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Abstract This paper presents a framework for the topology optimization of electro-mechanical
design problems. While the design is parametrized by means of a level set function defined
on a fixed mesh of the design domain, mesh adaptation is used to generate a second mesh that
conforms to the domain delineated by the iso-zero of the level set function. This body-fitted mesh
is used in the finite element simulation of the physical problem in order to accurately represent
the electro-magnetic interface phenomena. An appropriate combination of the two geometry
representations is obtained through the velocity field to ensure a consistent design space as the
topology optimisation process unfolds. The method is applied to the joint electro-mechanical
optimisation of a synchronous reluctance machine (SynRM).

Keywords Topology optimisation - Body-fitted mesh - Lie derivative - Synchronous reluctance
machine - Nonlinear programming

1 Introduction

Synchronous reluctance machines are electro-mechanical energy converters which transform elec-
tric energy into mechanical energy. Despite their early invention by Kostko in 1923 [43], they
did not find widespread use as motors until the late 1970s because of the complexity of the
power electronics control they require. Due to their robustness and efficiency over a wide range
of speeds, they are an interesting alternative to traditional induction and permanent magnet
machines in various applications, including hybrid and electric vehicles as well as traction appli-
cations [21}, 13} 29]. A SynRM consists of a fixed part, called the stator, with windings fed by a
sinusoidal current, and a rotating part, called the rotor, with flux barriers (see Fig. .

Several multiphysics approaches have been proposed over the last decade to achieve electrical
machine designs with high electromagnetic performances, meeting requirements on the rotor
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integrity , as well as the assembly process and ensuring lifelong reliability, see for
instance , or more recently . These industrial design issues have been handled by
applying shape optimisation on two-dimensional and three-dimensional multiphysics
models to find out the optimal layout of their underlying CAD description. However, the initial
choice of design variables among the CAD parameters, inherent to the method, may limit the
ability of this approach to bring innovative layouts that would lead to better performances. There
is therefore a desire to move towards topology optimisation for its ability to generate innovative
geometrical layouts, regardless of the design parameterization, as long as it does not compromise
the accuracy of such models.

Topology optimisation has been an active research area since the seminal work of Bendsge and
Kikuchi in the late 1980s [9], as reviewed in a number of papers, 57]. Two main paths have
been followed to reduce the complexity of representing topological changes with a classical CAD
based shape optimisation and make this method available for industrial designs: the density-based
approach and the level set approach . Whereas the most prominent density-based
approach represents the geometry by the presence or absence of material at each point of the
design domain, the level set approach represents the geometry implicitly by the zero level set
of a scalar function. Both geometrical representations, which allow to easily handle large shape
modifications, or merging geometric entities such as holes, without degenerating the model, have
been first applied successfully to structural optimisation, see , but also in electromagnetic
design of electrical rotating machines and inverse problems, see for instance . In
more advanced level set approaches, holes, can be created if the method is combined with a

topological derivative (see for instance or for more theoretical aspects),
or more recently, it is combined with the density approach 31].

The level set optimisation can be performed on a fixed mesh by adopting intermediate vol-
ume densities to modify the behaviour of the elements cut by the iso-zero, in a similar way
to the density-based approach . However, this approach leads to blurred boundaries which
can cause numerical convergence issues in electromagnetic problems (with eventually localized
boundary effects) and many other cases, such as fluid flow problems and structural problems with
design-dependent loadings. Several immersed boundary techniques and the extended fi-
nite element method (XFEM) have therefore been proposed to represent the
sharp boundary in the physical model and obtain an accurate response along the interface while

Tangential Ribs

Fig. 1: A synchronous reluctance machine (SynRM) from ABB Motors and a representative lam-
ination of a rotor with flux-barriers, including radial as well as tangential iron bridges (see )
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avoiding remeshing. However, XFEM makes it difficult to use existing numerical solvers, mostly
based on FEM, which limits the extension of topology optimisation to such complex systems.

An alternative level set topology optimisation method using body-fitted mesh discretiza-
tion has been successfully applied to electromagnetic waveguides with localized boundary ef-
fects |70l 69|, structural problems [3| |34} 5, |6, 68], and more recently, heat exchangers [27], for
which the accuracy of the physical response in the vicinity of the boundaries is a major concern.
The ability of this method to use the FEM solver as it is, i.e. without requiring any modifica-
tion of the physical equations, regardless of the physics, along with the simplified handling of
manufacturability constraints [42] make it a valuable alternative to the classical approaches.

In all cases, a gradient-based algorithm solves the large scale topology optimisation problem as
it leads to fewer simulations of the underlying PDE model compared to a gradient-free algorithm.
A substantial gain in computation time is furthermore obtained when the derivatives of the
performance functions with respect to the level set design variables are obtained analytically
instead of evaluating a finite difference, which requires one additional solution of the physical
problem for each design variable. The variation of the residual with respect to a level set that
brings modifications in the boundaries of the system requires terms to account for the implicit
dependency of the residual in the continuous flow of geometrical modification, see [59} |41].

