (1.3)} .

The main theorem of this section is the following.

Theorem 3.1 Assume that ν > 0, β > 0, α > 0 and α <
√

8νβ. The set W of the weak
solutions of (1.3) is a generalized semiflow on V , which admits a bounded absorbing set.

Proof: The property (H1) has already been shown in Theorem 2.1. The properties
(H2) and (H3) are easy to check by using the definition of weak solutions. It remains
to show the property (H4). Let u0,j be a sequence of V such that u0,j → u0 strongly in
V . We note B the positive constant such that

‖u0,j‖2
H1
α
≤ B.

Let uj ∈ C0
b (R+, V ) ∩ L4

loc (R+,W 1,4(T2)2) be the weak solutions of (1.3) with initial
data u0,j. Due to the energy equality (2.5), one has, for all t ∈ R+ and j ∈ N,

‖uj(t)‖2
H1
α

+ 2ν

∫ t

0

‖∇uj(s)‖2
L2 ds+ β

∫ t

0

‖Aj(s)‖4
L4 ds = ‖u0,j‖2

H1
α

+ 2

∫ t

0

(f, uj(s))L2 ds,

(3.2)
where Aj = A(uj).

Using Cauchy-Schwartz and Poincaré inequalities, we check that

2

∫ t

0

(f, uj(s))L2 ds ≤ C

∫ t

0

‖f‖L2 ‖∇uj(s)‖L2 ds

≤ ν

∫ t

0

‖∇uj(s)‖2
L2 ds+

Ct

ν
‖f‖2

L2 ,

where C is a positive constant independent of the parameters.

Going back to (3.2), we get

‖uj(t)‖2
H1
α

+ ν

∫ t

0

‖∇uj(s)‖2
L2 ds+ β

∫ t

0

‖Aj(s)‖4
L4 ds ≤ B +

Ct

ν
‖f‖2

L2 . (3.3)
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Thus, uj is bounded in L∞loc (R+, V )∩L4
loc (R+,W 1,4(T2)2) uniformly in j. Consequently,

there exists u ∈ L∞loc (R+, V )∩L4
loc (R+,W 1,4(T2)2) and a subsequence of uj (that we still

note uj) such that

uj ⇀ u weak* in L∞loc (R+, V ) ,
uj ⇀ u weakly in L4

loc (R+,W 1,4(T2)2) .
(3.4)

As explained in the remark 2.2, the last identity of (3.4) comes from Korn’s inequality
and the continuous injection of H1(T2) into L4(T2). Furthermore, using the equality
(2.4), we can check that ∂tuj is bounded in L∞loc (R+, H), uniformly with respect to j.
This property implies that uj is equi-continuous in H. Indeed, one has, for all 0 ≤ t1 ≤ t2,

‖uj(t2)− uj(t1)‖L2 ≤
∥∥∥∥∫ t2

t1

∂tuj(t)dt

∥∥∥∥
L2

≤
∫ t2

t1

‖∂tuj(t)‖L2 dt

≤ ‖∂tuj‖L∞([t1,t2],L2) |t2 − t1| .

Furthermore, for all t ∈ R+, the set
⋃
j∈N

uj(t) is bounded in V and thus compact in H.

Using the classical Arzela-Ascoli theorem, we conclude that, for all fixed T ∈ R+,

uj → u strongly in C0 ([0, T ] , H) .

Consequently, the boundedness of uj(t) in V uniformly with respect to j obtained from
(3.3) and the strong convergence of uj to u in C0 ([0, T ] , H) for all T ≥ 0 imply, by a
density argument,

uj(t) ⇀ u(t) weakly in V, for all t ∈ R+. (3.5)

Besides, using the boundedness property of uj in L∞ ([0, T ] , V ) and interpolation in-
equalities, it is easy to check that, for all 0 ≤ s < 1 and T ∈ R+,

uj → u strongly in C0 ([0, T ] , V s) . (3.6)

We show now that u is a weak solution of (1.3). The proof of this point is obtained by
following the proof of Paicu to establish theorem 2.1, involving a monotonicity method.
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Let T be a fixed positive time and ϕ ∈ C1 ([0, T ] , V 2). For all j ∈ N, one has

(uj(T ), ϕ(T )− α∆ϕ(T ))L2 + 〈R(uj), ϕ〉X′T ,XT +

∫ T

0

(uj(s).∇uj(s), ϕ(s))L2 ds

−α
2∑

i,k,l=1

∫ T

0

∫
T2

uj,k(s)A
i,l
j (s)∂k∂lϕi(s)dxds

= (u0,j, ϕ(0)− α∆ϕ(0))L2 +

∫ T

0

(uj(s), ∂t (ϕ(s)− α∆ϕ(s)))L2 ds

+

∫ T

0

(f, ϕ(s))L2 ds.

