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1. Formes quadratiques : méthode de Gauss

1.1. Pour les formes quadratiques suivantes :

a) Q(x, y) = x2 − 6xy + 5y2

b) Q(x, y) = xy

c) Q(x, y, z) = x2 + 3y2 + 4z2 − 2xy + 2xz − 6xy

d) Q(x, y, z) = 4x2 + 2y2 + z2 + 4xy − 2yz

e) Q(x, y, z) = 2x2 − 3y2 + z2 + 4xy − 6xz + 5yz

f) Q(x, y, z) = xy + 2xz − 3yz

g) Q(x, y, z) = 3xz − 2xy − 4yz

h) Q(x, y, z, t) = xy + 2xz + 2xt+ yz + 4yt+ 2zt

1. Utiliser la méthode de Gauss pour réduire Q.

2. Déterminer son rang et sa signature.

3. La forme quadratique Q est-elle positive ? négative ? définie positive ? définie négative ?

4. On pourra préciser une base dans laquelle Q est réduite.

2. Extrema locaux des fonctions de plusieurs variables

2.1. Soit f : R2 → R la fonction définie par f(x, y) = x2 + 2xy + y − y3.

1. Déterminer les points critiques de f .

2. Écrire la formule de Taylor à l’ordre 2 en chaque point critique (x0, y0) de f .
On pourra noter f(x0 + h, y0 + k) = · · · .

3. Déterminer les extrema locaux de la fonction f .

2.2. Mêmes questions pour la fonction f(x, y) = x2 + xy + y3.

2.3. Déterminer les points critiques des fonctions suivantes et préciser leur nature

a) f(x, y) = x2 − y3 b) f(x, y) = y2 + x6

Peut-on conclure à partir de l’étude du signe de la forme quadratique donnée par la formule de Taylor ?

2.4. Chercher les extremums locaux ou globaux de la fonction définie sur R
2 par

f(x, y) = −(x2 − 1)2 − (x2 − ey)2

2.5. Étudier les extrema locaux des fonctions f : R2 → R suivantes :

a) f(x, y) = x4 + y4 − (x− y)2 b) f(x, y) = (x− y)exy

c) f(x, y) = y2 + x sin y d) f(x, y) = (3x+ 4y)e−x2
−y2
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2.6. Étudier les extrema locaux des fonctions f : R3 → R suivantes :

a) f(x, y, z) = z2(1 + xy) + xy b) f(x, y, z) = (x− z2)e−(x2+y2)/2

3. Équations différentielles d’ordre 1

3.1. Soit l’équation différentielle définie sur l’intervalle ]− π/2, π/2 [ par

x′(t) = −(tan t)x(t) +
1

cos t
(E)

1. Résoudre l’équation homogène associée à (E).

2. Déterminer une solution particulière de (E).

3. Donner les solutions maximales de (E).

3.2. Résoudre sur l’intervalle ]− 1, 1 [ l’équation différentielle

x′(t) =
2

1− t2
x(t) + (1 + t)et

On pourra remarquer que
2

1− t2
=

1

1 + t
+

1

1− t
.

3.3. On considère l’équation différentielle sur ] 0, +∞ [ :

x′(t) = −
1

t2
x(t)−

1

t3
(E)

1. Calculer F (t) =

∫ t

1

1

s3
e−1/s ds pour t ∈ ] 0, +∞ [.

On pourra faire le changement de variable u = −
1

s
et ensuite intégrer par parties.

2. Résoudre l’équation homogène associée à (E).

3. Déterminer une solution particulière de (E) sur ] 0, +∞ [ à l’aide de la méthode de variation de
la constante.

4. Donner l’ensemble des solutions de (E) sur ] 0, +∞ [.

3.4. Soit F : R× R
∗ → R la fonction définie par F (t, x) = −

t

x
.

On considère l’équation différentielle

x′(t) = F (t, x(t)) = −
t

x(t)
(E)

1. Montrer que pour tout (t0, x0) ∈ R× R
∗, le problème de Cauchy

{

x′(t) = F (t, x(t))

x(t0) = x0

admet une unique solution maximale.

2. Déterminer les solutions maximales de (E). Sont-elles globales ?

3. Dessiner les graphes des solutions maximales de l’équation.
Vérifier qu’ils forment une partition de R× R

∗ (conséquence de 1.).
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3.5. Mêmes questions si F (t, x) =
t

x
.

3.6. On considère l’équation différentielle définie pour tout t ∈ R par

x′(t) = 3|x(t)|2/3 (E)

1. Montrer que la fonction identiquement nulle est solution de (E) sur R.

2. Déterminer les solutions x : I → R de (E) vérifiant x(t) > 0 pour tout t ∈ I (on donnera le plus
grand intervalle I possible).

3. Même question avec x(t) < 0 pour tout t ∈ I.

4. Monter que les solutions trouvées dans 2. et 3. ne sont pas maximales en remarquant qu’on peut
les raccorder avec la solution nulle.

5. Montrer que le problème de Cauchy
{

x′(t) = 3|x(t)|2/3

x(0) = 0

admet une infinité de solutions maximales (qui sont globales).
Préciser pourquoi le Th de Cauchy-Lipschitz ne s’applique pas ici.