Shape sensitivities have been obtained in the past through the velocity method, [59]. This
approach uses the variation of the shape design variable as the parameter describing a smooth
geometrical transformation of the domain, with no tearing nor overlapping, that brings the
boundaries of the domain from their unperturbed position to their perturbed position. The
variation of the parameter determines therefore a flow characterized by a velocity field, which
has been applied successfully to elasticity problems where the components of the solution of
the physical problem are scalar fields, see for instance [72]|. Following this approach, analytical
formulas have also been proposed in other disciplines such as electromagnetics, based on classical
vector analysis, as in [56}, |11]. The complex behaviour of a vector field under the transformation
that brings a modification of the system boundaries has been handled with the Lie derivative, 38|
37]. These material derivatives have been used more recently by [40] in order to overcome the
limitations of the vector analysis approach, classically used for the scalar field. This approach
has been applied to the sensitivity calculation of a linear acoustic and electromagnetic boundary
integral problems [41]. We have shown in [44] that using the Lie derivative, sensitivities for more
complex problems (non linear electromagnetic and elastic) can be efficiently computed in both
2D and 3D thanks to a velocity field based on the parametrization of the geometric model of
the domain. On a practical level, this approach is very efficient since it limits the support of the
volume integrals involved in the sensitivity formulas to a one-layer-thick layer of finite elements
on both sides of the surfaces involved in the shape variation.

In this paper, we propose to tackle the level set topology optimisation by the Method of
Moving Asymptotes (MMA) [60] using body-fitted mesh discretization and adjoint shape sensi-
tivity formulation. The sensitivities are computed analytically based on the Lie derivative from
previous work [44] with a velocity field adapted to the level set method. The paper is organized as
follows. The geometry description is discussed in Section [2] and the general optimisation problem
is posed in Section [3] Section [4] deals with the sensitivities associated with the level set shape
modifications and provide analytic formulas to evaluate them practically. In Sections |5| the level
set topology optimisation with body-fitted spatial discretization is applied to the joint torque
ripple and von Mises stress minimization of a synchronous reluctance machine.
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2 Geometry description using body-fitted spatial discretization

We model the geometry of the SynRM as a bounded domain {2 consisting of two materials (steel
and air) distributed in domains 27 and {25 respectively, with no overlapping, i.e. 21 N 2y = 0
and separated by the interface 04215. The material distribution is described by means of a level
set function ¢,

o(x) <0 Vo e 2,
¢($) =0 Ve 0, (1)
o(x) >0 Vo e (),

at a given point = of 2, see Fig. [
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Fig. 2: A level set function of a representative SynRM rotor (left) and the body-fitted computa-
tional mesh (right), i.e. conformal to the boundaries of the level set, are considered.

Most state-of-the-art methods of level set based topology optimisation consider a fixed grid
for analysis, either by using a dedicated SIMP-like approach, which alters the equations of the
physical problem at hand, or an immersed-boundary technique (such as XFEM) so as to preserve
the quality of the physical solutions. Alternatively, in this work, the modified geometries obtained
by the variations of the level set function are discretized spatially by conformal meshes which
make each phase (£2; and (2;) readily available for accurate FEM analysis.

We consider throughout this paper a triangular mesh of {2, denoted H, as well as a nodal
valued level set field ¢. A number of methods for obtaining a conformal mesh H€, i.e. which
can be divided into the two sub-meshes Hp, and Hp,, such that H® = Hg, U Hgp,, have been
developed over the years. In the most successful approaches, the original boundary 0£2;5 is first
smoothed, then the mesh is made conformal to this approximated interface, see for instance
and more recently . In our approach, the level set function is represented by a field defined
on a finer background mesh, called H4, which can thus be interpolated on any other mesh and
in particular on H, as shown in the figure

While the vertices of H can be moved directly onto 0§2;2, , this operation may result
in a poor boundary representation, especially when the mesh is not sufficiently refined where
the boundary has a high curvature. With the aim of alleviating this issue, we propose a prior
mesh adaptation so as to ensure that cutting the mesh along the level set iso-zero leads to an
accurate representation of 0f215. In particular, on the contrary to where the number of
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(c)

Fig. 3: The level set function is defined at the nodes of a refined background mesh H When
the level-set values have to be computed on another mesh H its vertices are located into
He 3¢ and a linear interpolation leads to a nodal representation on H

vertices and elements of the mesh is fixed, this later step allows to modify the complexity of
the initial mesh, and to add elements if the shape of the iso-zero requires a finer discretization.
Once this adaptation step is achieved, the vertices of the resulting mesh are moved along the
level set iso-zero. Additional steps may sometimes be required as this method may break the
validity of the mesh, e.g. by cutting edges crossing the iso-zero level set (¢ = 0), as reported
in . Afterwards, a second mesh adaptation is performed in order to improve the overall mesh
quality. This last mesh adaptation replaces the Laplacian smoothing of . All the steps
of our methodology are further described in the next sections and are illustrated for a radial
level function, on a square domain, see Fig. [ We implemented this approach in the open source
library MAdLib [1] as part of this work.