(3.7)
Due to the identities (3.4), (3.5) and (3.6), it is quite easy to show that most of the terms
of the previous equality pass to the limit when j tends to infinity. The hard term that
we have to study more precisely is the term involving the operator R.

Due to the boundedness of uj in L∞ ([0, T ] , V ) ∩ L4 ([0, T ] ,W 1,4(T2)2), one can check
that R(uj) is bounded in X

′
T uniformly in j. Consequently, there exists ξ ∈ X

′
T such

that

R(uj) ⇀ ξ weak* in X
′
T ,

and thus, for all ϕ ∈ C1 ([0, T ] , V 2), one has

(u(T ), ϕ(T )− α∆ϕ(T ))L2 + 〈ξ, ϕ〉X′T ,XT +

∫ T

0

(u(s).∇u(s), ϕ(s))L2 ds

−α
2∑

i,k,l=1

∫ T

0

∫
T2

uk(s)A
i,l(s)∂k∂lϕi(s)dxds

= (u0, ϕ(0)− α∆ϕ(0))L2 +

∫ T

0

(uj(s), ∂t (ϕ(s)− α∆ϕ(s)))L2 ds

+

∫ T

0

(f, ϕ(s))L2 ds.

(3.8)
In order to show that u is a weak solution of (1.3), it remains to show that ξ = R(u).
We establish this equality via a monotonicity method. Actually, it suffices to show that,
for all ψ ∈ XT , one has

〈ξ −R(ψ), u− ψ〉X′T ,XT ≥ 0. (3.9)
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Indeed, assume that the inequality (3.9) holds. Then, setting ψ = u+ λΨ, with Ψ ∈ XT

and λ > 0, we obtain, for all Ψ ∈ XT ,

〈ξ −R(u+ λΨ),Ψ〉X′T ,XT ≤ 0. (3.10)

We use now the continuity of R in XT and let λ go to 0. We get, for all Ψ ∈ XT ,

〈ξ −R(u),Ψ〉X′T ,XT ≤ 0. (3.11)

Replacing Ψ by −Ψ in the inequality (3.11), we obtain, for all Ψ ∈ XT ,

〈ξ −R(u),Ψ〉X′T ,XT = 0. (3.12)

In order to get (3.9), we write the decomposition

〈ξ −R(ψ), u− ψ〉X′T ,XT = 〈R(uj)−R(ψ), uj − ψ〉X′T ,XT + 〈R(uj)− ξ, ψ〉X′T ,XT
+ 〈ξ −R(ψ), uj − u〉X′T ,XT + 〈ξ, u〉X′T ,XT − 〈R(uj), uj〉X′T ,XT .

(3.13)
Due to Lemma 2.2, the convergence of R(uj) to ξ in X

′
T and the convergence of uj to u

in XT , it is clear that

〈R(uj)−R(ψ), uj − ψ〉X′T ,XT ≥ 0, for all j ∈ N
〈R(uj)− ξ, ψ〉X′T ,XT → 0, when j → +∞,
〈ξ −R(ψ), uj − u〉X′T ,XT → 0, when j → +∞.

(3.14)

In order to finish to establish the property (3.9), we establish the inequality

lim inf
j→+∞

(
〈ξ, u〉X′T ,XT − 〈R(uj), uj〉X′T ,XT

)
≥ 0.

To get this property, we show that we can apply the equalities (3.7) and (3.8) to re-
spectively ϕ = uj and ϕ = u. Since u and uj are not smooth enough to make this
operation, we consider n ∈ N, apply (3.7) to J2

n(uj) and (3.8) to J2
n(u) and pass to

the limit when n → +∞. Applying J2
n to the equality (2.4) and recalling that uj and

u belong to C0 (R+, V s) for all s < 1, it is quite easy to check that J2
n(u) and J2(u)

belong to C1 (R+, V 2). Since Jn is self-adjoint with respect to the L2-scalar product, an
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integration by parts gives

1

2
‖Jn(u(T ))‖2

H1
α

+
〈
ξ, J2

n(u)
〉
X
′
T ,XT

+

∫ T

0

(Jn (u(s).∇u(s)) , Jn(u(s)))L2 ds

+α

∫ T

0

(Jn (u(s).∇A(s)) ,∇Jn(u(s)))L2 ds

= ((Jn(u0), Jn(u(0)))L2 + α (∇Jn(u0),∇Jn(u(0)))L2)−
1

2
‖Jn(u(0))‖2

H1
α

+

∫ T

0

(Jn(f), Jn(u(s)))L2 ds.

