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Feuille d’exercices 1

1. Algèbre linéaire : généralités

1.1. Soit f : R3 → R
2 l’application linéaire définie par

f(x, y, z) = ( 2x+ y − z, 3x− 2y + 4z )

Trouver la matrice de f dans les bases canoniques de R
3 et R

2, puis lorsque dans R
3 on utilise à la

place de la base canonique la base B′ = (v1, v2, v3) où

v1 = (1, 1, 1) v2 = (1, 1, 0) v3 = (1, 0, 0)

1.2. Soit la matrice

M =





1 −1 1
0 1 1
2 3 7





et f l’application linéaire de R3 dans R3 associée. Déterminer une base, donner des équations et préciser
la dimension de ker f et Imf .

Mêmes questions pour l’application linéaire g : R4 → R
3 associée à la matrice

N =





2 −1 1 1
1 2 −1 4
1 7 −4 11





1.3. Soit f : R3 → R
3 l’endomorphisme défini par

f(1, 0, 0) = (−1,−6, 9) f(0, 1, 0) = (2, 6,−6) f(0, 0, 1) = (1, 2,−1)

1. Déterminer une base de ker(f).

2. Montrer que l’ensemble E = { u, f(u) = 2u } est un plan dont on donnera l’équation et une
base.

3. Montrer que ker(f) et E sont supplémentaires.

4. Donner la matrice de f dans une base formée de bases de ker(f) et de E.

1.4. Soit v1 = (1, 0, 0), v2 = (5,−2, 2), v3 = (−1, 1, 2).

1. Montrer que B = (v1, v2, v3) est une base de R3. Écrire la matrice de passage de la base canonique
Bcan à la base B, puis celle de B à Bcan.

2. Soit f : R3 → R
3 l’endomorphisme dont la matrice dans Bcan est

A =





1 3 −2
0 0 1
0 2 1





Déterminer la matrice M de f dans la base B. Calculer Mn pour tout n ∈ N
∗, puis An.
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2. Déterminants

2.1. Calculer les déterminants suivants :

∣

∣

∣

∣

2 3
−1 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 2
3 4 5
5 6 7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 6
3 4 15
8 6 21

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0
2 3 5
4 1 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 0 3
1 0 2 4
0 0 −2 7
−1 −3 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 −1 2
0 −4 3 3
7 2 −2 −1
−1 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

2.2. Factoriser sur R le polynôme

P (x) =

∣

∣

∣

∣

∣

∣

∣

∣

−2 x 1 3
x −2 1 3
1 −2 3 x

1 −2 x 3

∣

∣

∣

∣

∣

∣

∣

∣

2.3. Sachant que les nombres 1067, 1455, 582, 9700 sont divisibles par 97, montrer sans le calculer que
le déterminant :

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

1 0 6 7
1 4 5 5
0 5 8 2
9 7 0 0

∣

∣

∣

∣

∣

∣

∣

∣

est un nombre entier divisible par 97.

2.4. La famille (0,−1, 1, 0), (1, 2,−1, 1), (0, 1, 7,−2), (3,−1, 2, 0), formée de vecteurs de R
4, est-elle

une base ?

2.5. Considérons les vecteurs u = (1,−2, 3, 0), v = (0, 2,−1, 1) et w = (−1, 0, 1,−2) de R
4. Démontrer

qu’ils forment une famille libre, en déduire qu’ils engendrent un hyperplan et donner une équation
cartésienne de cet hyperplan.

2.6. Pour quelles valeurs du nombre réel a le système linéaire






ax − y + z = 1
−x + ay + z = 2
x + y + az = 3

admet-il une solution unique ?

2.7. Soit λ un paramètre réel. Considérons la matrice

Mλ =









2 1 λ+ 3 −2
1 −λ− 2 0 −1

λ+ 3 1 1 0
1 1 1 λ+ 2









1. Factoriser le polynôme P (λ) = det (Mλ).

2. Déterminer les nombres réels λ pour lesquels la matrice Mλ est inversible.

3. Calculer le rang de Mλ en fonction des valeurs de λ.

2.8. Soient n un entier impair supérieur ou égal à 3, A une matrice de Mn(R) et In la matrice identité
d’ordre n.

1. Exprimer det(−A) en fonction de det(A).
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2. Montrer que AT = −A implique det(A) = 0.

3. Montrer qu’il n’existe pas de matrice A telle que A2 = −In.

Exercices supplémentaires.

2.9. On considère les déterminants de Vandermonde

D(a, b, c) =

∣

∣

∣

∣

∣

∣

1 1 1
a b c

a2 b2 c2

∣

∣

∣

∣

∣

∣

et D(a, b, c, d) =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

∣

∣

∣

∣

∣

∣

∣

∣

1. Calculer D(a, b, c).

2. Montrer que sans changer la valeur de D(a, b, c, d), on peut remplacer sa dernière ligne par
f(a), f(b), f(c), f(d) où f est un polynôme de la forme f(x) = x3 + αx2 + βx+ γ.

3. En choisissant astucieusement f de sorte que la dernière ligne n’ait qu’un seul terme non nul, et en
développant, exprimer D(a, b, c, d) en fonction de D(a, b, c). En déduire la valeur de D(a, b, c, d).