2.1 Conforming mesh to the level set boundary

In order to make the mesh conformal to the level set, an edge-based mesh modification is per-
formed. This corresponds to the step between [b] and [id of Fig. [4 and it is also deeply used
to go from @ to Assuming that the values of ¢ are known at the vertices of H (which in
practice are interpolated linearly from the background mesh #,), we move the vertices of each
edge crossed by the iso-zero of the level set to the position where ¢ vanishes. Letting e be one of
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(c)

(d)

Fig. 4: A representative level set based mesh adaptation process for a radial level set function.
The initial mesh H with the iso-zero in red) is first further refined in regions where 9212
is highly curved, resulting in a level-set based adapted mesh H* [Ab] The mesh vertices are
then moved to the iso-zero of the level set, giving a low-quality conform mesh Hj with a
zoom on the blue squared area and the iso-zero in red). Finally, in order to a obtain a conform
mesh H¢ with reasonable qualities, the discretization of the boundary 02;5 is fixed and a last
mesh adaptation is performed, improving the elements qualities dd] At the very end, a mesh
classification is done, defining whether each triangle belongs to either {21 or (25.

these edges defined by two vertices, respectively x; and xs, such that ¢(z1) > 0 and ¢(z2) < 0,
we obtain the point

B(x1)z2 — P(T2)71
d(x1) — p(x2)

which lies on e and satisfies ¢(x4) = 0. The most obvious approach would consist in splitting
the edge at the location x4 using a standard mesh split operator, see Fig[5| Unfortunately, this

(2)

Ty =
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Fig. 5: The 2D edge split operator. The red edge of the left mesh is split (in this example, in
the middle), leading to the right mesh, which has got an additional vertex and four new edges
(in red).

usually leads to a poor mesh quality, or at least some edges of 0215 would remain very short.
Instead, moving one of the two vertices of e at the location x4 leads to much better results.
Following this idea, between 1 and w2, the closest point to x4 is moved while keeping the mesh
connectivity unchanged. If the operation is not allowed because the mesh validity is broken,
another try is done with the other vertex. Finally, in the rare case that neither of the vertices
can be moved, the edge is split, as shown in Fig. [5] An example of such a mesh modification,
obtained by only changing the vertices locations, is illustrated in Fig. [6] At this step, neither

Fig. 6: Mapping of the vertices of a mesh (left) to the closest point crossed by the iso-zero of the
level set (red line). The body-fitted mesh (right) is obtained by moving the vertices 1, 3, 4 and
5. Once the vertices are moved, the level set is aligned with mesh edges.

the accuracy of 02152 boundary representation, nor the quality of the mesh elements are taken
into account. In order to get a better approximation of 0f212, an a-priori mesh adaptation is
performed before conforming the mesh to the level set, as described in next section.

2.2 An a-priori level set based mesh adaptation

As described in subsection [2.1} simply fitting the mesh to the interface 9212 does not ensure
that 0215 is discretized accurately enough. Therefore, the mesh is first refined in the regions
where the interface makes large variations by means of a size-field mesh adaptation, then the
vertices are moved to match 925, thus leading to an accurate discretizations of the boundary.
Letting {1, ..., zi, ...,z } be the set of vertices of H, the size-field based mesh adaptation lies in
the definition of the target sizes {hy, ..., h;, ..., hx} based on the neighboring edges of each vertex
x;. Then, the automatic mesh adaptation procedure of MAdLib modifies the mesh so that the
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edges in a neighborhood of z; have a length close (up to a tolerance) to h;, see Fig. m The mesh
adaptation problem is reduced to the definition of suitable reference (target) sizes.
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Fig. 7: A size-field based adaptation of an initial mesh (left) with the size-field unit balls (red)
leads to the adapted mesh (right).

In our case, the way the sizes are computed differs between the vertices which lie on 021
and the other ones. At the beginning of the process, the mesh H does not fit the iso-zero of
the level set, that is why the method described by the subsection [2.1] is first applied, giving a
body fitted mesh H¢. Then, for each boundary vertex x belonglng to 08212, a reference size
hy > 0 is defined, which depends on the curvature of 94215 at that point. Indeed, as illustrated
by Fig. 8] the size h; is built through a distance d > 0, which measures the gap between 0212
and a straight line. Assuming that the level set does not have non-manifold configurations,
is surrounded by two edges (ell,, e%) which belong to 0f215. These edges can be used to define a

1
unit normal vector n to 3212, see Fig. E Likewise, the unit vector u = Ieelbb is defined, with
b

|.|]2 being the 2D Euclidean norm. Then, the Euclidean scalar product d = |(n,u)s| provides a
measure of the distance between 0215 and its tangent line at the vertex x;. Since n and u are
both unit vectors, it implies that d € [0,1), where d = 0 corresponds to the case in which 922
is a straight line. The reference size h; is obtained by interpolating between a minimal length
hmin > 0 and a maximal length h,,q. > O:

hy = (1 — d*)hmaz + d° Rmin, (3)

where o > 0 is a positive parameter giving the sensitivity of h, with respect to d. While other
choices of o might lead to suitable results as well, a fixed & = 1/100 is used in this work. By
doing so, if 3215 is a straight line at xp, then hy = hpq,. On the contrary, hy gets closer to Apin
as the angle made by 0215 at x; increases.