(3.15)
Since uj(t) ⇀ u(t) weakly in V for all t ∈ R+ and uj,0 = uj(0)→ u0 in V , it is clear that
u(0) = u0. Thus, the equality (3.15) becomes

1

2
‖Jn(u(T ))‖2

H1
α

+
〈
ξ, J2

n(u)
〉
X
′
T ,XT

+

∫ T

0

(Jn (u(s).∇u(s)) , Jn(u(s)))L2 ds

+α

∫ T

0

(Jn (u(s).∇A(s)) ,∇Jn(u(s)))L2 ds

=
1

2
‖Jn(u0)‖2

H1
α

+

∫ T

0

(Jn(f), Jn(u(s)))L2 ds.

(3.16)
Due to the convergence of Jn(u) to u in XT , one has obviously, when n tends to infinity,

‖Jn(u(T ))‖2
H1
α
→ ‖u(T )‖2

H1
α
,〈

ξ, J2
n(u)

〉
X
′
T ,XT

→ 〈ξ, u〉X′T ,XT ,∫ T

0

(Jn (u(s).∇u(s)) , Jn(u(s)))L2 ds→
∫ T

0

(u(s).∇u(s), u(s))L2 ds = 0,

‖Jn(u0)‖2
H1
α
→ ‖u0‖2

H1
α
,∫ T

0

(Jn(f), Jn(u(s)))L2 ds→
∫ T

0

(f, u(s))L2 ds.

Lemma 2.2 and an integration by parts imply

lim
n→+∞

α

∫ T

0

(Jn (u(s).∇A(s)) ,∇Jn(u(s)))L2 ds =

lim
n→+∞

α

∫ T

0

(u(s).∇Jn(A(s)),∇Jn(u(s)))L2 ds = 0.
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Thus, passing to the limit when n goes to infinity in the equality (3.16), we get

〈ξ, u〉X′T ,XT =
1

2

(
‖u0‖2

H1
α
− ‖u(T )‖2

H1
α

)
+

∫ T

0

(f, u(s))L2 ds. (3.17)

Applying the same method to the equality (3.7), we obtain, for all j ∈ N,

〈R(uj), uj〉X′T ,XT =
1

2

(
‖u0,j‖2

H1
α
− ‖uj(T )‖2

H1
α

)
+

∫ T

0

(f, uj(s))L2 ds. (3.18)

Furthermore, due to the fact that uj(T ) ⇀ u(T ) weakly in V , one has

‖u(T )‖2
H1
α
≤ lim inf

j→+∞
‖uj(T )‖2

H1
α
.

Consequently, using the fact that uj ⇀ u weakly in L2 ([0, T ] , H) and making the differ-
ence between (3.17) and (3.18), we obtain

lim inf
j→+∞

(
〈ξ, u〉X′T ,XT − 〈R(uj), uj〉X′T ,XT

)
≥ 0. (3.19)

Going back to the decomposition (3.13) and letting j go to infinity, the properties (3.19)
and (3.14) imply the inequality (3.9). Consequently, u is a weak solution of (1.3).

It remains to show that, for all t ∈ R+, uj(t)→ u(t) strongly in V . From the inequality
(2.5) of Theorem 2.1, we have the energy equality

1

2
‖uj(t)‖2

H1
α

+
ν

2

∫ t

0

‖∇uj(s)‖2
L2 ds+

β

2

∫ t

0

‖Aj(s)‖4
L4 ds =

1

2
‖u0,j‖2

H1
α

+

∫ t

0

(f, uj(s))L2 ds.

(3.20)

Due the several convergences of uj to u given in (3.4), we conclude that

ν

2

∫ t

0

‖∇u(s)‖2
L2 ds ≤ lim inf

j→+∞

ν

2

∫ t

0

‖∇uj(s)‖2
L2 ds,

β

2

∫ t

0

‖A(s)‖4
L4 ds ≤ lim inf

j→+∞

β

2

∫ t

0

‖Aj(s)‖4
L4 ds.
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Thus, we pass to the lim sup when j tends to infinity in (3.20). We take into account
the strong convergence of uj to u in C0 ([0, t] , H) given in (3.6) and get

1

2
lim sup
j→+∞

(
‖uj(t)‖2

H1
α

)
+
ν

2

∫ t

0

‖∇u(s)‖2
L2 ds+

β

2

∫ t

0

‖A(s)‖4
L4 ds

≤ 1

2
‖u0‖2

H1
α

+

∫ t

0

(f, u(s))L2 ds.

(3.21)

Since u is also a weak solution of (1.3), it satisfies the energy equality (2.5). One has

1

2
‖u(t)‖2

H1
α

+
ν

2

∫ t

0

‖∇u(s)‖2
L2 ds+

β

2

∫ t

0

‖A(s)‖4
L4 ds =

1

2
‖u0‖2

H1
α

+

∫ t

0

(f, u(s))L2 ds.