4. Peut-on généraliser ?

2.10 Posons ∆2 =

∣

∣

∣

∣

2 −1
−1 2

∣

∣

∣

∣

, ∆3 =

∣

∣

∣

∣

∣

∣

2 −1 0
−1 2 −1
0 −1 2

∣

∣

∣

∣

∣

∣

et

∆n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 −1 0 · · · 0

−1 2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 2 −1

0 · · · 0 −1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1. Calculer ∆2 ∆3.

2. Montrer que pour tout n ≥ 2, on a ∆n+2 = 2∆n+1 −∆n.

3. Montrer que pour tout n ≥ 2, on a ∆n = n+ 1.

3. Diagonalisation

3.1. Soit f l’endomorphisme de R
3 dont la matrice dans la base canonique est

A =





3 1 4
0 2 5
0 0 1





1. Factoriser Pf , le polynôme caractéristique de f .

2. Déterminer les valeurs propres de f et une base de chaque espace propre de f .

3. Donner une base de R
3 formée de vecteurs propres de f .

4. Diagonaliser la matrice A sur R : on précisera les matrices D (diagonale) et P (inversible) ainsi
que la formule qui relie A, D et P .
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Mêmes questions pour chacune des matrices suivantes à la place de A :




1 0 −2
6 4 −6
6 3 −7









4 −1 1
−1 4 1
2 2 3





3.2. Les matrices suivantes sont-elles diagonalisables sur R ? (Réfléchir pour éviter les calculs).

A =

(

1 2
0 5

)

, B =

(

1 5
0 1

)

, C =





1 4 5
0 2 6
0 0 7



 , D =





1 0 0
1 2 0
1 0 2



 ,

E =





2 0 0
1 2 0
0 3 2



 , F =





1 1 0
1 1 0
0 0 2



 .

3.3. Les matrices suivantes sont-elles diagonalisables sur R ? Sur C ? Si oui, les diagonaliser.
On précisera les matrices D (diagonale) et P (inversible) ainsi que la formule qui relie Ai, D et P .

A1 =





4 1 2
0 4 1
0 0 1



 , A2 =





3 2 0
−1 0 0
0 0 1



 , A3 =





4 0 −1
0 −2 −6
0 4 8



 , A4 =

(

0 1
−1 0

)

.

3.4. Discuter suivant la valeur du paramètre m ∈ R la possibilité de diagonaliser sur R la matrice

A =





1 0 1
−1 2 1

2−m m− 2 m





3.5. Soit la matrice

A =









1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1









Démontrer que A est diagonalisable sur C et diagonaliser A sur C.
La matrice A est à coefficients réels : utiliser le lien entre Eλ et E λ pour calculer moins.

Exercices supplémentaires.

3.6. Soit α ∈ R. Soit A = (aij) ∈ Mn(R) définie par

aii = α pour tout i, et aij = 1 pour tout i 6= j

1. On écrit A = (α− 1)In +B (où In est la matrice identité d’ordre n et B ∈ Mn(R)).
Montrer, avec très peu de calculs, que B est diagonalisable sur R. Diagonaliser B sur R.

2. Diagonaliser A sur R.

3.7. Soit n ≥ 2, λ0 un réel donné et A ∈ Mn(R) une matrice telle que

rang(A− λ0In) = 1

Soit f l’endomorphisme de R
n associé à A.
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1. Montrer qu’il existe une base B de R
n telle T = M(f,B) est une matrice triangulaire supérieure.

2. Préciser le lien entre trace(A) et trace(T ).
Déterminer les éléments de la diagonale de T en fonction de λ0 et trace(A).

3. Déterminer le polynôme caractéristique de A.
Donner une condition nécessaire et suffisante (portant sur trace(A)) pour que A soit diagonali-
sable sur R.

4. Suites définies par des récurrences linéaires

4.1. Notons (un)n≥0 et (vn)n≥0 les deux suites réelles définies par leur premier terme u0 et v0 et les
relations de récurrence :

{

un+1 = 5un − 2vn

vn+1 = 4un − vn

1. Déterminer une matrice A telle que

(

un+1

vn+1

)

= A

(

un
vn

)

2. Exprimer

(

un
vn

)

en fonction de A et de

(

u0
v0

)

.

3. Diagonaliser la matrice A et en déduire An.

4. Donner l’expression générale de un et vn en fonction de n, u0 et v0.

5. Donner une condition nécessaire et suffisante (portant sur u0 et v0) pour que les suites (un) et
(vn) aient chacune une limite finie quand n → +∞. Lorsque cette condition est remplie, que
peut-on dire de ces suites ?

4.2. Soit la suite réelle (un)n≥0 définie par ses premiers termes u0, u1 et la relation de récurrence

un+2 = −
1

2
un +

3

2
un+1

pour tout n ≥ 0.

1. Déterminer une matrice A telle que

(

un
un+1

)

= A

(

un−1

un

)

, pour tout n ≥ 1.

2. Exprimer

(

un
un+1

)

en fonction de A et de

(

u0
u1

)

.

3. Diagonaliser A et en déduire An.

4. Donner l’expression de un en fonction de n, u0 et u1.

4.3. Déterminer toutes les suites réelles vérifiant, pour tout n ∈ N, la relation de récurrence

un+2 = un + un+1
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