Finally, we define a reference length for the vertices that do not belong to 9{215. This is done
in two steps. First, we define the reference length to be h,,q, and then the size-field is smoothed
over the whole mesh, diffusing the small lengths of 9215 to the other vertices. More precisely,
the smoothing step is based on the following principle. For each vertex of the mesh z; with initial
length h;, we compute a diffused length over all the mesh, which is obtained by increasing the
length with the distance to x;. This way, the diffused length h; is defined for all x;,j # ¢ at the



Title Suppressed Due to Excessive Length 9

Fig. 8: A representative boundary vertex x;, € 0212, its unit normal vector n to 9215 and the
unit vector u, given by one of the normalized boundary edges surrounding xp, (in red). The
reference length hj depends on the normalized distance between 0212 and its tangent line, given
by d = |(n,u)s|.

location of ;. If h; < hj, then h; is replaced by h; The more general anisotropic case, and in
particular the way the reference lengths are diffused, is described in Ref. [4]. Notice that this
smoothing depends on a parameter § > 1, which controls the magnitude at which the lengths
are increased with respect to the distance, see Fig. @ Once the reference lengths {hy, ..., hy} are

00

Fig. 9: Reference length definition for a circular level set. Left: the map and the unit balls of the
curvature-based size-field without smoothing. Right: the same map and unit balls with a length
smoothing.

computed for the vertices {1, ...,z } of Hg, they are normalised, in order to achieve a given
mesh complexity N. More precisely, let h : 2 — (0, 400) denotes the Py map of {hq, ..., hy} onto
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Hg,. Then, the complexity of h is given by

c(h) = /Q h%(x)dx. (4)

This quantity is the size-field equivalent of the mesh complexity. Indeed, if h is small, then N
would be large. Likewise, if A is small, a mesh adaptation with respect to the size-field would
produce a large number of elements. In practice, the normalisation step corresponds to replacing

hi,i=1,...,k by
N 1 / 1 2 '
h;' = (N , 7h2(;v)dx h;. (5)

Finally, once the size-field {hY',...,hY} is computed for all the vertices, H¢ is adapted using
MAdLib, resulting in a mesh H* that is refined where 9215 is highly curved. In order to properly
discretize 08212, this process is done several times, with increasing mesh complexity. In particular,
it implies to update the level set at each iteration. This task is done by using the fine background
mesh H4, which we use to compute the level set on the adapted meshes. Actually, the a priori
mesh adaptation method follows the iterative process described by the algorithm [T}

Algorithm 1: Curvature-based mesh adaptation

Input : Initial mesh H
Background mesh H
Set of increasing complexities {N1, ..., N;}
Output: Adapted mesh H*
Ho=H
for i=1,...,l do
Move the vertices of H;_1 onto the level set = H{_,
Compute the reference sizes at the vertices of HS_;
Normalize the sizes to reach the complexity N;
Adapt the mesh = H,; with complexity N;
Using H 4, interpolate the values of ¢ at the vertices of H;
end for

H* =H,

Notice that, at this point, only the accuracy of the representation of 9215 is considered.
Notably, the mesh quality is not involved in this process. The improvement of the mesh quality
is the purpose of the next subsection.

2.3 Body-fitted mesh and quality improvement

In this subsection, we assume that the initial mesh A has been modified into the adapted mesh
‘H* using the method of the previous subsection. Notice that H* is not body-fitted. In this
last step, the aim is to produce a body fitted mesh whose elements qualities are reasonably
good. First, the vertices of H* are moved so that it fits the level set, following the schedule of the
subsection According to Fig.[d] it corresponds to the step between [4b| and [Ad This conformal
mesh, whose elements usually have low qualities, is denoted by Hj, . The quality improvement
method presented in this paper, which corresponds to the step between [Id and [Ad] relies on a
suitable size-field based mesh adaptation, while keeping the edges belonging to 9215 unchanged.
This time, the size field will not depend on the curvature but rather on the lengths of the edges
belonging to 9f212. More precisely, for each boundary vertex x, € Hj,,, N 0212, we define a
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reference length hy, which is the minimum length of the edges of 81215 surrounding . In other
words, hp is given by R

T, )
where e, denotes an edge surrounding z;. Similarly to the a priori mesh adaptation, the size-field
is then spread to the other vertices by the size-field smoothing. Once this size-field definition has
been done, MAdLib adapts the mesh accordingly and finally produces the mesh H¢, which is
body fitted with elements of good quality. Notice that the edges belonging to the interface 94212
are constrained during the adaptation process in order to keep the mesh fitted to the level set
iso-zero. The whole mesh adaptation process, which turns the initial mesh H into the body fitted
one H¢, is described by the algorithm

Algorithm 2: Flowchart of the level set based mesh adaptation.