(3.22)
The difference between (3.21) and (3.22) implies

lim sup
j→+∞

(
‖uj(t)‖2

H1
α

)
≤ ‖u(t)‖2

H1
α
. (3.23)

Since uj(t) ⇀ u(t) in V , one has also

‖u(t)‖2
H1
α
≤ lim inf

j→+∞

(
‖uj(t)‖2

H1
α

)
,

and thus ‖uj(t)‖2
H1
α
→ ‖u(t)‖2

H1
α

when j tends to infinity. From a classical functional

analysis result, it implies that uj(t)→ u(t) strongly in V .

Bounded absorbing set

Finally, we show thatW admits a bounded absorbing set. This property comes nearly
directly from the energy equality (2.5). Let R > 0 and u0 ∈ V be such that ‖u0‖H1

α
≤ R.

Let u ∈ C0 (R+, V )∩L4
loc (R+,W 1,4(T2)2) be a weak solution of (1.3) with initial datum

u0. For n ∈ N, we apply Jn to the equality (2.4) and take the L2-inner product of it with
Jnu. Performing integrations by parts, one has

1

2
∂t

(
‖Jn(u)‖2

H1
α

)
+ ν ‖∇Jn(u)‖2

L2 + (Jn (u.∇u) , Jn(u))L2

+
α

2

(
Jn
(
LtA+ AL

)
, Jn(A)

)
L2 +

α

2
(Jn (u.∇A) , Jn(A))L2

+
β

2

∫
T2

Jn
(
|A|2A

)
Jn(A)dx = (Jn(f), Jn(u))L2 .

(3.24)
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Using Cauchy-Schwartz, Poincaré (2.1) and Young inequalities, we obtain

(Jn(f), Jn(u))L2 ≤
ν

2
‖∇Jn(u)‖2

L2 +
1

2ν
‖Jn(f)‖2

L2 . (3.25)

Thus, from the inequality (3.24), using again the inequality (2.1) and setting M =
ν

4 max(1, α)
, we obtain, for all t ∈ R+ and n ∈ N,

1

2
∂t

(
‖Jn(u)‖2

H1
α
eMt
)

+ (Jn (u.∇u) , Jn(u))L2 e
Mt +

α

2

(
Jn
(
LtA+ AL

)
, Jn(A)

)
L2 e

Mt

+
α

2
(Jn (u.∇A) , Jn(A))L2 e

Mt +
β

2

∫
T2

Jn
(
|A|2A

)
Jn(A)eMtdx ≤ 1

2ν
‖Jn(f)‖2

L2 e
Mt.

(3.26)
We integrate in time the above inequality between 0 and t > 0 and get

1

2
‖Jn(u(t))‖2

H1
α

+

∫ t

0

(Jn (u(s).∇u(s)) , Jn(u(s)))L2 e
−M(t−s)ds

+
α

2

∫ t

0

(
Jn
(
LtA+ AL

)
(s), Jn(A(s))

)
L2 e

−M(t−s)ds

+
α

2

∫ t

0

(Jn (u(s).∇A(s)) , Jn(A(s)))L2 e
−M(t−s)ds

+
β

2

∫ t

0

∫
T2

Jn
(
|A|2A

)
(s)Jn(A(s))e−M(t−s)dxds

≤ 1

2
‖Jn(u0)‖2

H1
α
e−Mt +

1

2Mν
‖Jn(f)‖2

L2 .

(3.27)
Due to the boundedness of u in C0 ([0, t] , V ) ∩ L4 ([0, t] ,W 1,4(T2)2) and the properties
of Jn, we have, when n goes to infinity,∫ t

0

(Jn (u(s).∇u(s)) , Jn(u(s)))L2 e
−M(t−s)ds −→

∫ t

0

(u(s).∇u(s), u(s))L2 e
−M(t−s)ds

= 0,∫ t

0

(
Jn
(
LtA+ AL

)
(s), Jn(A(s))

)
L2 e

−M(t−s)ds −→
∫ t

0

∫
T2

tr(A3)e−M(t−s)dxds = 0,∫ t

0

∫
T2

Jn
(
|A|2A

)
(s)Jn(A(s))e−M(t−s)dxds −→

∫ t

0

‖A(s)‖4
L4 e

−M(t−s)ds.