3.7. On considère l’équation différentielle sur R

x′(t) = x(t) (1− x(t)) (E)

1. Justifier l’existence et unicité de solution maximale de tout Problème de Cauchy pour (E).

2. Déterminer les solutions maximales constantes de (E).

3. Soit x : I → R une solution maximale de (E) vérifiant 0 < x(t0) < 1.
Montrer qu’elle est bornée, en déduire grâce à un résultat du Cours qu’elle est globale (I = R).

4. Soit x1 : I1 → R la solution maximale du Problème de Cauchy
{

x′(t) = x(t) (1− x(t))

x(0) = 2

(a) Montrer que x1(t) > 1 pour tout t ∈ I1.

(b) Calculer
∫ t

0

x′1(u)

x1(u)(1− x1(u))
du

pour tout t ∈ I1.

(c) En déduire x1 et I1.

3.8. On considère l’équation différentielle sur R

x′(t) = 2t(ex(t) − 1) (E)

1. Justifier l’existence et unicité de solution maximale de tout Problème de Cauchy pour (E).

2. Déterminer les solutions maximales constantes de (E).

3. Soit x1 : I1 → R la solution maximale du Problème de Cauchy
{

x′(t) = 2t(ex(t) − 1)

x(0) = ln 2
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(a) Montrer que x1(t) > 0 pour tout t ∈ I1. En déduire que la fonction

t −→
x′1(t)

ex1(t) − 1

est bien définie sur l’intervalle I1.

(b) Calculer
∫ t

0

x′1(u)

ex1(u) − 1
du, pour tout t ∈ I1 (remarquer que

x′1(u)

ex1(u) − 1
=

e−x1(u)x′1(u)

1− e−x1(u)
).

(c) Déterminer x1 et I1.

4. Systèmes différentiels linéaires

4.1. Déterminer les solutions à valeurs réelles du système différentiel :










x′(t) = 4x(t) + 6y(t)

y′(t) = −3x(t)− 5y(t)

z′(t) = −3x(t)− 6y(t) −5z(t)

4.2. Donner l’ensemble des solutions à valeurs réelles du système différentiel suivant :

(S)







x′ = x −2z
y′ = 6x +4y −6z
z′ = 6x +3y −7z

1. Quelle est la solution de (S) telle que x(0) = 0, y(0) = −1 et z(0) = −1 ?

2. Déterminer l’ensemble des solutions de (S) telles que x(t), y(t) et z(t) tendent toutes les trois
vers 0 quand t → +∞.

4.3. On considère le système différentiel

(S)

{

x′(t) = x(t)− 4y(t)

y′(t) = 2x(t) + 5y(t)

1. La matrice du système est-elle diagonalisable sur R ? sur C ?

2. Déterminer les solutions à valeurs complexes de (S), puis les solutions à valeurs réelles.

4.4. Résoudre le système différentiel à coefficients réels
(

x′(t)
y′(t)

)

=

(

1 5
1 −3

)(

x(t)
y(t)

)

+

(

5e2t

e2t

)

4.5. Trouver toutes les solutions à valeurs réelles du système différentiel




x′(t)
y′(t)
z′(t)



 =





0 1 −3
2 −1 −2
−1 1 −2









x(t)
y(t)
z(t)



+





et

0
0





4.6. Soit l’équation différentielle définie sur R par

x′′′(t) + 3x′′(t)− x′(t)− 3x(t) = 0 (E)
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1. En introduisant les fonctions inconnues auxiliaires y = x′ et z = x′′, transformer (E) en un
système différentiel 3× 3 du premier ordre





x′

y′

z′



 = A





x
y
z





Résoudre ce système et déterminer les solutions à valeurs réelles de (E).

2. Déterminer la solution de (E) vérifiant les conditions initiales x(0) = x′(0) = 0, x′′(0) = 1.

4.7. On considère le système différentiel

(S)

{

x′′ = 2x −y′

y′′ = −y +2x′

1. En introduisant les fonctions inconnues auxiliaires z = x′ et w = y′, transformer (S) en un
système différentiel 4× 4 du premier ordre

(S′)









x′

y′

z′

w′









= A









x
y
z
w









2. Montrer que le polynôme caractéristique de A est PA(x) = (x+ 1)(x− 1)(x2 + 2).
La matrice A est-elle diagonalisable sur R ? sur C ?

3. Déterminer les solutions à valeurs réelles de (S′). En déduire celles de (S).

Exercices supplémentaires.

Systèmes dont la matrice est triangulaire ou semblable à une matrice triangulaire.

4.8. Résoudre le système différentiel à coefficients réels
{

x′(t) = x(t) +2y(t) + 1

y′(t) = y(t) + t

4.9. Résoudre le système différentiel à coefficients réels










x′(t) = x(t) +et

y′(t) = x(t) +y(t) +e2t

z′(t) = x(t) + z(t) +e3t

4.10. Montrer que la matrice

A =

(

1 1
−1 3

)

est semblable à une matrice triangulaire supérieure. Résoudre le système différentiel
(

x′(t)
y′(t)

)

= A ·

(

x(t)
y(t)

)

4.11. On considère le système différentiel




x′(t)
y′(t)
z′(t)



 =





−1 1 −1
1 2 1
3 −1 3









x(t)
y(t)
z(t)





Montrer que la matrice du système est semblable à une matrice triangulaire supérieure et le résoudre.
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