Input : Initial mesh H
Background mesh H
Set of increasing complexities { N1, ..., N; }
Output: Body fitted mesh H¢
Ho=H
for i=1,...,l do
Move the vertices of H;_1 onto the level set = H¢_;
Compute the reference sizes h at the vertices of HY_;
Normalize the sizes to reach the complexity N;
Adapt the mesh = H; with complexity N;
Using Hg, interpolate the values of ¢ at the vertices of H;
end for
Move the vertices of H; onto the level set = H}
Compute the reference sizes h at the vertices of Hiow

Adapt the mesh with constrained boundary edges = H¢
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3 Optimisation with body-fitted spatial discretization

The SynRM rotor experiences topology modifications, controlled by a set of design variables, 7,
which are the nodal values of a level set function, ¢, at the nodes of the fixed non-conformal mesh
of the design domain. We consider a FEM-based optimization and divide the design procedure,
for the sake of brevity, in electromagnetic performance and proper mechanical design |12, [8].

The electromagnetic performance of the machine can be evaluated with sufficient accuracy in
a quasi-static regime. This means that stator windings are supplied with the prescribed three-
phase currents, and the simulation is done for a series of equidistant rotor positions over one
pole pitch, as a succession of static computations. The magnetostatic formulation, written at the
continuous level by its weak formulation, reads: find A* the magnetic vector potential verifying
appropriate boundary conditions such that the residual

rm(T, A", A) = / v(curl A*) curl A* - curl A — J - A d2 = 0, (7)
()
for appropriate test function A, [14]. In (7)), B* = curl A* is the magnetic flux density, H(B*) =
v(curl A*) curl A is the magnetic field, with v the reluctivity depending on B* (nonlinear ma-
terial) and J is the current density. Furthermore, the electromagnetic symmetries are exploited to
simulate only a quarter of the machine by means of appropriate periodicity boundary conditions.
On the other hand, the mechanical design is based on a linear elastic behaviour of the rotor
subjected to a centrifugal body load with a given frequency. For the sake of rapid prototyping, we
consider only a single operating point (speed) rather than a time-consuming fatigue life analysis.
The weak formulation of the linear elastic equilibrium equations reads in the solid parts £2: find
u* the displacement field verifying the appropriate boundary conditions such that

re(T,u*,ﬂ):/ o(e"):Vu—g-u d2=0, (8)
0

for an appropriate test function @, see [73]. In (8), €* = 1((Vu*) + (Vu*)T) is the strain tensor
and g is an imposed volume force density. The stress tensor o is a symmetric tensor obtained
from the strain tensor by means of a constitutive relationship o;;(ex) = Cijri €
The design problem is formulated as a constrained optimization problem that aims to deter-
mine the level set design variables, 7, that minimize a cost function fy(7, A, u), subjected to m
inequalities f;(7,A,u) <0, j =1,...,m, ensuring the feasibility of the design:
min  fo(r, A%, u*)
T
st. fi(r,ANu*)<0,j=1,...,m
Tmin S T S Tmax (9)
(T, A, A) =0, YA

re(T,u*,u) =0, Vu

The design space of @D is also limited by side constraints 77" < 1 < 7T,

4 Adjoint-based sensitivity with respect to shape variations

A particular performance function f(7, A, u) that is separable and explicit in terms of the solution
fields A* and u* is considered:

f(Ta A*”U‘*) = fM(T7 A*) + fe(77 U*) (10)
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which can be written in the form of an integral [[]
fm (7, AY) :/ Fp(1,A%) d2 (11)
2(r)
evaluated at the solution A* of and
flrw)= [ R(ru) a (12)
2(r)

evaluated at u* of respectively; both of them depending implicitly on the level set design
variables. The treatment of any other performance function will be similar.

4.1 Design velocity field

Theoretical formulas to express the derivative of f with respect shape design variables 7 have
been demonstrated in detail using the Lie derivative in [44], in the context of the family of
mappings,

psr : 2(1) C E® = Q(1 + 1) C E®, (13)

parameterized by the set of design variables 7 in the Euclidean space E3, see [59]. This approach
is adopted in this paper for the case of level set design variables. A variation d7 of the design
variable brings the interfaces of 2 from their current position to their modified position. A
flow with a velocity field denoted by v is determined on E® by varying 67 in the family of
mappings in a neighborhood of zero, see [44].

On a practical level, there is some freedom in the definition of the mappings , see for
instance [17], and, hence in the choice of the velocity v, that represents the shape modification.
The mathematical expression of the velocity field is the derivative

_dx

Ve @

(14)
of the coordinate vector x = (x,y, z) of the iso-zero level set nodes with respect to the level set
values at the fixed grid nodes, where {x,y, 2} are coordinates on E3.