Besides, Lemma 2.2 implies

lim
n→+∞

∫ t

0

(Jn (u(s).∇A(s)) , Jn(A(s)))L2 e
−M(t−s)ds =

lim
n→+∞

∫ t

0

(u(s).∇Jn (A(s)) , Jn(A(s)))L2 e
−M(t−s)ds = 0.
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Thus, passing to the limit when n tends to infinity, we obtain from the inequality (3.27),
for all t ∈ R+,

1

2
‖u(t)‖2

H1
α

+

∫ t

0

‖A(s)‖4
L4 e

−M(t−s)ds ≤ R2e−Mt

2
+

1

2Mν
‖f‖2

L2 . (3.28)

Consequently, for all t ≥ T = max

(
0,− 1

M
log

(
‖f‖2

L2

2R2Mν

))
, we have

1

2
‖u(t)‖2

H1
α

+

∫ t

0

‖A(s)‖4
L4 e

−M(t−s)ds ≤ 1

Mν
‖f‖2

L2 , (3.29)

and thus, for all t ≥ T , u(t) belongs to the ball of center 0 and radius
1

Mν
‖f‖2

L2 .

�

4 Attractor for V 2 solutions

In this section, we show that every bounded set of V 2 is attracted by a compact
invariant set of V in the H1−topology. To obtain this result, we show that the solutions
of (1.3) with initial data in V 2 admit a bounded absorbing set in V 2, provided that
the viscosity ν and the parameters α and β satisfy some suitable restrictions. This fact
will enable us to show the existence of an invariant bounded set of V 2 that attracts all
the bounded sets of V 2 in the H1−topology. We first recall the theorem of Busuioc
and Iftimie [10, Theorem 1], that establish the existence of weak solutions of (1.3) with
initial data in V 2. In [10], this result has been proved in the case of the whole space R2

or R3, but it still holds in the case of periodic conditions. We state here only the two
dimensional case, but the same theorem holds in dimension 3, up to the fact that the
solutions in R3 are not known to be unique.

Theorem 4.1 Assume that ν > 0, α > 0 and β > 0. Let u0 ∈ V 2 and f ∈ H. There
exists a unique global solution u to the system (1.3) such that

u ∈ L∞loc (R+, V 2) ∩ C0 (R+, V s),

for all s < 2.

Notice that this result holds without any restrictions on the size of the parameters α, β
and ν. Theorem 4.1 is proved by using Friedrich’s method and a priori estimates in H2.
The main theorem of this section is the following one.
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Theorem 4.2 Assume that ν > 0, α > 0, β > 0 and α <

√
νβ

8
. There exists a bounded

invariant set A2 of V 2 which attracts every bounded set of V 2 in the H1−topology.

To prove this theorem, we first show that, under the restriction α ≤
√
νβ

8
, the set

W2 = {u ∈ L∞loc (R+, V 2) ∩ C0 (R+, V s) : u is a weak solution of (1.3), u(0) ∈ V 2}

admits a bounded absorbing set for the H2−topology.

Proposition 4.1 Assume that ν > 0, α > 0, β > 0 and α <

√
νβ

8
and f ∈ H, the set

of the solutions of (1.3) with initial data in V 2 admits a bounded absorbing set in V 2.

Proof: Let B be a bounded set of V 2 and u0 ∈ B. There exists a positive constant
R such that B ⊂ Bα(R), where Bα(R) = {u ∈ V 2 : ‖∇u‖L2 + α ‖∆u‖L2 ≤ R}. Let
consider the weak solution u ∈ L∞loc (R+, V 2) ∩ C0 (R+, V s), s < 2, of (1.3) with initial
data u0 ∈ B. For n ∈ N, we introduce the linear operator Πn, which is an analogue to
the operator Jn defined earlier. For u ∈ L2(T2), it is given by

Πn(u) =
∑
|k|≤n

ûke
−ik.x,

with ûk the Fourier coefficient of u corresponding to k ∈ Z2.

For n ∈ N, we also consider the regularized system of equations

∂t (un − α∆un)− ν∆Πn(un) + PΠn (Πn(un).∇Πn(un))
−αPΠn (div (LtnAn + AnLn + Πn(un).∇An))

−βPΠn

(
div

(
|An|2An

))
= PΠn (f) ,

div un = 0,
un|t=0 = Πn(u0) ∈ V 2,

(4.1)

where Ln = ∇Πn(un), A = Ln + Ltn and P is the classical Leray projector.

Via the classical Cauchy-Lipschitz Theorem, we can show that the system (4.1) is well-
posed in ΠnV

2 and admits a unique solution un ∈ C1 ([0, tn) ,ΠnV
2), where tn > 0. In

addition, since Π2
n = Πn, we see that Πn(un) is also a solution of (4.1). Thus, due to the

fact that the solution of (4.1) is unique, one has Πn(un) = un.
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Arguing like in [10], we can show that un is global in time and converge up to a subse-
quence to a solution of the system (1.3) when n goes to infinity. Since the solutions of
(1.3) are unique, un converge to u. More precisely, one has

un ⇀ u, weak* in L∞loc (R+, V 2) ,
un(t) ⇀ u(t), weakly in V 2, for all t ≥ 0,
un → u, strongly in C0 (R+, Hs(T2)2) , for all 0 ≤ s < 2.