Assuming, for sake of brevity, the two-dimensional case and the iso-zero of the level set to
be a line segment that cuts the fixed grid, the coordinates vector of each point A located in this
interface,

—¢2
122 0 0 ¢1¢—¢2

r| _ 1-n 0 70| |[y1y42 0 O ¢1f¢2 (15)
Y 0 1—-n0n 0 0 x1 x3 ¢1’f33
00 b1
Y1 Y3 Py

are expressed in terms of the level set function values ¢1, ¢2 and ¢3 at the nodes 1, 2 and 3
respectively of the fixed grid element in which lies the point A, see [69]. In , {z1,y1}, {x2,y2}
and {x3,ys} are coordinates of the points 1, 2 and 3 respectively, while 7 is the local coordinate
of the node in the line segment and is not affected by small variations of the level set at the fixed

L If the performance function is a pointwise value, the expression of F(1, A*,u*) will then involve a Dirac
function.
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Fig. 10: Superposition of the iso-zero of the level set function and the fixed grid.

grid nodes. Therefore, the sensitivities of the coordinate vector with respect to the nodal values
at the nodes of the fixed grid are

@2 _ 1 0
z1 22 0 0 (¢1—(Zﬁ2)2 (¢2—¢2)2 o1
d[a:] _ {l—n 0 nO] 12 0 0| |~ @67 @i-aa 0 4 )
dr |y 0 1—-n70n 0 0 z1 23 W 0 —wﬁw dr b3
0 0 -9 ¢
by ys (¢>1—£3)2 0 (¢1—1253)2

where the level set values are slightly modified for the ill-posed case with a level set equal to zero
in all vertices of the element (¢; = 0, ¢2 = 0 and ¢35 = 0 simultaneously). This formulae can be
extended to 3D case and also to curved interfaces, see |71].

Using the family of mappings 7 the Lie derivative of an arbitrary field w (scalar field,
vector field, or tensor field) in 2(7) is defined as

1

W —w
L,w = lim Por 0

67—0 0T ’ (17)

where the index v in the notation Lyw makes reference to the velocity field characterizing the
geometrical modification flow.
4.2 Adjoint shape sensitivity of magnetostatics problem

Let us define an augmented Lagrangian function,
fo(r, Ay Am) = f(T, A) — rn (T, Ay An) (18)

with A, a Lagrange multiplier. As implies that the residual r,,, (7, A*, A;,) is zero at equilib-
rium, one has

(T, A% X)) = (1, AY), (19)
and the derivative is expressed in terms of f2 by
dfm dfe
Um0 poy = Y g0 ). (20)

dr dr
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Applying the chain rule, the Lie differentiation of the augmented function ([18)) with respect
to 7 yields
dfm

ar /m ) (DTFm(T, A*) + {DaFp(r, A"} (L AY) 1)

— Ly(veurl A*) - curl \,, + L, J - )\m) d =0,

where we have already omitted the null term. The sensitivity is expressed in terms of the
Lie derivative L, A* of the magnetostatics problem @ solution A*. The first term in is the
partial derivative of the functional,

D, Fy(1,A") = L F,,(1, A , 22
(. A") a9, (22)
whereas the second term is its Fréchet derivative with respect to its field argument,
1
lim ——|F. (1, A+ 6A) — Fy (1, A) — {DaF,(r, A 5A’:0, 23
i 7 |[Fn (7 A+ 04) — Fu(7, A) — {DaFu(r. A)} (04) (23)

where the limit is taken over all sequences of non-zero § A that converge to zero. The Fréchet
derivative is a linear operator applied to the argument in between parenthesis outside the curly
braces, dA/dr, and evaluated in arguments between parenthesis inside the curly braces.

For the current density like J, the Lie derivative reads

LyJ = Jdivv — (Vv)TJ. (24)

Furthermore, a material law like H(B) = v curl A converts a field quantity, B = curl A, into
another field quantity, H, and contains therefore a geometrical conversion operator, called the
Hodge operator, that depends on the metric. Taking into account the implicit Hodge operator
when evaluating the Lie derivative of a material law gives,

L H(B*) = v° curl L, A* + Va((Vv)TB* ~ B*div v) + (Vv) H(B"), (25)
where 9
VW(B)=v+ 6—;B

is the tangent reluctivity tensor of the material law.
Substituting Egs. and into yields the linear adjoint system to solve for A,

/ ({DAFm(T, A*)} (LVA*) — 1% curl\,, - curl LVA*> df2 =0, (26)
02(r)

for appropriate test function L, A* which, once discretized, has the same system matrix as
the tangent stiffness matrix of the problem evaluated for the converged solution A* of the
nonlinear iterative process. The sensitivity with respect to 7 is then given by

%(7, A" X)) = / (DTFm(T, A*) =9 ((VV)T curl A* — curl A* div v) ~curl Ay (27)
dr (1)

—(Vv)veurl A* - curl X}, + (Jdivv — (Vv)TJ) - )\,*n> dn

where Ay, is the solution of the adjoint problem . The rather large number of terms of the
sensitivity are advantageously evaluated on a support limited to a one-layer-thick layer of finite
elements on both sides of the surfaces involved in the shape variations. The sensitivity calculated
analytically is compared with that obtained by finite differences with a perturbation step chosen
small enough to avoid truncation and condition errors, see Fig. It observed that the analytic
approach matches the finite differences approach with a relative error of 0.01.
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Fig. 11: The relative difference between the sensitivity of the SynRM average torque with
respect to the level set field and that calculated by finite differences (left: natural and right: log
scaled)

4.3 Adjoint shape sensitivity of linear elastostatic problem

Taking the Lie derivative of an augmented Lagrangian function,

fg(TaU'v)‘e) = fe(T, u) 77’6(73”7)‘8) (28)
with respect to 7 yields
Lo [ (DR + Dub ) (L) (29)
dr Q(r)

— Lyo(e*) : Vu+ Log - )\e> an,

where A, is a Lagrange multiplier of . The sensitivity (29)) is expressed in terms of the Lie
derivative L,u* of the linear elasticity problem problem olution w*. The first term in
is the partial derivative of the functional, whereas the second term is its Fréchet derivative with
respect to its field argument.

Writing the Hooke tensor as an operator acting on the strain tensor, the Lie derivative of the
stress tensor reads, see [44],

Lyo(€) + (VV)TU(E) —o(e)divv ={C} (LvVu — (Vv)(V’u)), (30)
while the Lie derivative of the centrifugal load reads
Lyg=—(Vv)Tg. (31)
Substituting and into yields the linear adjoint system to solve for A,

/ ({DuF (7w} (Lew?) — {C} (LyVu) : VA) d2 =0, (32)
(1)
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which, once discretized, has the same system matrix as the problem . The sensitivity with
respect to 7 is then given by

dfe
dr

(r,u*) = / (D.,.FG(T, u*) +divv o(e") : VA, — o ((VVv)(Vu*)) : VA,
(1)
—o(e"): ((VV)(V)\E))) ae, (33)
where A} is the solution of the adjoint problem . The rather large number of terms of the

sensitivity are again evaluated on a support limited to a one-layer-thick layer of finite elements
on both sides of the surfaces involved in the shape variations.

5 Application to the electro-mechanical design of a SynRM

Let us perform a level set topology optimisation design to the SynRM rotor in order to smoothen
the von Mises stress criterion in steel parts while keeping the average torque and torque ripples
respectively to acceptable levels. The topology optimisation problem @D reads:

min fO(Ta A*,’Ll,*) = 0PN
g

N,
1 P
st. fi(r,A*, u*) = N, > Tr—T* >0,
R=1
fg(’T, A*,'u,*) = (TR/T* — 1)2 — Tg < 0, R = 1, .. .,Np, (34)

—1<7<1
rm(T, A", A) =0, VA

re(r,u*,u) =0, Va,

For the optimisation at hand, , the electromagnetic performance of the machine is evalu-
ated under a quasi-static assumption. The stator windings are thus supplied with the prescribed
three-phase currents (nominal value of 217 A) and the simulation is done for a series of N, = 8
equidistant rotor positions over one angular torque period (ranging from 0 to 7.5 degrees) as a
succession of static computations. The electromagnetic symmetries are also exploited to simu-
late only a quarter of the machine by means of appropriate periodicity boundary conditions. The
nonlinear finite element model takes the anhysteretic saturation curve of a M400-50A steel grade
(see Fig. , and it is solved by means of a Newton-Raphson method.

A method based on Maxwell’s stress tensor is used for the computation of torque. Choosing
a circular shell of axial length L, and surface S, in the air gap, denoted {2, of the machine as a
closed integration surface that surrounds the rotor, the torque at a given rotor position 6 reads,

TR = / 1% tg Br Bg dQ, (35)
QQ
with
Lq
tg = 27'('57(17' -r (36)

being a geometrical coefficient where 7 is the radial vector, B, = B* - e, and By = B”* - ey are
the scalar product of B* with respectively the radial basis vector e, and tangential basis vector
€y.
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Fig. 12: Magnetization curve of the laminated steel M400-50A.

The electromagnetic design is followed by a proper mechanical design based on a linear
elastic constitutive behaviour with a Young’s modulus of 210 (MPa), a Poisson ratio of 0.3 and a
density of 7.7 (g/em?). The rotor is subjected to the centrifugal body load with a rotating speed
of 4800 RPMs around its axis. In order to speed up the design process, an accurate fatigue life
assessment is not performed, but we rather limit ourselves to the maximum speed. The local von
Mises stress criterion o, is aggregated into a single functional in the steel parts (§21) by means

of the LP-norm, [25],
1/p
OpN = (/ 0’5 dQ) 5 (37)
21

where p is the LP-norm parameter.