We perform now the L2−inner product of the first line of (4.1) with −∆un. Using
the fact that P and Πn are self-adjoint for the L2−scalar product and the fact that
Πnun = Pun = un, we notice that

β
(
PΠndiv

(
|An|2An

)
,∆un

)
L2 = β

(
div

(
|An|2An

)
,∆un

)
L2

= −β
2

∫
T2

|An|2An∆Andx

=
β

2

∫
T2

|An|2 |∇An|2 dx+ β
2∑
j=1

∫
T2

(An : ∂jAn) dx.

Consequently, one has

1

2
∂t
(
‖∇un‖2

L2 + α ‖∆un‖2
L2

)
+ ν ‖∆un‖2

L2 +
β

2

∫
T2

|An|2 |∇An|2 dx

+β
2∑
j=1

∫
T2

(An : ∂jAn)2 dx = I + J +K + L
(4.2)

where

I = (un.∇un,∆un)L2 ,
J = −α

(
div

(
LtnAn + AnLn

)
,∆un

)
L2 ,

K = −α (div (un.∇An) ,∆un)L2 ,
L = − (f,∆un)L2 .

Using the divergence free property of un, a short computation implies

I = (un.∇un,∆un)L2 = 0.
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We now compute J . Via some integrations by parts, we have

J =
α

2

2∑
i,j,k=1

∫
T2

(
∂iun,kA

k,j
n + Ai,jn ∂jun,k

)
∆Ai,jn dx

=
α

2

2∑
i,j,k=1

∫
T2

Ai,kn A
k,j
n ∆Ai,jn dx

Using now the divergence free property of un, it is quite simple to see that J vanishes.
Indeed, we obtain

J =
α

2

2∑
k=1

∫
T2

A1,k
n Ak,1n ∆A1,1

n dx+
α

2

2∑
k=1

∫
T2

A2,k
n Ak,2n ∆A2,2

n dx

+ α
2∑

k=1

∫
T2

A1,k
n Ak,2n ∆A1,2

n dx

=
α

2

∫
T2

A1,1
n A1,1

n ∆A1,1
n dx+

α

2

∫
T2

A1,2
n A1,2

n ∆A1,1
n dx

+
α

2

∫
T2

A2,2
n A2,2

n ∆A2,2
n dx+

α

2

∫
T2

A1,2
n A1,2

n ∆A2,2
n dx

+ α

∫
T2

(
A1,1
n + A2,2

n

)
A1,2
n ∆A1,2

n dx.

Since A1,1
n = −A2,2

n , we obtain J = 0. It remains to estimate K and L. Integrating by
parts and using the divergence free property of un, we get

K =
α

2

∫
T2

un.∇An : ∆Andx

= −α
2

2∑
j,k=1

∫
T2

∂kun,j∂jAn : ∂kAndx

= −α
4

2∑
j,k=1

∫
T2

Aj,kn ∂jAn : ∂kAndx.

Via a Fourier decomposition, we can see that∥∥∥∥∥
2∑

i,j,k=1

∂kA
i,j
n

∥∥∥∥∥
L2

≤ 16 ‖∆un‖L2 .
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Using now Hölder and Young inequalities, we obtain

K ≤ 4α ‖∆un‖L2 ‖An∇An‖L2

≤ µν ‖∆un‖2
L2 +

2α2

µν

∫
T2

|An|2 |∇An|2 dx,

where µ is a positive constant such that 0 < µ < 1
2

which will be made more precise
later.

Likewise, we get

L ≤ µν ‖∆un‖2
L2 +

1

4µν
‖f‖2

L2 .

Going back to (4.2), we finally have

1

2
∂t
(
‖∇un‖2

L2 + α ‖∆un‖2
L2

)
+ (1− 2µ) ν ‖∆un‖2

L2

+

(
β

2
− 2α2

µν

)∫
T2

|An|2 |∇An|2 dx ≤
1

4µν
‖f‖2

L2 .
(4.3)

If α <

√
νβ

8
, then there exists µ0 ∈

(
0, 1

2

)
such that

β

2
− 2α2

µ0ν
= 0. Taking, µ = µ0, it

comes
1

2
∂t
(
‖∇un‖2

L2 + α ‖∆un‖2
L2

)
+ C1ν ‖∆un‖2

L2 ≤
1

C2ν
‖f‖2

L2 , (4.4)

where C1 and C2 are two positive constants.

Since un ∈ V 2, the Poincaré inequality implies

‖∇un‖L2 ≤ ‖∆un‖L2 .