The evaluation of the performance functions fy and f;, j = 1,2 for a given level set distribu-
tion, 7, is performed by solving the nonlinear magnetostatic problem at N, rotor positions
using a mesh conformal to the boundaries of the level set and evaluating the torque T at each
position fr by making use of . It also requires solving the linear elastic problem in the
steel (solid) parts only, at a single rotor position and evaluating the LP-norm of the von Mises
stress (37)).

The computational chain is based on Gmsh [32] for the mesh generation and sparselizard [35]
for the nonlinear magnetostatic computation. Furthermore, two in-house software packages are
considered: on the one hand, Morfeo [2], which is a thermo-mechanical finite element software
with topology optimisation capabilities, and, on the other hand, MadLIB, which is a library for
advanced mesh adaptations. The optimisation problem (34)) is solved by the MMA [61] algorithm
which makes use of the sensitivity formulas and derived so far. In what follows, T*
(the target value for the average torque) set to 1100 Nm with 10% ripples (7. = 5%). For the
mechanical part, the von Mises stresses should be less than (or equal to) 75% of the elastic limit
at maximum speed (350 MPa).

The successive iterations of the optimisation algorithm are summarized in Fig.[I3] While the
design domain (level set) is advantageously discretized in a fixed grid using 23,470 triangular
elements and filtering a set of nodal optimisation variables at each point by means of a Helmholtz
type filter [47], the analysis domain is discretized by means of a body-fitted mesh using on average
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32,321 triangular elements at each iteration. Starting with the design domain initially seeded
with holes, the optimisation results, after roughly 165 iterations, in a rotor with two flux-barriers
and a number of radial ribs determined automatically in each flux-barrier. The complexity of
the holes (flux-barriers) pattern requires a rather fine mesh for the accurate FEM analysis. The
design shows the ability of the method to recover similar layouts to those obtained by imposing

design rules as in [§] or .

A\

‘ ARG
4; TS

Fig. 13: The rotor of the SynRM with the initial hole seeding (top left) is optimised successfully
until meeting both the torque requirements and the mechanical feasibility. The mesh conformal to
the level set boundaries is shown after 20 iterations (top right) and at the last iteration (bottom).

To further investigate the influence of the initial seeding, the optimization problem is solved
starting from a design with a lowered number of holes and using the same refinement level for the
body-fitted mesh. As expected, the results gathered in Fig. [[4] show that the design is sensitive
to the initial seeding. While the rotor still has two flux barriers, there is now only one radial rib
on the largest barrier. While keeping a constant level of body-fitted mesh refinement, it appears
that more holes in the initial design allow the creation of finer structures during optimisation.
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Fig. 14: The optimisation of the SynRM rotor with the modified initial hole seeding (left) results
in a rotor with two flux barriers (right) where only one of which has a single radial rib.
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Fig. 15: Convergence of the normalized average torque and ripples to the desired values for the
optimisation started with two different configurations (O1: configuration of Fig. and O2:
configuration of Fig [[4]

Although the optimizations resulted in different designs, both of them exhibit the same levels
of average torque with less than 10% torque ripples, Fig. both meeting hence the expected
requirements. The differences lie mainly in the level of von Mises stress along the radial bridges,
as well as in the displacement of the outer ring, see Fig. the stress levels everywhere else
in the rotor are below the maximum stress criterion. The optimised design obtained with the
lowered number of holes in the initial seeding exhibits the lowest level of von Mises stress and
displacement.



Title Suppressed Due to Excessive Length 21

0.13 —
I0.12
0.10
0.09
0.08
0.07

0.05
0.04

0.03
|0.01

0.00

Displacement (mm)

253
| 228

202
177
152
126
101
076
051
025
000

Stress (MPa)

Fig. 16: The displacement (magnified with a factor 50), top, and the level of von Mises stress
criterion, bottom, for the designs of Fig. [13| (left colum) and Fig respectively.

6 Conclusions and perspectives

We have developed a mathematical framework for handling accurately the complex topological
modifications which occur through topology optimisation based on a level set method. The
domains delineated by the level set function are discretised by conformal meshes in order to
enable accurate FEM analyses. Following the general framework of shape sensitivity analysis,
we can obtain the sensitivity with respect to the shape modifications. The theoretical results
gathered in the article have been successfully applied to electro-mechanical optimisation of the
topology of energy conversion system which is of a great importance in automotive applications.
Our optimisation process delivered a valid design, achieving the expected torque levels for the
given supply conditions, and ensuring structural integrity regarding centrifugal forces.

Replication of results

Our work relies on several programming languages (Python, C++) and also several other codes.
Specifically, we use the described topology optimisation with body-fitted mesh representation
based on the in-house software Morfeo [2]. The mesh adaptations are performed with MadLIB
and the nonlinear magnetostatics is solved with Sparselizard . Rather than providing a source
code package which would only work under very strict platform requirements, we instead opt to
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aid the reader in reproducing our results by satisfying the reasonable and responsible demands
for the open source codes underpinning the present article.
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