Setting M =
C1νt

2 max(α, 1)
, the inequality (4.4) becomes

1

2
∂t
((
‖∇un‖2

L2 + α ‖∆un‖2
L2

)
eMt
)
≤ 1

C2ν
‖f‖2

L2 e
Mt. (4.5)

We integrate (4.5) in time between 0 and t ≥ 0, and we obtain

1

2

(
‖∇un(t)‖2

L2 + α ‖∆un(t)‖2
L2

)
≤ 1

2

(
‖∇Πn(u0)‖2

L2 + α ‖∆Πn(u0)‖2
L2

)
e−Mt

+N ‖f‖2
L2 ,
(4.6)
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where N is a positive constant depending on α and ν, independent of u0. We pass now to
the lim inf when n tends to infinity in the inequality (4.6). Since un(t) converge weakly
to u(t) in V 2, we obtain

‖∇u(t)‖2
L2 + α ‖∆u(t)‖2

L2 ≤ lim inf
n→∞

(
‖∇un(t)‖2

L2 + α1 ‖∆un(t)‖2
L2

)
≤
(
‖∇u0‖2

L2 + α1 ‖∆u0‖2
L2

)
e−Mt + 2N ‖f‖2

L2 .

Since u0 ∈ Bα(R), we obtain

‖∇u(t)‖2
L2 + α ‖∆u(t)‖2

L2 ≤ R2e−Mt + 2N ‖f‖2
L2 . (4.7)

We finally take t0 ≥ −
1

M
log

(
N ‖f‖2

L2

R2

)
and obtain, for all t ≥ t0,

‖∇u(t)‖2
L2 + α ‖∆u(t)‖2

L2 ≤ 3N ‖f‖2
L2 . (4.8)

Due the Poincaré inequality (2.1), it concludes the proof of this proposition.

�

Proof of Theorem 4.2

Let W be the generalized semiflow of the weak solutions of (1.3) in V , {T (t)}t≥0 be
the family of operators associated to W given by (3.1) and W2 be the set of solutions
with initial data in V 2. Let B2 be the bounded absorbing set of W2 in V 2. We define
the ω-limit set A2 of B2 for the topology of V , that is to say

A2 = ω(B2) = {z ∈ V : there exist ϕj ∈ W with ϕj(0) ∈ B2,

and a sequence tj ∈ R+, tj → +∞, such that ϕj(tj) −→
j→∞

z in V

}
.

We start by proving the following lemma, which describes A2. We also assume that

ν > 0, α > 0, β > 0 and α <

√
νβ

8
.

Lemma 4.1 The set A2 is non-empty, contained in B2 and invariant by T .

Proof: Since B2 is a bounded absorbing set for weak solutions with data in V 2, every
ball that contains B2 is also a bounded absorbing set for these solutions. Thus, we can
assume that B2 is a ball of radius R > 0, B2 = {u ∈ V 2 : ‖u‖H2 ≤ R}. Let uj ∈ W2 such
that uj(0) ∈ B2 and tj such that tj → +∞. Since B2 is bounded in V 2 and absorbs all
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the bounded sets of V 2, it is clear that there exists j0, such that, for all j ≥ j0, uj(tj) is
bounded in V 2 uniformly with respect to j. Due to the compactness of V 2 in V , there
exists z ∈ V and a subsequence of uj(tj) that converge to z in V . Consequently, A2 is
non-empty.

The fact A2 is contained in B2 is a consequence of the definition of B2. Indeed, let
z ∈ A2. There exist uj ∈ W2 with uj(0) ∈ B2 and tj, tj → +∞ such that uj(tj) → z
in the H1−topology. Furthermore, uj(tj) is bounded in V 2 uniformly with respect to j,
and consequently there exists v ∈ V 2 such that, up to a subsequence,

uj(tj) ⇀ v weakly in V 2.

Necessarily, v = z and thus z ∈ V 2. Furthermore, the weak convergence implies

‖z‖H2 ≤ lim inf
j→+∞

‖uj(tj)‖H2 ≤ R. (4.9)

Consequently, A2 ⊂ B2.

It remains to show that A2 is invariant by T . To show this property, we first show that
A2 is quasi-invariant and then use this property to show that it is actually invariant.
Let z ∈ A2 = ω(B2) ⊂ B2. There exists a sequence uj ∈ W2 and tj → +∞ such that

uj(tj) → z in V . Due to the property (H2), u
tj
j ∈ W2 with initial data uj(tj). Letting

j go to infinity and applying the property (H4), there exists a subsequence of u
tj
j (that

we still note u
tj
j ) and v0 ∈ W with v0(0) = z such that

u
tj
j (t)→ v0(t), for all t ∈ R+. (4.10)

Furthermore, the fact that z ∈ B2 implies that v0 ∈ W2. Besides, from the definition of
B2, it is clear that, if j is sufficiently large, u

tj
j (t) = uj(tj + t) ∈ B2. Thus, the identity

(4.10) implies that v0(t) ∈ A2 = ω(B2), for all t ≥ 0.

We consider now u
tj−1
j . We notice that u

tj−1
j (0) = uj(tj − 1) which belongs to B2 if j

is sufficiently large and is consequently bounded in V 2, uniformly with respect to j. By
the compactness of V 2 in V , one can extract a convergent subsequence of uj(tj − 1). By
the property (H4), up to a further subsequence, there exists v1 ∈ W such that

u
tj−1
j (t)→ v1(t), for all t ∈ R+. (4.11)

Since uj(tj − 1) is bounded in V 2 and converge to v1(0) in V , it is clear that v1(0) ∈ V 2

and consequently v1 ∈ W2. Furthermore, since u
tj−1
j (t) ∈ B2, then v1(t) ∈ A2, for all
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t ≥ 0. Due to the identities (4.10) and (4.11), we deduce that v1
1 = v0.

By the same process, we construct for n ∈ N, vn ∈ W2 such that vn(t) ∈ A2 for all
t ∈ R+ and v1

n = vn−1. Then, we define the complete orbit v ∈ W2 by

v(t) =

{
vn(t+ n), t ∈ [−n− 1,−n] ,
v0(t), t ≥ 0.

By the concatenation property (H3), v is a complete orbit such that v(0) = z. Besides,
the properties of vn imply that v(t) ∈ A2, for all t ∈ R. Thus, A2 is quasi-invariant.

We show now that A2 is actually invariant. Let t0 ∈ R+ and v ∈ T (t0)A2. According to
the definition of T , there exists z ∈ A2 and w ∈ W2 such that w(0) = z and w(t0) = v.
Let ϕ ∈ W2 be a complete orbit such that ϕ(0) = z. By the concatenation property, we
define

ψ(t) =

{
ϕ(t), t ≤ 0,
w(t), t ≥ 0.

Then, we set ψn(t) = ψ(t− n). In particular ψn ∈ W and ψn(t0 + n) = ψ(t0) = v. Fur-
thermore, due to the quasi-invariance of A2, ψn(0) = ψ(−n) ∈ A2 ⊂ B2. Consequently,
v ∈ ω(B2) and thus T (t0)A2 ⊂ A2, that is to say that A2 is positively invariant.

Reversely, the quasi-invariance ofA2 implies thatA2 ⊂ T (t)A2, for all t ∈ R+. In fact, let
z ∈ A2 and ϕ be a complete orbit in A2 such that ϕ(0) = z. Defining ϕt0(t) = ϕ(t− t0),
we see that ϕt0(t0) = z. Thus, one has z ∈ T (t0)ϕt0(0). Since ϕt0(0) ∈ A2, then
z ∈ T (t0)A2 and A2 is consequently invariant.

�

To finish the proof of Theorem 4.2, we show by a contradiction argument that the set
A2 attracts B2 for the H1−topology. Since every bounded set of V 2 is absorbed by B2,
it would imply that every bounded set of V 2 is attracted by A2.

Lemma 4.2 The set A2 attracts all the bounded sets of V 2 in the H1−topology.

Proof: The proof of this lemma is nearly obvious, and is obtained through a contradic-
tion argument. Let B2 be the bounded absorbing set of W2. Assume by contradiction
that A2 does not attract B2. Then, there exist ε > 0, uj ∈ W2 with initial data in B2

and tj, tj → +∞, such that

inf
z∈A2

‖uj(tj)− z‖H1 ≥ ε, for all j ∈ N. (4.12)
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Since B2 is a bounded absorbing set in the H2−topology, there exists j0 ∈ N such that
uj(tj) ∈ B2, for all j ≥ j0. Consequently, for all j ≥ j0, uj(tj) is bounded in V 2,
uniformly with respect to j. Due to the compactness of V 2 in V , there exists z ∈ V
and a subsequence of uj(tj) (that we still note uj(tj)) such that uj(tj)→ z for the H1−-
topology. Furthermore, the fact that uj(0) ∈ B2 implies that z ∈ A2, which contradicts
(4.12). Consequently A2 attracts B2 in the H1−topology.

Let B be a bounded set of V 2. There exists t0 ≥ 0 such that T (t)B ⊂ B2, for all t ≥ t0.
Since A2 attracts B2, it attracts also T (t)B for all t ≥ t0, and consequently B.

�

The lemmas 4.1 and 4.2 imply Theorem 4.2.
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